Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Конспект для сдачи экзамена по Матанализу - файл 1.doc


Конспект для сдачи экзамена по Матанализу
скачать (20779.5 kb.)

Доступные файлы (1):

1.doc20780kb.18.11.2011 00:36скачать

содержание
Загрузка...

1.doc

1   2   3   4   5   6   7
Реклама MarketGid:
Загрузка...

Следствие


lim(1+1/n)n=e

n+

lim1/(1+1/n)n=(n/n+1)n=[1-1/(n+1)]n+1/ [1-1/(n+1)]=(1/e)/1=1/e

n+

lim[1/(1+1/n)n]=1/e

n+

lim(1+1/n)n=e

n+
^

Определение под последовательности


Пусть дана an зададим произвольный набор натуральных чисел таких, что

n1<n2<n3<…<nk<….

an1,an2,…,ank,…

Полученная последовательность называется под последовательностью и сходной последовательности.

an=(-1)n

{an}={-1;1;-1;1….}

n1=2;n2=4,….,nk=2k

{ank}={1,1,1,1…}

Теорема


Пусть последовательность an сходится, тогда последовательности

 lim an=a {ank} – гас и lim

n+

lim ank=0

n+

Доказательство так как an – сходиться, то ε>0 N: n>N  an-a<ε

ank; nk>N то есть ank-a<ε

Пример


an=(-1)n – не имеет предела

{a2n}={1,…,1,…,}

{a2n-1}={-1,….,-1,…}

имели бы тот же самый предел.

Предел функции.

Определение


Пусть y=f(x) определена в O(x0). Мы говорим, что функция f(x) имеет предел в при хх0 если ε>0  >0

x:0<x-x0< f(x)-b<ε

lim f(x)=b

xx

Через окрестности это определение записывается следующим образом

ε>0 >0 x0(x0)f(x)0ε(b)

Если lim f(x)=0, то f(x) наз бесконечно малой при xx0.

xx

Замечание. Необходимо указать в каком именно процессе f(x) бесконечно малое. Надо указать к какому числу  а.

f(x)=x-1



1.x1 lim(x-1)=0, то есть y=x-1 бесконечно малое при x1

x1

2.x2 lim(x-1)=1, то есть y=x-1 не является бесконечно малой при x2

x1

Пример

f(x)=2x+1 x1

Докажем lim(2x+1)=3

x1

ε>0 >0 x:0<x-1< (2x+1)-3<ε

(2x+1)-3<ε

|x-1<ε/2

x1

Положим =ε/2

Теорема о бесконечно малом

1)(x);(x) – бесконечно малое xx0  (x)+(x) – бесконечно малое при xx0

2)(x);(x) – бесконечно малое при xx0

3)Если f(x) – ограниченна в O(x0) и (x) – бесконечно малое при xx0, то f(x);(x) – бесконечно малое при xx0

Доказательство (3)

Так как f(x) – ограниченна в O(x0), то  С>0: xO(x0)|f(x)C;

Так как (x) – бесконечно малое при хх0, то ε>0 >0 x: 0<x-x0<  (x)<ε ε1>0

Положим ε=ε1/c

>0 x: 0<x-x0|< f(x)(x)=f(x)a(x)<Cε=ε1 lim f(x)(x)=0, то есть f(x)a(x) – бесконечно малое при xx0

xx

Лекция №6

Тема: Замечательные пределы

Теорема


f(x)>g(x) в O(x0) и  lim (f(x))=b и  lim (g(x))=c. Тогда bc

xx xx

Доказательство:

Рассмотрим функцию (x)=f(x)-g(x)>0 в O(x0)  lim ((x))= lim (f(x)) - lim (g(x))= b-c и в силу предыдущей

xx xx xx

теоремы b-c0, то есть b0 что и требовалось доказать.
Теорема

f(x)(x)g(x)  xO(x0) и  lim (f(x))=b и  lim (g (x))=b.  lim ( (x))=b

xx xx xx

Доказательство:

f(x)=b+(x)

g(x)=b+(x)

где (x) и (x) – бесконечно малые при хх0

b+(x)(x)b+(x)

Так как (х) и (х) – бесконечно малые то ε>0 1>0:  xO1(x0)  (x)<ε

2>0:  xO2(x0)  (x)<ε

Положим =min{1;2}

Тогда  xO(x0)  (x)<ε

(x)<ε

-ε<(x)<ε

-ε<(x)<ε

b-ε<b+(x)(x)b+(x)<b+ε

-ε<(x)-b<ε

(x)-b<ε  xO(x0)

 ε>0  =min{1;2}  (x)-b<ε xO(x0) то есть lim ( (x))=b

xx
^

Первый замечательные пределы.


Терема lim (sin(x)/x)=1

x0

Доказательство:

SOMN=1/2 sin(x)

SсекOMN=1/2(x)

SOKN=1/2 tg(x)

SOMN<SсекOMN< SOKN

1/2sin(x)<1/2(x)<tg(x)

sin(x)<x<tg(x)

1<x/sin(x)<1/cos(x)

lim (1-cos(1/n))=0

n+

lim (1-cos(x))=0  lim (cos(x))=1

x0 x0

lim (x/sin(x))=0

x0

x>0

lim (x/sin(x))=1

x0

lim(1/(x/sin(x)))= lim(sin(x)/x)=1 что и требовалось доказать

x0 x0

Определение бесконечного предела и пределов при х+.




lim (f (x))=+  ε>0 >0:  xO(x0)f(x)Oε(+)

xx

(x): 0<x-x0<

(////////// x

ε



lim (f (x))=-  ε>0 >0:  xO(x0)f(x)Oε(-)

xx

(x): 0<x-x0<




lim (f (x))=  ε>0 >0:  xO(x0)f(x)Oε()

xx

f(x)>ε



lim (f (x))=b  ε>0 ∆>0:  xO(+)f(x)Oε(b)

x+

 x: x>∆ f(x)-b <ε




lim (f (x))=b  ε>0 ∆>0:  xO(-)f(x)Oε(b)

x-

 x: x<-∆ f(x)-b <ε


Односторонние пределы.

Определение


f(x) определена в O+(x0)

lim (f (x))=b  ε>0 >0:  xO+(x0)f(x)Oε(b) x0<x<x0+

xx+0




Определение


f(x) определена в O-(x0)

lim (f (x))=b  ε>0 >0:  xO-(x0)f(x)Oε(b) x0-<x<x0

xx-0


Теорема Пусть f(x) определена в O(x0) Для того чтобы существо-

вал предел  lim(f(x))=b   lim(f(x))=lim(f(x))=b

xx xx+0 xx-0

Пусть  lim(f(x))=b, то есть ε>0 >0:  xO(x0)f(x)Oε(b) f(x)O(b) для  xO+(x0) и для  xO-

xx

 xO-(x0) lim(f(x));lim(f(x))=b что и требовалось доказать.

xx+0 xx-0

Второй замечательный предел.

Теорема lim(1+1/x)x=e

x+

Доказательство: Пусть n – целая часть х – n=[x] nx<n+1

[1+1/(n+1)]n(1+1/x)x(1+1/n)n+1

Если x+, то n+

[1+1/(n+1)]n+11/[1+1/(n+1)](1+1/x)x(1+1/n)n(1+1/n)  lim(1+1/x)x=e

x+
Лекция №7

Тема: Сравнение бесконечно больших и бесконечно малых.
Определение.

Пусть (x) и (x) – бесконечно малые при хх0 ()

  1. (x) ~ (x) при хх0 () если lim (x)/(x)=1 xx0 ()

  2. (x) и (x) одинакового порядка при хх0 () если lim (x)/(x)=с0 xx0 ()

  3. (x) бесконечно малое более высокого порядка малости чем (x) при хх0 () если lim (x)/(x)=0 xx0 ()



Определение.

Пусть f(x) и g(x) – бесконечно большое при хх0 ()

1) f(x) ~ g(x) при хх0 () если lim f(x)/g(x)=1 xx0 ()

2)f (x) и g (x) бесконечно большие одинакового порядка роста, если при хх0 () если limf(x)/g(x)=с xx0 () <

В частности, если с=1, то они эквивалентны

  1. f (x) бесконечно большое более низкого порядка роста чем g (x) или иначе g(x) бесконечно большое более высокого порядка роста чем g(x) при хх0 () если lim f (x)/g (x)=0 xx0 ()

Примеры:


  1. sin(x) – бесконечно малое

x при хх0 – бесконечно малое

Сравним их lim sin(x)/x=1  sin(x)~x

x0

при х0




  1. 1n(1+x) – бесконечно малое

х при х0 – бесконечно малое

Сравним их lim ln(1+x)/x= lim ln(1+x)1/x =1 

x0 x0

ln(1+x) ~ x, при х0



  1. x2 – бесконечно большие

2+1, при х+ – бесконечно большие

Сравним lim x2/(2x2+1) = lim x2/x2(2+1/x2)=1/2

x+ x+

то есть функция является бесконечно большой и

одинакового порядка. Замечание: если одну из

функций одинакового порядка роста домножить на

одинаковую const, то они станут эквивалентны.



Определение:

  1. пусть (х)=о(х) – бесконечно малое при хх0(). То мы говорим, что (х) и (х) при хх0 (), если (х)=(х)(х), бесконечно малое при хх0 (). Другими словами - (х) – бесконечно малое более высокого порядка, чем (х) така как (х)/(х)=(х) – бесконечно малое, то есть lim (x)/(x)=0 x0 ()

  2. пусть f(х)=оg(х) – бесконечно большое при хх0(). То мы говорим, что f(х) и g (х) при хх0 (), если f (х)=(х)g (х). Другими словами - f (х) – бесконечно большое более низкого порядка, чем g(х) так как f(х)/g (х)=(х) – бесконечно малое, то есть lim f (x)/g (x)=0 x0 ()

Шкала бесконечности.

Степенные бесконечности.

xn=o(xm), 0<n<m при х+. Из двух степенных бесконечностей сильнее та, у которой показатель степени больше.

Докажем:

xn=xm(xn/xm)=xm(1/x(m-n))=xm(x) m-n>0 xm(x)o(xm)
1   2   3   4   5   6   7



Скачать файл (20779.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru