Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Лекции по интелектуальным информационным системам - файл 1.doc


Лекции по интелектуальным информационным системам
скачать (6014 kb.)

Доступные файлы (1):

1.doc6014kb.17.11.2011 17:31скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5   6   7
Реклама MarketGid:
Загрузка...
Дисциплина "Интеллектуальные информационные системы" (ИИС) рассматривает способы построения информационных систем для решения неформализованных задач в различных сферах творческой деятельности человека. Особое внимание уделяется вопросам построения экспертных систем, которые являются наиболее значительным результатом практической реализации теории искусственного интеллекта. Рассматриваются процедуры имитации мыслительной деятельности человека в определенной предметной области, алгоритмы выделения признаков для описания ситуаций в условиях неопределенности.

Изучаются математические и алгоритмические основы интеллектуальных информационных систем: модели представления знаний на основе систем продукций, семантических сетей и фреймов; выводы на знаниях; нечеткая информация и выводы; нейронные сети; методы эвристического поиска решений и программирования задач в среде CLIPS, пакете прикладных программ Neureal Network Toolbox, функционирующего под управлением ядра системы MATLAB.


^ Лекция 1. Введение в интеллектуальные информационные технологии.
В лекции изложены основные направления создания и развития интеллектуальных информационных технологий, которые дают возможность пользователю получить сведения по интересующей проблеме, используя накопленный опыт и знания профессионалов.
В основе стратегии интеллектуальных технологий лежит понятие парадигмы - концептуального представления на суть проблемы или задачи и принцип ее решения. Центральная парадигма интеллектуальных технологий - это обра­ботка знаний. Системы, ядром которых является база знаний или модель предметной области, описанная на языке сверхвысокого уровня, прибли­женном к естественному языку, называют интеллектуальными. Чаще всего интеллектуальные системы (ИС) применяются для решения сложных задач, связанных с использованием слабо формализованных знаний специалистов - практиков, а также с логической обработкой информации. Например, поддержка принятия решения в сложных ситуациях, анализ визуальной информации, управление в электрических цепях электрооборудования и сетях распределения электроэнергии; поиск неисправностей в электронных устройствах, диагностика отка­зов контрольно - измерительного оборудования и т. д. Типичными примерами ИС являются экспертные системы (ЭС) и искусственные нейронные сети (ИНС), берущие на себя решение вопросов извлечения и структурирования знаний, а также технологические аспекты разработки систем, основанных на знаниях.

Экспертные системы – это быстро прогрессирующее направление в области искусственного интеллекта. Современные ЭС представляют собой сложные программные комплексы, аккумулирую­щие знания специалистов в конкретных предметных областях и распростра­няющие этот эмпирический опыт для консультирования менее квалифици­рованных пользователей. Парадигма ЭС предполагает следующие объекты, а также этапы разработки и функционирования ИС:

  • формализация знаний – преобразование экспертом проблемного знания в форму, предписанную выбранной моделью представления знаний;

  • формирование базы знаний (БЗ) – вложение формализованных знаний в программную систему;

  • дедукция – решение задачи логического вывода на основе БЗ.

Основные факторы, влияющие на целесообразность и эффективность раз­работки ЭС:

  • нехватка специалистов, затрачивающих значительное время для оказания помощи другим;

  • выполнение небольшой задачи требует многочисленного коллектива спе­циалистов, поскольку ни один из них не обладает достаточным знанием;

  • сниженная производительность, поскольку задача требует полного ана­лиза сложного набора условий, а обычный специалист не в состоянии просмотреть за отведенное время все эти условия;

  • большое расхождение между решениями самых хороших и самых плохих исполнителей;

  • большое расхождение между решениями самых хороших и самых плохих исполнителей;

  • наличие экспертов, готовых поделиться своим опытом.

Сравнительные свойства прикладных задач для их решения ЭС приведены в таблице 1.

Таблица 1.

Критерии применимости ЭС

Применимы ЭС

Неприменимы ЭС

Не могут быть построены строгие алгоритмы или процедуры, но существуют эвристические методы решения.


Имеются эффективные алгоритми-ческие методы.

Есть эксперты, которые способны решить задачу.

Отсутствуют эксперты или их чис-ло недостаточно.

По своему характеру задачи отно-сятся к области диагностики, интерпретации или прогнозиро-вания

Задачи носят вычислительный характер.

Доступные данные “зашумленны”.

Известны точные факты и строгие процедуры.

Задачи решаются методом фор-мальных рассуждений.

Задачи решаются процедурными методами, с помощью аналогии или интуитивно.

Знания статичны, неизменны.

Знания динамичны меняются со временем.


Недостатки экспертных систем перед человеком-экспертом:

  • экспертная система может быть не пригодна для применения пользователем, если у него нет опыта работы с такими системами;

  • вопросно-ответный режим, обычно принятый в таких системах, замедляет получение решений;

  • существует проблема приведения знаний, полученных от эксперта, к виду, обеспечивающему их эффективную машинную реализацию;

  • человек-эксперт при решении задач обычно обращается к своей интуиции или здравому смыслу, если отсутствуют формальные методы решения или аналоги таких задач.

Достоинства экспертных систем перед человеком- экспертом:

  • у них нет предубеждений, они не делают поспешных выводов;

  • введенные в машину знания сохраняются, человек же имеет ограниченную базу знаний, и если данные долгое время не используются, то они забываются и навсегда теряются;

  • эксперт пользуется побочными знаниями и легко поддается влиянию внешних факторов, которые непосредственно не связаны с решаемой задачей.

Главное отличие ЭС от других программных средств - это наличие базы знаний, в которой знания хранятся в форме, понятной специали­стам предметной области, и могут быть изменены и дополнены также в по­нятной форме. Это и есть языки представления знаний (ЯПЗ).

В России в исследования и разработку ЭС большой вклад внесли работы Д. А. Поспелова (основателя Российской ассоциации искусственного ин­теллекта и его первого президента), Э. В. Попова, В. Ф. Хорошевского, В. Л. Стефанюка, Г. С. Осипова, В. К. Финна, В. Л. Вагина, В. И. Городец­кого и многих других. Современное состояние разработок в области ЭС в России можно охаракте­ризовать как стадию все возрастающего интереса среди широких слоев спе­циалистов - менеджеров, инженеров, программистов и других. Наибольшие трудности в разработке ЭС вызывает не процесс машинной реализации систем, а этап анализа знаний и проектирования базы знаний. Этим занимается специальная наука - инженерия знаний.

Экспертные системы имеют две категории пользователей и два отдельных входа, соответствующих различным целям взаимодействия пользователей с ЭС. К первой категории относятся обычные пользователи, которым требуется консультация ЭС. Вторую категорию представляют эксперты в предметной области и инженеры знаний. В их функции входит заполнение базы знаний с помощью специализированной диалоговой компоненты ЭС - подсистемы приобретения знаний. Подсистема приобретения знаний предназначена для добавления в базу знаний новых правил и модификации имеющихся. В ее задачу входит приведение правила к виду, позволяющему подсистеме вывода применять это правило в процессе работы. В более сложных системах предусмотрены еще и средства для проверки вводимых или модифицируемых правил на непротиворечивость с имеющимися правилами. Диалог с ЭС осуществляется через диалоговый процессор - специальную компоненту ЭС. Существуют две основные формы диалога с ЭС - это диалог на ограниченном подмножестве естественного языка с использованием словаря (меню) и диалог на основе из нескольких возможных действий. База знаний представляет наиболее важную компоненту экспертной системы. В отличие от всех остальных компонент ЭС, база знаний – есть «переменная» часть системы, которая может пополняться и модифицироваться инженерами знаний и опыта использования ЭС между консультациями, а в некоторых системах и в процессе консультации. Существует несколько способов представления знаний в ЭС. Общим для всех способов является то, что знания представлены в символьной форме (тексты, списки и другие символьные структуры). Тем самым, в ЭС реализуется принцип символьной природы рассуждений, который заключается в том, что процесс рассуждения представляется как последовательность символьных преобразований. Подсистема вывода - программная компонента экспертных систем, реализующая процесс ее рассуждений на основе базы знаний и рабочего множества. Она выполняет две функции: во-первых, просмотр существующих фактов из рабочего множества и правил из базы знаний и добавление (по мере возможности) в рабочее множество новых фактов и, во-вторых, определение порядка просмотра и применения правил. Эта подсистема управляет процессом консультации, сохраняет для пользователя информацию о полученных заключениях, и запрашивает у него информацию, когда для срабатывания очередного правила в рабочем множестве оказывается недостаточно данных. Цель ЭС - вывести некоторый заданный факт, который называется целевым утверждением. В результате применения правил добиться того, чтобы этот факт был включен в рабочее множество, либо опровергнуть этот факт, то есть убедиться, что его вывести невозможно. Целевое утверждение может быть либо «заложено» заранее в базу знаний системы, либо извлекается системой из диалога с пользователем. Работа системы представляет собой последовательность шагов, на каждом из которых из базы выбирается некоторое правило, которое применяется к текущему содержимому рабочего множества. Цикл заканчивается, когда выведено либо опровергнуто целевое утверждение. Цикл работы экспертной системы иначе называется логическим выводом.

Другим актуальным направлением разработки ИС является создание интеллектуальных нейронных сетей (ИНС). Характер разработок в области ИНС принципиально отличается от ЭС. В основе нейронных сетей лежит преиму-щественно поведенческий подход к решаемой задаче: сеть «учится на примерах» и подстраивает свои параметры при помощи так называемых алгоритмов обучения через механизм обратной связи. Парадигма ученика включает следующие положения и последовательность действий:

  • формирования базы данных на основе обработки наблюдений и изучения опыта частных примеров;

  • индуктивное обучение - изучение аппроксимирующих, вероятностных и логических механизмов получения общих выводов из частных утверждений, то есть превращение базы данных (БД) в базу знаний (БЗ) и обоснование процедуры извлечения знаний из БЗ;

  • дедукция - выбор информации из БЗ на основе обоснованной или предполагаемой процедуре.

В рамках этой парадигмы самообучающиеся системы являются менее изученными, чем экспертные системы. Искусственные нейронные сети индуци-рованы биологией, так как они состоят из элементов, функциональные возможности которых аналогичны большинству элементарных функций биологического нейрона. Нейрон реализует достаточно простую передаточную функцию, позволяющую преобразовать возбуждения на входах, с учетом весов входов, в значение возбуждения на выходе нейрона. Функционально законченный фрагмент мозга имеет входной слой нейронов – рецепторов, возбуждаемых извне, и выходной слой, нейроны которого возбуждаются в зависимости от конфигурации и возбуждения нейронов входного слоя. Распределение величин возбуждения нейронов выходного слоя, чаще всего поиск нейрона, обладающего максимальной величиной возбуждения, позволяет установить соответствие между комбинацией и величинами возбуждений на входном слое. Эта зависимость определяет возможность логического вывода вида «если - то». Управление и формирование данной зависимости осуществляется весами синаптических связей нейронов, которые влияют на направление распространения возбуждения нейронов в сети, приводящие на этапе обучения к «нужным» нейронам выходного слоя. Отсюда следует, что сеть работает в двух режимах: в режиме обучения и в режиме распознавания (рабочем режиме). В режиме обучения производится формирование логических цепочек. В режиме распознавания нейронная сеть по предъявленному образу с высокой достоверностью определяет, к какому типу он относится, какие действия следует предпринять и т.д. Следовательно, под ИНС следует понимать системы, параметры, которых могут изменяться в процессе обучения или самообучения, исходя из накопленного опыта обобщающего предыдущие прецеденты на новые случаи и извлекающего существенные свойства из поступающей информации. Нейронные сети применяются для решения трудно формализуемых задач, в которых информация об объекте является неполной, неточной или нечеткой. Кроме того, связь между входными и выходными параметрами может быть настолько сложна, что моделирование в традиционном смысле становится малоэффективным, а порой просто невозможным. Примеры эффективного применения ИНС являются задачи управления, распознавания образов, анализа данных, моделирования и прогно-зирования.

Основные сведения из истории создания ИС.

4 октября 1939 г. по решению суда изобретателем первого цифрового электронного компьютера признан Джон Винсент Атанасов и его ассистент Клиффорд Берри (Университет штата Айова). Половинчатое признание первенства Атанасова является следствием скандального судебного решения. По этому решению первые компьютерные инженеры Джон Мочли и Джон Эккерт лишились права на патент, полученный ими в 1964 году, и права называться изобретателями электронно-цифрового компьютера. Однако именно они после нескольких экспериментальных моделей создали в 1945 году в Университете Пенсильва­нии более известный компьютер ENIAC, с которого началось развитие индустрии.

В 1945 г. построены Вальтером Питтсом и Уорреном МакКуллочем нейронные сети с обратной связью. Примерно в то же время Норберт Винер создал область кибернетики, кото­рая включала математическую теорию обратной связи для биологических и инженерных систем. Важным аспектом данного открытия стала концепция о том, что разум - это процесс получения и обработки информации для достижения определенной цели.

В 1949 г. Дональд Хеббс открыл способ создания самообучающихся искусственных нейронных сетей. Этот процесс, позволяет изменять весовые коэффициенты в нейронной сети так, что данные на выходе отражают связь с информацией на входе.

1950-е г.г. отмечены в истории как годы рождения искусственного интеллекта. Алан Тьюринг предложил специальный тест в качестве способа распознать разумность машины. В этом тесте один или несколько людей должны задавать вопросы двум тайным собеседникам и на основании ответов определять, кто из них машина, а кто человек. Если не удавалось раскрыть машину, которая маскировалась под человека, предполагалось, что машина разумна. В 1950-е гг. были также разработаны два языка ИИ. Первый, язык IPL, был создан Ньюэллом, Симоном и Шоу для программы Logic Theorist. IPL являлся языком обработки списка данных и привел к созданию более известного языка LISP. LISP появился в конце 1950-х и вскоре заменил IPL, став основным языком приложений ИИ. Язык LISP был разработан в лабораториях Массачусетского технологического института (MIT). Его автором был Джон МакКарти, один из первых разработчиков ИИ.

В 1960-е г.г. наиболее важным было представление знаний. Были построены игру­шечные миры. С помощью этих миров со­здавалась окружающая среда, в которой тестировались идеи по компьютерному зрению, роботехнике и обработке человеческого языка

В начале 1970-х гг впервые была применена на практике Лотфи Заде нечеткая логика для управления процессами. В 1970-х продолжалось создание языков для ИИ. Был разработан язык ПРОЛ0Г. Язык ПРОЛОГ предназначался для разработки программ, которые управляли символами и работал с правилами и фактами. В то время как ПРОЛОГ распространился за пределами США, язык LISP сохранял свой статус основного языка для приложений ИИ.

1980-е г.г. отмечены ростом числа разработок и продаж экспертных систем на языке LISP, которые становились лучше и дешевле. Экспертные системы использовались многими компаниями для разработки полезных ископаемых, прогнозирования и инвестиций. Также были идентифицированы ограничения в работе экспертных систем, поскольку их знания становились все больше и сложнее. Нейронные сети в эти годы также нашли при­менение при решении ряда различных задач, таких как распознавание речи и воз­можность самообучения машин.

1990-е гг. стали новой эпохой в развитии приложений ИИ. Элементы ИИ были интегрированы в ряд приложений, такие как системы распознавания фальшивых кредитных карт; системы распознавания лиц; системы автоматического планирования; системы предсказания прибыли и потребности в персонале; конфигурируемые системы «добычи данных» из баз данных; системы персонализации и другие.

Вопросы для самопроверки.

  1. Какие две парадигмы лежат в основе создания современных ИС, что их объединяет и в чем существует их различие?

  2. Дайте определение и поясните понятия искусственного интеллекта и интеллектуальной информационной системы? В чем эти понятия расходятся?

  3. Укажите основные блоки обобщенной структурной схемы экспертной системы и поясните их назначение.

  4. В чем заключаются преимущества и недостатки экспертных систем по сравнению с человеком – экспертом?

  5. Поясните цикл работы экспертной системы?

  6. Что такое нейронная сеть? В чем состоит парадигма «ученика»?

  7. Укажите знаменательные даты в истории создания ИС.


Лекция 2. Основные направления, функции и классификация ИИС.
В лекции изложены основные направления исследований в области ИИ, а также признаки классификации ИИС в зависимости от конкретных информационных потребностей пользователей, а также характеристика систем с интеллектуальным интерфейсом, экспертных систем, самообучающихся систем и адаптивных информационных систем.

Области применения ИИС.

Интеллектуальные информационные системы проникают во все сферы жизни, поэтому трудно провести строгую классификацию направлений, по которым ведутся активные и многочисленные исследования в области ИИ. Рассмотрим некоторые из них.

  1. Разработка интеллектуальных информационных систем или систем, основанных на знаниях. Это одно из главных направлений ИИ. Основной целью построения таких систем являются выявление, исследование и применение знаний высококвалифицированных экспертов для решения сложных задач, возникающих на практике. При построении систем, основанных на знаниях (СОЗ), используются знания, накопленные экспертами в виде конкретных правил решения тех или иных задач. Это направление преследует цель имитации человеческого искусства анализа неструктури-рованных и слабоструктурированных проблем. В данной области исследований осуществляется разработка моделей представления, извлечения и структурирования знаний, а также изучаются проблемы создания баз знаний (БЗ), образующих ядро СОЗ. Частным случаем СОЗ являются экспертные системы (ЭС).

  2. Разработка естественно-языковых интерфейсов и машинный перевод. Проблемы компьютерной лингвистики и машинного перевода разрабатываются в ИИ с 1950-х гг. Системы машинного перевода с одного естественного языка на другой обеспечивают быстроту и систематичность доступа к информации, оперативность и единообразие перевода больших потоков, как правило, научно-технических текстов. Системы машинного перевода строятся как интеллектуальные системы, поскольку в их основе лежат БЗ в определенной предметной области и сложные модели, обеспечивающие дополнительную трансляцию «исходный язык оригинала - язык смысла - язык перевода». Они базируются на структурно-логическом подходе, включающем последовательный анализ и синтез естественно-языковых сообщений. Кроме того, в них осуществляется ассоциативный поиск аналогичных фрагментов текста и их переводов в специальных базах данных (БД). Данное направление охватывает также исследования методов и разработку систем, обеспечивающих реализацию процесса общения человека с компьютером на естественном языке.

  3. Генерация и распознавание речи. Системы речевого общения создаются в целях повышения скорости ввода информации в ЭВМ, разгрузки зрения и рук, а также для реализации речевого общения на значительном расстоянии.

  4. Обработка визуальной информации. В этом научном направлении решаются задачи обработки, анализа и синтеза изображений. Задача обработки изображений связана с трансформированием графических образов, результатом которого являются новые изображения. В задаче анализа исходные изображения преобразуются в данные другого типа, например в текстовые описания. При синтезе изображений на вход системы поступает алгоритм построения изображения, а выходными данными являются графические объекты.

  5. Обучение и самообучение. Эта актуальная область ИИ включает модели, методы и алгоритмы, ориентированные на автоматическое накопление и формирование знаний с использованием процедур анализа и обобщения данных. К данному направлению относятся не так давно появившиеся системы добычи данных (Data-mining) и системы поиска закономерностей в компьютерных базах данных (Knowledge Discovery).

  6. Распознавание образов. Это одно из самых ранних направлений ИИ, в котором распознавание объектов осуществляется на основании применения специального математического аппарата, обеспечивающего отнесение объектов к классам, а классы описываются совокупностями определенных значений признаков.

  7. Игры и машинное творчество. Машинное творчество охватывает сочинение компьютерной музыки, стихов, интеллектуальные системы для изобретения новых объектов. Создание интеллектуальных компьютерных игр является одним из самых развитых коммерческих направлений в сфере разработки программного обеспечения. Кроме того, компьютерные игры предоставляют мощный арсенал разнообразных средств, используемых для обучения.

  8. Программное обеспечение систем ИИ. Инструментальные средства для разработки интеллектуальных систем включают в себя:

  • специальные языки программирования, ориентированные на обработку символьной информации (LISP, SMALLTALK, РЕФАЛ);

  • языки логического программирования (PROLOG);

  • языки представления знаний (OPS 5, KRL, FRL);

  • интегрированные программные среды, содержащие арсенал инструментальных средств создания систем ИИ (КЕ, ARTS, GURU, G2);

  • оболочки экспертных систем (BUILD, EMYCIN, EXSYS Professional, Эксперт), которые позволяют создавать прикладные ЭС, не прибегая к программированию.

  1. Новые архитектуры компьютеров. Это направление связано с созданием компьютеров не фон-неймановской архитектуры, ориентированных на обработку символьной информации. Известны удачные промышленные решения параллельных и векторных компьютеров, однако в настоящее время они имеют весьма высокую стоимость, а также недостаточную совместимость с существующими вычислительными средствами.

  2. Интеллектуальные роботы. Создание интеллектуальных роботов составляет конечную цель робототехники. В настоящее время в основном используются программируемые манипуляторы с жесткой схемой управления, названные роботами первого поколения. Несмотря на очевидные успехи отдельных разработок, эра интеллектуальных автономных роботов пока не наступила. Основными сдерживающими факторами в разработке автономных роботов являются нерешенные проблемы в области интерпретации знаний, машинного зрения, адекватного хранения и обработки трехмерной визуальной информации.


Признаки классификации ИИС.

Интеллектуальная информационная система основана на концепции использования базы знаний для генерации алгоритмов решения прикладных задач различных классов в зависимости от конкретных информационных потребностей пользователей.

Для ИИС характерны следующие признаки:

  • развитые коммуникативные способности;

  • умение решать сложные плохо формализуемые задачи;

  • способность к самообучению;

  • адаптивность.

Каждому из перечисленных признаков условно соответствует свой класс ИИС. Различные системы могут обладать одним или несколькими признаками интеллектуальности с различной степенью проявления.

Средства ИИ могут использоваться для реализации различных функций, выполняемых ИИС. На рис. 1. приведена классификация ИИС, признаками которой являются следующие интеллектуальные функции:

  • коммуникативные способности - способ взаимодействия конечного пользователя с системой;

  • решение сложных плохо формализуемых задач, которые требуют построения оригинального алгоритма решения в зависимости от конкретной ситуации, характеризующейся неопределенностью и динамичностью исходных данных и знаний;

  • способность к самообучению - умение системы автоматически извлекать знания из накопленного опыта и применять их для решения задач;

  • адаптивность - способность системы к развитию в соответствии с объектив-ными изменениями области знаний.




Рис. 1 Классификация интеллектуальных систем.

Системы с интеллектуальным интерфейсом.

Применение ИИС для усиления коммуникативных способностей информацион-ных систем привело к появлению систем с интеллектуальным интерфейсом.

Среди них можно выделить следующие типы:

  1. Интеллектуальные базы данных позволяют в отличие от традиционных БД обеспечивать выборку необходимой информации, не присутствующей в явном виде, а выводимой из совокупности хранимых данных.

  2. Естественно-языковой (ЕЯ) интерфейс применяется для доступа к интеллекту-альным базам данных, контекстного поиска документальной текстовой информации, голосового ввода команд в системах управления, машинного перевода с иностранных языков. Для реализации ЕЯ - интерфейса необходимо решить проблемы морфологического, синтаксического и семантического анализа, а также задачу синтеза высказываний на естественном языке. При морфологическом анализе осуществляются распознавание и проверка правильности написания слов в словаре. Синтаксический контроль предполагает разложение входных сообщений на отдельные компоненты, проверку соответствия грамматическим правилам внутреннего представления знаний и выявление недостающих частей. Семантический анализ обеспечи-вает установление смысловой правильности синтаксических конструкций. В отличие от анализа синтез высказываний заключается в преобразовании цифрового представления информации в представление на естественном языке.

  3. Гипертекстовые системы используются для реализации поиска по ключевым словам в базах данных с текстовой информацией. Для более полного отражения различных смысловых отношений терминов требуется сложная семантическая организация ключевых слов. Решение этих задач осуществляется с помощью интеллектуальных гипертекстовых систем, в которых механизм поиска сначала работает с базой знаний ключевых слов, а затем - с самим текстом. Аналогичным образом проводится поиск мультимедийной информации, включающей кроме текста графическую информацию, аудио - и видео образы.

  4. Системы контекстной помощи относятся к классу систем распространения знаний. Такие системы являются, как правило, приложениями к документа-ции. Системы контекстной помощи - частный случай гипертекстовых и ЕЯ-систем. В них пользователь описывает проблему, а система на основе дополнительного диалога конкретизирует ее и выполняет поиск относящихся к ситуации рекомендаций. В обычных гипертекстовых системах, наоборот, компьютерные приложения навязывают пользователю схему поиска требуе-мой информации.

  5. Системы когнитивной графики ориентированы на общение с пользователем ИИС посредством графических образов, которые генерируются в соответ-ствии с изменениями параметров моделируемых или наблюдаемых процессов. Когнитивная графика позволяет в наглядном и выразительном виде представить множество параметров, характеризующих изучаемое явление, освобождает пользователя от анализа тривиальных ситуаций, способствует быстрому освоению программных средств и повышению конкуренто-способности разрабатываемых ИИС. Применение когнитивной графики особенно актуально в системах мониторинга и оперативного управления, в обучающих и тренажерных системах, в оперативных системах принятия решений, работающих в режиме реального времени.

Экспертные системы.

Экспертные системы как самостоятельное направление в искусственном интеллекте сформировалось в конце 1970-х гг. Группа по экспертным системам при Комитете British Computer Society определила ЭС как «воплощение в ЭВМ компоненты опыта эксперта, основанной на знаниях, в такой форме, что машина может дать интеллектуальный совет или принять решение относительно обрабатываемой функции». Одним из важных свойств ЭС является способность объяснить ход своих рассуждений понятным для пользователя образом.

Область исследования ЭС называют «инженерией знаний». Этот термин был введен Е. Фейгенбаумом и в его трактовке означает «привнесение принципов и инструментария из области искусственного интеллекта в решение трудных прикладных проблем, требующих знаний экспертов». Другими словами, ЭС применяются для решения неформализованных проблем, к которым относят задачи, обладающие одной (или несколькими) из следующих характеристик:

  • задачи не могут быть представлены в числовой форме;

  • исходные данные и знания о предметной области обладают неоднозначностью, неточностью, противоречивостью;

  • цели нельзя выразить с помощью четко определенной целевой функции;

  • не существует однозначного алгоритмического решения задачи;

  • алгоритмическое решение существует, но его нельзя использовать по причине большой размерности пространства решений и ограничений на ресурсы (времени, памяти).

Главное отличие ЭС и систем искусственного интеллекта от систем обработки данных состоит в том, что в них используется символьный, а не числовой способ представления данных, а в качестве методов обработки информации применяются процедуры логического вывода и эвристического поиска решений.

ЭС охватывают самые разные предметные области (рис. 2), среди которых лиди-руют бизнес, производство, медицина, проектирование и системы управления. Во многих случаях ЭС являются инструментом, усиливающим интеллектуальные способности эксперта. Кроме того, ЭС может выступать в роли:

  • консультанта для неопытных или непрофессиональных пользователей;

  • ассистента эксперта-человека в процессах анализа вариантов решений;

  • партнера эксперта в процессе решения задач, требующих привлечения знаний из разных предметных областей.





Рис 2
  1   2   3   4   5   6   7



Скачать файл (6014 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru