Logo GenDocs.ru

Поиск по сайту:  


Загрузка...

Конспект для сдачи экзамена по Матанализу - файл 1.doc


Конспект для сдачи экзамена по Матанализу
скачать (20779.5 kb.)

Доступные файлы (1):

1.doc20780kb.18.11.2011 00:36скачать

содержание
Загрузка...

1.doc

1   2   3   4   5   6   7
Реклама MarketGid:
Загрузка...
^

Показательные бесконечности.


ах=о(bх), 1<a<b при x+. Из двух показательных бесконечностей сильнее та, у которой основание больше.

Докажам

ax=ax(bx/bx)=ax(a/b)x=bx(xo(bx) (0<a/b<1)
Логарифмическая бесконечность

ln(x)=o(x), >0. Логарифмическая бесконечность слабее любой степенной бесконечности.

ln(x)<x x

lim ln(x)/x=lim [(ln(x)/(x/2x/2))((/2)/(/2))]=

x0 x0

lim [(ln(x)/x/2)(2/(x/2)]

x0

Произведение бесконечно малых на ограниченную

равно бесконечно малой.

lim (ln(x)/x)=0  (lim(x))/x=(x)  ln=x(x)ox,

x0

x+

Показательная и степенная.

Xk=o(ax),  k>0,a>1 x+ lim(xk)/(ax)=0

x+

Теорема: Пусть (x) ~ 1(x) при xx0 ()

(x) ~ 1(x) при xx0 ()

Тогда lim (x)/(x)=lim 1(x)/1(x)

xx0 () xx0 ()
Доказательство:

lim(x)/(x)=lim[(x)1(x)1(x)]/[1(x)1(x)(x)]=lim((x)/(x))lim(1(x)/(x))lim(1(x)/1(x))=lim 1(x)/1(x) что

x0 x0 x0 x0 x0 x0

и требовалось доказать. Замечание: аналогичное утверждение справедливо для двух бесконечно больших.

^ Пример:

lim sin(x)/3x=limx/3x=1/3

x0 x0

Определение: (главного слагаемого)

1(x)+2(x)+…+n(x), при xx0 ()

Главным слагаемым в этой сумме называется то слагаемое по сравнению с которым остальные слагаемые являются бесконечно малыми более высокого порядка малости или бесконечно большие более низкого порядка роста.

1(x) – главное слагаемое, если 2(х)=о(1(х)),…,n(x)=o(1(x)) при xx0 ()

Конечная сумма бесконечно малых эквивалентна своему главному слагаемому:

1(x)+2(x)+…+n(x) ~ 1(x) , при xx0 () если 1(х) – главное слагаемое.

Доказательство:

lim [1(x)+2(x)+…+n(x)]/1(x)=lim[1(x)+1(x)(x)+…+1(x)(x)]/1(x)=lim[1(x)(1+1(x)+…+n(x))]/1(x)=1 xx0 () xx0 () xx0 ()

Пример:

lim (ex+3x100+ln3x)/(2x+1000x3+10000=lim ex/2x=lim ex/(ex(x))=+

x+ x+ x+

2x=o(ex)ex(x)

Основные эквивалентности.

ex-1 – бесконечно малое при х0. lim (ex-1)/x=1, то есть ex-1 ~ x при x0

x0

1-cosx – бесконечно малое при х0. lim (1-cos x)/(x2/2)=lim{2sin(2x/2)]/[x2/2]=lim [2(x/2)2]/[x2/2]=1,

то есть
1-cos(x) ~ x2/2 при х0 и (1+x)p-1 ~ px при х0


Лекция №8

Тема: «Асимптотические формулы»
Формулы содержащие символ о - называются асимптотические.
1) lim [sin(x)/x]=1  (по определению конечного предела sin(x)/x=1+(x), где (х) – бесконечно малое при х0

x0

 sin(x)=x+(x)x, где (х) – бесконечно малое при х0  sin(x)=x+ox, при х0; sin(x)~x, при х0

2) lim [ln(1+x)/x]=1  (по определению конечного предела ln(1+x)/x=1+(x), где (х) – бесконечно малое при

x0

х0  ln(1+x)=x+(x)x, где (х) – бесконечно малое при х0  ln(1+x)=x+ox, при х0; ln(1+x)~x, при х0

3) lim [(ex-1)/x]=1  (по определению конечного предела (ex-1)/x=1+(x), где (х) – бесконечно малое при х0

x0

 (ex-1)=x+(x)x, где (х) – бесконечно малое при х0  (ex-1)=x+ox, при х0; (ex-1)~x, при х0; ex=1+x+o(x), при x0

4) lim [(1-cos(x)/(x2/2)]=1  (по определению конечного предела (1-cos(x)/(x2/2)=1+(x), где (х) – бесконечно

x0

малое при х0  1-cos(x)=(x2/2)+(x)x2/2, где (х) – бесконечно малое при х0  1- cos(x)=(x2/2)+ox2; при х0; 1- cos(x)~x2/2, при х0; cos=1-x2/2+o(x2), при x0

1) lim [((1+x)p-1)/px]=1  (по определению конечного предела ((1+x)p-1)/px =1+(x), где (х) – бесконечно

x0

малое при х0  (1+x)p-1=px +(x)-p, где (х) – бесконечно малое при х0  (1+x)p-1=px+ox, при х0; (1+x)p-1~px, при х0;(1+x)p=1+p(x)+o(x), при x0
Если f(x)~g(x), при хх0 (), то lim[f(x)/g(x)]=1  f(x)/g(x)=1+(x), где (х)–бесконечно малое при хх0 ()

хх0 ()

 f(x)=g(x)+(x)g(x) f(x)=g(x)+og(x) при хх0 ()

Замечание: не всякие бесконечно малые, бесконечно большие можно сравнить.

Пример:

(x)=xsin(1/x), при х0

(х)=ф=х, при х0

(x)/(x)=sin(1/x)

lim[(x)/(x)]=lim[sin(1/x)] – который в свою очередь не существует.

x0 x0



Эти бесконечно малые несравнимы.

Для удобства формул полагают по определению, что о(1)=(х), при хх0 ()

а01 n!=123….n o!

Определение: Пусть y=f(x) определена в О(х0) и  lim f(x)=f(x0): y=f(x) при хх0 называется непрерывной в

хх

точке х0 (то есть  ε>0  >0:  xO(x0)  f(x)Oε(f(x0))

Непосредственно из определения предела следуют следуемые теоремы о непрерывных функциях.

Теорема: Пусть f(x), g(x) – непрерывны в точки х0, тогда f(x)+g(x) – непрерывна в точки х0

Доказательство:1) f(x), g(x) определена в О(х0)  f(x)+g(x) определена в О(х0)

2) lim (f(x)+g(x))=limf(x)+limg(x)=f(x)+g(x) что и требовалось доказать

хх хх хх
Теорема: Пусть f(x), g(x) – непрерывны в точки х0, тогда f(x)g(x) – непрерывна в точки х0

Доказательство:1) f(x), g(x) определена в О(х0)  f(x)g(x) определена в О(х0)

2) lim (f(x)g(x))=limf(x)limg(x)=f(x)g(x) что и требовалось доказать

хх хх хх

Теорема: Пусть f(x), g(x) – непрерывны в точки х0, тогда f(x)/g(x) – непрерывна в точки х0

Доказательство:1) f(x), g(x) определена в О(х0)  f(x)/g(x) определена в О(х0)

2) lim (f(x)/g(x))=limf(x)/limg(x)=f(x)/g(x) что и требовалось доказать

хх хх хх

Теорема(об ограниченности непрерывной функции в окрестности точки). Пусть y=f(x) непрерывна в точки х0, тогда она ограниченна в некоторой окрестность этой точки.

Доказательство: limf(x)=f(x0), то есть  ε>0  >0 x: x-x0<  f(x)-f(x0)<ε . Предполагается, что  выбрано так, что f(x) определена в соответствующих точках. О0)О(х0). Так как это справедливо для любого ε>0, то возьмем ε=1  >0 -1<f(x)-f(x0)<1; xO(x0)O(x0) f(x0)-1<f(x)<1+f(x0)x, то есть В<f(x)<A

xO(x0)O(x0)

Теорема:(о непрерывности сложной функции) Пусть y=f(x) непрерывна в точки х0, а z=g(y) непрерывна в точки y0=f(x0), тогда сложная функция имеет вид z=g(f(x0)) – непрерывна в точки х0.

Доказательство: Зададим  ε>0 в силу непрерывности z=g(y) в точки у0  б>0x: y-y0|<б g(y)-g(x0)<ε

По найденному б>0 в силу непрерывности функции f(x) в точки х0  >0 x: x-x0< f(x)-f(x0)<б

ε>0 >0 x:x-x0< y-y0<б  g(y)-g(y0)<ε g(f(x))-g(f(x0)) то есть lim g(f(x))=g(f(x0))

xx

Замечание: можно переходить к пределу под знаком непрерывной функции limf(x)=limg(y) limf(x)=f(x0)=y0 xx xx xx

Непрерывность некоторых функций.

1) y=c (постоянная) непрерывна в х0R lim c=c. Зададим ε>0 рассмотрим разность f(x)-f(x0)=c-c=0<ε

xx

 x: x-x0< (>0)!

2) y=x непрерывна в  x0R, то есть lim x=x0. Зададим ε>0 рассмотрим разность f(x)-f(x0)=x-x0<ε

xx
 x: x-x0< (>0)! =ε!


Следствие.

Многочлен p(x)=anxn+ an-1xn-1+…+a1x+a0

(an,an-1…a1,a0 – зададим число)

n=0,1,2,3…. непрерывен в любой точки х0 оси как сумма произведения непрерывной функции. Рациональная функция:

R(x)=p(x)/q(x). Частная двух многочленов непрерывна в любой точки х0 в которой q(x)0
Лекция №9

Тема: «Точки разрыва»
1) Доказать, что lim [((1+x)p-1)/px]=1

x0

y=(1+x)p-1

lim [((1+x)p-1)/px]= x0  y0 =lim ([ln(1+x)]/x)([(1+x)p-1]/[pln(1+x)]=lim ([ln(1+x)]/x)

x0 (1+x)p=y+1 x0 x0

p[ln(1+x)]=ln(y+1)
lim([(1+x)p-1]/[pln(1+x)]=lim y/[ln(y+1)]=1 что и требовалось доказать  (1+x)p-1~px при x0

x0 y0 (1+x)p=1+px+o(x) при х0

2) Доказать, что lim (ex-1)/x=1

x0

y=ex-1

lim (ex-1)/x= x0  y0 =lim y/[ln(y+1)]=1 что и требовалось доказать 

x0 ex=y+1 y0

x=ln(y+1)
ex-1~x при x0

ex=1+x+o(x) при х0
1   2   3   4   5   6   7



Скачать файл (20779.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации
Рейтинг@Mail.ru