Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Ответы на билеты. Алгоритмические языки и программирование - файл 1.doc


Ответы на билеты. Алгоритмические языки и программирование
скачать (823 kb.)

Доступные файлы (1):

1.doc823kb.18.11.2011 00:19скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5   6   7   8   9   ...   17
Реклама MarketGid:
Загрузка...










Содержание


Типы данных 3

Структурированные данные 6

Строковые типы 8

Подпрограмма 11

Процедуры. Функция Определения 12

ПРОГРАММИРОВАНИЕ РЕКУРСИВНЫХ АЛГОРИТМОВ 14

МОДУЛЬНЫЕ ПРОГРАММЫ 15

Файлы 17

Распределение памяти при выполнении программ 19

2 Процедуры управления кучей 21

Принципы объектно-ориентированного программирования 25

Статические методы. Виртуальные методы 27

Динамические объекты 28

Разработка приложения в среде Delphi 29

Структура простого проекта Delphi 30

Управление проектами 31

Типы данных в Object Pascal 33

Базовые классы VCL 34

Программы, управляемые событиями 37

Форма 39

Управление компонентами формы 41

Библиотека визуальных компонентов 42

Списки и коллекции 46

Графический интерфейс 47

^ Характеристика языка программирования Паскаль

Одним из наиболее популярных языков программирования является язык Паскаль. Первая версия языка программирования Паскаль была разработана на кафедре информатики Стэнфордского университета швейцарским ученым Никлаусом Виртом в 1968 году, и названа в честь французского ученого Блеза Паскаля. Прошло много времени с момента появления Паскаля на рынке программных продуктов, прежде чем он получил всеобщее признание вследствие разработки языка программирования Турбо Паскаль (ТП) – диалекта языка, созданного американской фирмой Борланд. Эта фирма объединила очень быстрый компилятор с редактором текста и добавила к стандартному Паскалю мощное расширение, что способствовало успеху первой версии этого языка. С тех пор Турбо Паскаль значительно расширился. Появились новые графические процедуры, возможность использования при написании программ языка программирования низкого уровня Ассемблер, возможность создавать объектно–ориентированные программы и многое другое. В лингвистической концепции Паскаля пропагандируется системный подход, выражающийся, в частности, в расчленении крупных проблем на меньшие по сложности и размеру задачи, легче поддающиеся решению Набор операторов стандартного Паскаля относительно мал и легко изучаем. Но это порождает проблему расширения языка в приложениях. В Турбо Паскале эта проблема решается за счет поставок большого количества библиотек разнообразных процедур, готовых к употреблению в прикладных программах. Влияние Паскаля ощущается в настоящее время в разных языках программирования. Так, среди новых диалектов Бейсика есть Паскаль с символикой Бейсика. Даже в язык СИ встраивается все больше элементов, порожденных Паскалем.С момента создания первой версии языка Паскаль прошло много времени и язык значительно преобразился, но тем не менее стандартный Паскаль является основой более поздних версий Турбо Паскаля. В дальнейшем в описании языка будут встречаться оба эти названия. Будем использовать название Паскаль, если утверждение верно и в стандартном Паскале и в Турбо, а Турбо Паскаль, если в последних версиях имеются отличия. При изучении сложных конструкций языка имеет смысл говорить только о Турбо Паскале.

^ Структура программы на Паскале

Программы, написанные на языке программирования Турбо Паскале, строятся в соответствии с правилами, представляющими собой несколько расширенные и “ослабленные” правила синтаксиса стандартного Паскаля. Приведем пример программы на Турбо Паскале.

PROGRAM Addition;

{ ADDITION.PAS – Программа суммирования двух введенных целых чисел}

VAR

Number_1, Number_2, Sum: INTEGER;

BEGIN

Write (‘ Введите первое число:’);

ReadLn (Number_1);

Write (‘Введите второе число:’);

ReadLn (Number_2);

Sum := Number_1 + Number_2;

WriteLn (‘ Сумма введенных чисел равна: ‘,Sum);

END.

Любую программу, написанную на Паскале можно условно разделить на две основные части:

– раздел объявлений и описаний;

– раздел основного блока.

В разделе объявлений и описаний программист сообщает компилятору, какими идентификаторами он обозначает данные (константы и переменные), а также определяет собственные типы данных, которые он в дальнейшем намеревается использовать в данной программе. В Турбо Паскале есть возможность подключать используемые в программе объекты, описанные в другом месте. Такие объекты называются модулями и о них мы будем говорить позже.

“Процедура” и “функция” – термины, применяемые в Паскале для обозначения специальным образом оформленной последовательности команд (подпрограммы). Доступ к такой подпрограмме может быть осуществлен из любого места основного блока программы, а также из любой процедуры или функции, описание которых следует ниже. В разделе описаний содержится описание процедур и функций в виде текста процедур и функций, который строится по правилам аналогичным правилам построения программы.

Основной блок программы состоит из последовательности операторов, причем работа программы начинается именно с первого оператора основного блока программы. Тело основного блока программы ограничено словами BEGIN и END. Структура рассмотренной программы имеет следующий вид:

PROGRAM Addition;

{ Раздел описаний}

BEGIN

{ Раздел операторов}

END.

Необходимо обратить внимание на наличие точки после служебного слова END. После последнего оператора END всегда ставится точка, тем самым компилятор получает информацию об окончании текста программы.

Слово PROGRAM зарезервировано в Паскале и означает начало программы. Далее записывается имя программы (в приведенном примере – Addition). В Турбо Паскале можно опускать объявление имени оператором PROGRAM без каких–либо последствий для программы.

Строки программы обычно выделяют некоторые смысловые фрагменты текста и могут не связываться с конкретными действиями в программе. Программа записывается в свободной форме, операторы не привязаны к определенной позиции строки в отличие от других языков программирования. Расположение текста программы по строкам – дело вкуса программиста, а не требование синтаксиса языка. В то же время рекомендуется программу записывать в такой внешней форме, чтобы ее можно было легко читать и понимать. Для этого широко используются пробелы, пустые строки и комментарии. Рекомендуется смысловые части выделять одинаковыми отступами от начала строки.

Пробел в Паскале используется как разделитель отдельных конструкций языка, следовательно необходимо внимательно следить за его присутствием в качестве разделителя.

Соответствующие строчные и прописные буквы являются эквивалентными, если только это не связано с текстовыми константами.

Разделитель ; отмечает конец оператора или описания. Использование особого разделителя позволяет располагать несколько операторов на одной строке.

После заголовка программы следует текст, заключенный в фигурные скобки. Это комментарий. Комментарий – выделенная фигурными скобками информация для пояснения, которая не исполняется программой. Кроме фигурных скобок {}, могут использоваться также пары символов (* и *) слева и справа от комментария соответственно.
^

Типы данных





Чтобы ЭВМ могла при выполнении операций распознавать принадлежность этих конфигураций к тому или иному типу данных, необходимо при разработке алгоритмов, и особенно программ, прямо указывать эту принадлежность. Достигается это путем явного описания типов используемых данных. В зависимости от типа, заданного в описании переменной, она может принимать текущие значения только указанного типа. Например, если тип переменной A указан как “целый”, то она в данный момент времен может иметь любое значение из допустимого множества целых чисел {...–3, –2, –1, 0, 1, 2, 3, ...}; если тип переменной B указан как “логический”, то текущее значение может быть одним из двух { истина, ложь}.

Каждый тип данных характеризуется так называемым кардинальным числом – количеством различных значений, принадлежащих типу. Для каждого типа данных должен быть строго определен набор операций, которые можно применять при обработке данных этого типа.

Изначально определенные типы данных называются простыми, причем те из них, которые непосредственно “встроены” в ЭВМ, носят название стандартных типов. Каждый алгоритмический язык программирования предоставляет пользователю набор различных типов элементарных данных, средства их описания и операторы обработки, обеспечивающие выполнение над данными тех или иных действий. Компилятор связывает имя элемента данных с определенным адресом памяти ЭВМ, по которому в процессе выполнения программы хранится значение именованного элемента данных, что освобождает программиста от необходимости знать этот адрес.

^ Важнейший принцип Паскаля: все используемые в программе имена должны быть описаны до их употребления. Описать идентификатор – это значит указать тип связанного с ним объекта программы.

В каждом языке программирования имеются свои правила записи идентификаторов. Чаще всего это последовательность латинских букв и цифр, начинающаяся с буквы. В Турбо Паскале правила записи идентификаторов следующие:

– идентификатор может состоять из букв латинского алфавита, цифр, знака подчеркивания;

– идентификатор не может начинаться с цифры;

– идентификатор не может совпадать ни с одним из зарезервированных слов;

– длина идентификатора может быть произвольной, но значащими считаются первые 63 символа.

Например:

^ A, B, M, N, SUMMA, Z1, Z2, Z3, PRIMA14, FIRST_VALUE.

В стандартном Паскале знак подчеркивания не используется.

К простым типам относятся: целочисленный, логический, символьный, перечисляемый, интервальный, вещественный. На основе простых типов данных можно строить различные структурированные типы данных любой степени сложности.

Все, используемые в программе объекты, связываются с существующими в языке типами данных в специальном описательном блоке программы. Для описания типов данных используются специальные служебные слова.

^ Тип целый содержит подмножество целых констант, при этом кардинальное число подмножества различается для разных ЭВМ. Для ЭВМ с двухбайтовым словом числа чаще всего находятся в диапазоне допустимых значений от –32768 до 32767. Такой тип переменной описывается служебным словом INTEGER. К целочисленным также относятся типы: BYTE, SHORTINT, WORD, LONGINT. Эти данные различаются внутренним представлением и диапазоном возможных значений (–128 ... 127 для SHORTINT и –2147483648 ... 2147483647 для LONGINT). Примеры целых чисел:0, –3, 17, 193, –10000, 5.

Для данного типа INTEGER запись 50000 неверна, так как это число выходит за границу допустимых значений.

Если i и j идентификаторы переменной целого типа, то в описательной части программы должна присутствовать запись:i, j : integer.

Стандартные операции для целых – это четыре действия арифметики: сложение, вычитание, умножение и деление нацело. Последняя операция должна давать целый результат, опуская возможный остаток. Эти операции над целыми числами производятся абсолютно точно, и результатами этих операций снова являются целые числа. В Паскале есть еще две операции над целыми числами: div и mod. Эти операции имеют по два целых операнда (аргумента): если значения a и b неотрицательны и b  0, то a div b и a mod b – это частное и остаток, возникающие при делении a на b. Например,

17 div 3 = 5, 17 mod 3 = 2, 8 div 2 = 4, 8 mod 2 = 0, 1 div 5 = 0, 1 mod 5 = 1.

Эти операции одного старшинства с умножением и делением, что важно иметь в виду при вычислениях выражений.

^ Тип вещественный (или действительный) обозначает подмножество вещественных констант. В то время как арифметические действия с целыми дают точные результаты, для арифметических действий над вещественными числами (операции сложения, вычитания, умножения, деления) допускается неточность в пределах ошибок округления. В этом и состоит явное различие между типами “целый” и “вещественный”, характерное для большинства языков программирования. Для чисел вещественного типа в языке Турбо Паскаль определено пять стандартных вещественных типов: вещественный (REAL), с одинарной точностью (SINGLE), с двойной точностью (DOUBLE), с повышенной точностью (EXTENDED) и сложный (COMP). На первых порах обойдемся типомREAL. Диапазон допустимых значений для типа REAL от 2.9* 10^–39 до 1.7*10^38, область памяти для размещения – 6 байт, точность 11–12 знаков.

К этому типу относится подмножество вещественных чисел, которые могут быть представлены в формате с фиксированной точкой и с плавающей десятичной точкой. Числа с фиксированной точкой записываются в виде целой и дробной частей числа. Например: 5.45, –0.001, 17.0, –19.1919, 0.143. Запись числа не может начинаться или заканчиваться точкой. Числа с плавающей точкой используются для записи чисел, изменяющихся в широком диапазоне значений (от очень маленьких до очень больших). Десятичный порядок числа записывается буквой Е. Например, 65.4Е22 соответствует 65.4* 10^22. Числа с плавающей точкой: 0.547Е+3, 5.47Е+2, 54.7Е+1, 547.0Е0, 5470Е–1, 54700Е–2 представляют одно и тоже число 547.

Для обработки действительных (вещественных) чисел предусмотрены следующие операции: сложение (+), вычитание (–), умножение (*), деление (/). Операции возведение в степень в Паскале не существует. Если c = a^b, то с рассчитывают по формуле с = е(b · ln a).

Если a и b переменные вещественного типа, то в описательной части программы должно присутствовать

a, b : real;

Как уже говорилось, тип переменной позволяет не только устанавливать длину ее внутреннего представления, но и контролировать те действия, которые выполняются над ней в программе. Контроль за использованием переменных – важное преимущество Паскаля перед другими языками программирования, в которых допускается автоматическое преобразование типов. В Паскале почти невозможны неявные преобразования типов. Исключение сделано только в отношении констант и переменных типа INTEGER (целые), которые разрешается использовать в выражениях типа REAL.

^ Тип логический содержит всего два значения, которые обозначаются как истина и ложь (TRUE и FALSE). Слово BOOLEAN описывает логические переменные. Логические переменные используются для хранения результатов логических вычислений. Значения TRUE и FALSE являются по своей сути идентификаторами констант. Для булевых переменных разрешены только сравнения “>“ (больше), “<“ (меньше), “=“ (равно) и “<>“ (неравно). Другими допустимыми операциями являются: логическое сложение (AND), логическое умножение (OR), отрицание (NOT). Переменные типа BOOLEAN занимают 1 байт памяти.

^ Тип литерный (символьный) включает множество печатаемых символов. Символьный тип CHAR – представляет собой тип данных, предназначенный для хранения одного символа (буквы, знака или кода). В переменную этого типа на компьютере IBM может быть помещен любой из 256 символов расширенного кода ASCII. Это буквы [ ‘A’...’Z’, ‘a’...’z’], цифры [‘0’...’9’ ], знаки препинания и специальные символы. Переменная типа CHAR в памяти занимает 1 байт. Значения для переменных типа CHAR задаются в апострофах. Кроме того, имеется возможность задавать значения указанием числового значения ASCII–кода. В этом случае перед числом, обозначающим код ASCII символа, ставится знак (#). Например, СН:= #65 – присвоение переменной СН символа с ASCII кодом 65, то есть символа ‘A’. Описание символьной переменной:

u, v : char;

Если константа в программе обозначена идентификатором, то ее необходимо объявить в описательной части с помощью служебного слова CONST. Например,

CONST year = 1998; time = 12.05;

year – константа целого типа, так как не имеет в записи числа десятичной точки; time – константа вещественного типа.

Раздел объявления переменных начинается зарезервированным словом VAR, вслед за которым располагаются конкретные переменные. Для объявления переменной необходимо указать имя переменной и ее тип. Например,

VAR

a: INTEGER;

d, c: REAL;

b, e, f, g: CHAR;

Запрет на автоматическое преобразование типов еще не означает, что в Паскале нет средств преобразования данных. Для преобразования данных в языке существуют встроенные функции, которые получают в качестве параметра значение одного типа, а возвращают результат в виде значения другого типа. Для преобразования данных типа CHAR (символ) в целое число предназначена функция ORD, обратное преобразование INTEGER в CHAR осуществляет функция CHR.

В частности, для преобразования REAL в INTEGER имеются даже две встроенные функции такого рода: ROUND округляет REAL до ближайшего целого, а TRUNC усекает REAL путем отбрасывания дробной части.

trunc(3.14) = 3, trunc(–3.14) = –3, trunc(3.7) = 3.

round(3.14) = 3, round(3.7) = 4, round(–3.14) = –3. Структуры данных

Разновидностью переменной может быть и переменная “с индексом”, которая является элементом массива. Для ее обозначения используют имя массива и перечень (список) индексов: A [1], G [1,5], RAD [K, L], S [3, 4, 5].

При обработке данных широкое распространение имеет и более общее понятие, такое, как структурированная переменная, т. е. переменная, состоящая из нескольких элементов или компонент, на которую тем не менее можно ссылаться как на единый объект. Например, устройство календаря позволяет указывать конкретный день, но при этом существует и способ ссылки на месяц и год. В описание типа структурированной переменной должно входить число составляющих его элементов и характеристики их типов.

Если все элементы объекта относятся к одному и тому же типу, то такая структурированная переменная является однородной и может быть представлена в виде некоторого массива.

Массив – это регулярная структура с так называемым случайным доступом, что означает: все компоненты массива однородны, могут выбираться произвольно и являются одинаково доступными.

Для обозначения отдельного элемента массива, как уже упоминалось, к имени массива добавляется список индексов, позволяющий осуществлять доступ к конкретному элементу.

^ Список индексов – это упорядоченное множество целых чисел или переменных целого типа, однозначно определяющее местоположение отдельного элемента массива. Каждый индекс имеет свой диапазон изменений, называемый обычно граничной парой.

Так, массив A целого типа, упорядоченный по двум измерениям, можно представить как матрицу из n строк и m столбцов:

В этом примере n = 3, m = 8.

Доступ к элементу массива задается списком из двух индексов:

а24 или А(2,4) – определяет элемент 2–й строки 4–го столбца;

аlk или А(l,k) – определяет элемент l–й строки k–го столбца.

Индекс l имеет диапазон изменений от 1 до 3, а индекс k – соответственно от 1 до 8.

Общий метод получения структурированных переменных – это объединение компонентов, принадлежащих к произвольным (возможно составным) типам, в один составной тип. Примерами являются:

– комплексные числа, состоящие из двух вещественных констант;

– координаты точек, состоящие из двух вещественных чисел или в зависимости от размерности пространства, заданного системой координат;

– описание характеристик людей с помощью нескольких существенных отличительных признаков, таких, как фамилия, имя, отчество, год рождения, пол, семейное положение.

При обработке данных комбинированные типы, такие как описания людей или материальных объектов, часто встречаются в файлах (или наборах данных) и представляют собой записи существенных характеристик человека или объекта. Поэтому термин запись стал широко использоваться для обозначения подобной совокупности структурированных данных. Отдельные компоненты записи называются полями. Например, запись, предназначенная для хранения информации о городах состоит из пяти полей: название города, его географические координаты (долгота, широта, высота) и количество населения. К этой записи, как к переменной, обращаются по имени переменной ГОРОД, а к отдельным полям путем использования составного имени: ГОРОД.ИМЯ или ГОРОД.НАСЕЛЕНИЕ. Еще одним типом структурированных переменных является множество. Этот тип используется в тех случаях, когда интерес представляет не значение какого–либо элемента, а лишь его наличие или отсутствие. Если описать переменную с некоторым именем N как некоторое множество натуральных чисел, то операция принадлежности этому множеству даст логическое значение истина, если число является элементом множества, и значение ложь в противном случае. Множества можно эффективно реализовывать и обрабатывать. К множествам применяются следующие основные операции: пересечение множеств, объединение множеств, разность множеств, принадлежность множеству.

Массивы, записи и множества называются базисными структурами.

^ 5 Алгоритмы линейной структуры

Алгоритм линейной структуры (следование) – алгоритм, в котором все действия выполняются последовательно друг за другом. Такой порядок выполнения действий называется естественным.

Схема представляет собой последовательность блоков, соединенных линиями потоков. Направление потока задается стрелкой, но стрелка не ставится, если направление потока сверху вниз и слева направо. В левом верхнем углу в разрыве линий ставится номер блока.

Внутри блока ввода записывается слово “Ввод” и перечисляются исходные данные (имена переменных), которые задаются извне. Внутри блока вывода записывается слово “Вывод” и перечисляются переменные, которые являются результатом расчета.

^ Алгоритмы разветвляющейся структуры

На практике редко удается представить схему алгоритма решения задачи в виде линейной структуры. Часто в зависимости от каких–либо значений промежуточных результатов необходимо организовать вычисление либо по одним, либо по другим формулам. Ветвление – такая схема, в которой предусмотрено разветвление указанной последовательности действий на два направления в зависимости от итога проверки заданного условия. В схемах такой структуры используется логический блок

Словесный алгоритм решения этой задачи будет выглядеть следующим образом.

1. Задать численное значение для X.

2. Проверить условие X<0:

если условие выполняется перейти к п. 5;

если условие не выполняется перейти к п. 3.

3. Вычислить Y по формуле Y = X2.

4. Перейти к пункту 6.

5. Вычислить Y по формуле Y = –X.

6. Зафиксировать вычисленное Y.

Схема данного алгоритма представлена на рис. 6.

Рекомендуется под словом “нет” записывать условие, противоположное проверяемому.

Алгоритмы циклической структуры

Алгоритмы, отдельные действия в которых многократно повторяются, называются алгоритмами циклической структуры (повторение). Совокупность действий алгоритма, связанную с повторением, называют циклом. На рис. 10 представлена схема алгоритма циклической структуры. Блоки 3, 4, образующие тело цикла, повторяются многократно. Сколько раз? Бесконечное количество. При каждом расчете к предыдущему значению X прибавляется 2, далее следует возврат к расчету Y, вывод Y и опять X изменяется на 2. По условию задачи расчетом Y при X = 10 нужно ограничиться. Следовательно, необходимо включить условие окончания расчетов. До тех пор, пока X  10, расчеты производить; как только X станет больше 10 – вычисления закончить. В схему включим логический блок.

В блоке 2 осуществляется задание начального значения для X. В блоке 3 рассчитываются значения Y. В блоке 5 фиксируется текущее значение X с заданным шагом. В блоке 6 анализируется величина X. Если X еще не превысил своего конечного значения, то необходимо вернуться к блоку 3 и повторить вычисления. Если X стал больше предельного значения, расчеты нужно закончить.

Еще раз обратите внимание на то, что блок 4 – модификация – включил в себя три блока предыдущей схемы – блоки 4, 7, 8.

Нельзя точно сказать, какая из типов циклических структур (“До” или “Пока”) скрывается в блоке “модификация”. Например, в языках программирования эта структура организована по разному.
  1   2   3   4   5   6   7   8   9   ...   17



Скачать файл (823 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru