Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекция - Имитационное моделирование экономических процессов - файл 1.doc


Лекция - Имитационное моделирование экономических процессов
скачать (592.5 kb.)

Доступные файлы (1):

1.doc593kb.19.11.2011 10:19скачать

содержание

1.doc

  1   2   3
БЕЛКООПСОЮЗ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ

«БЕЛОРУССКИЙ ТОРГОВО-ЭКОНОМИЧЕСКИЙ

УНИВЕРСИТЕТ ПОТРЕБИТЕЛЬСКОЙ КООПЕРАЦИИ»

________________________________________________

Кафедра информационно-вычислительных систем



Имитационное моделирование экономических процессов

Лекции для студентов заочного отделения

Автор-составитель доц. Еськова О.И.

Гомель 2007



Тема 1. Введение в имитационное моделирование
1.1. Имитационное моделирование как метод исследования сложных систем

Основным методом исследования сложных систем является метод моделирования. Моделирование – это способ изучения объекта через рассмотрение подобного ему и более простого объекта, т.е. его модели. Модель – это образ реального объекта, который отражает его основные свойства и замещает объект в ходе исследования. (Т.е. о моделировании можно говорить лишь при использовании модели для познания оригинала: в игре ребенка с моделью паровоза новое знание относительно паровоза не рождается).

Модели бывают материальные (физические) и математические. Среди математических моделей выделяют два типа: аналитические и имитационные (рис.1).

Модели




Физические

Математические




Аналитические

Имитационные


Рис1. Классификация моделей
В аналитических моделях поведение сложной системы описывается в виде алгебраических, интегральных, дифференциальных и иных соотношений и логических условий. Наиболее простым примером аналитической модели является соотношение , где S – расстояние, v – скорость перемещения, t – время.

Аналитическая модель требует введения ряда упрощений. Часто такое упрощение получается слишком грубым приближением действительности и результаты не могут быть применены на практике. Например, та же формула будет применима для самолета, который достиг заданной скорости, но не подходит для описания движения по автостраде в час пик. В этих случаях исследователь вынужден использовать имитационное моделирование.

Имитационной моделью сложной системы называется программа (или алгоритм), позволяющая имитировать на компьютере поведение отдельных элементов системы и связи между ними в течение заданного времени моделирования.

В ходе выполнения этой программы можно значения определенных переменных интерпретировать как состояние системы в соответствующий момент времени, т.е. имитация рассматривается как наблюдение во времени за характеристиками системы.

Имитационное моделирование состоит в исследовании системы с помощью компьютерных (вычислительных) экспериментов на имитационной модели. Этот метод наиболее эффективен для исследования сложных систем, на функционирование которых оказывает существенное влияние случайные факторы (стохастических систем). В этом случае результат одного эксперимента на имитационной модели может рассматриваться лишь как оценка истинных характеристик системы. Требуется проведение большого числа экспериментов и статистическая обработка их результатов. Поэтому иногда имитационное моделирование называется также методом статистического моделирования.

К достоинствам имитационного моделирования можно отнести:

1) свободу от каких-либо ограничений на класс решаемых задач;

2) наглядность;

3) возможность исследования системы на различных уровнях детализации;

4) возможность контроля над характеристиками системы в динамике.

Недостатки имитационного моделирования:

  1. дороговизна;

  2. большой расход машинного времени;

  3. результаты исследования обладают меньшей степенью общности по сравнению с аналитическими моделями;

  4. не существует надежных методов оценки адекватности имитационной модели.

Эти недостатки несколько смягчаются с развитием вычислительной техники и ряда программных продуктов для автоматизации разработки и исследования имитационных моделей. Таким образом, применение имитационного моделирования нужно сводить к разумному минимуму. Такое применение целесообразно:

  1. в случаях “безысходности”, когда сложность ситуации превосходит возможности аналитических методов;

  2. если не существует четкой постановки задачи исследования и идет процесс познания объекта моделирования (модель служит средством изучения явления);

  3. когда необходимо контролировать протекание процессов в системе путем замедления или ускорения явлений в ходе имитации;

  4. при подготовке специалистов и приобретении ими навыков в эксплуатации новой техники.

Метод имитационного моделирования разрабатывался прежде всего для исследования систем массового обслуживания (систем с очередями). Об этом свидетельствует содержание первой отечественной монографии по моделированию: Бусленко Н.П., Шрейдер Ю.А. Метод статистических испытаний и его реализация на электронных цифровых машинах. – М.:Наука, 1962., а также книга признанного классика GPSS Томаса Шрайбера: Моделирование на GPSS, 1980г.

Также одной из первых областей применения имитационного моделирования явилось управление запасами, что было обусловлено сложностью вероятностных задач этого вида и их практической важностью. Здесь можно упомянуть работы:

1957 – Робинсон – об иерархической системе складов нефтепродуктов;

1961 – Берман – о перераспределении запасов;

1964 – Джислер – о снабжении авиационных баз.

^ 1.2. Этапы имитационного моделирования

Трудоемкость имитационного моделирования делает особо важными вопросы технологии и организации работ. По оценкам специалистов США, разработка даже простых моделей оценивается в 5-6 человеко-месяцев (30 тыс. долларов), а сложных – на два порядка больше

В типичном случае процесс моделирования проходит следующие фазы:

1) Описание системы и разработка концептуальной модели.

2) Подготовка данных.

3) Разработка моделирующего алгоритма и построение имитационной модели.

4) Оценка адекватности.

5) Планирование экспериментов.

6) Планирование прогонов.

7) Машинный эксперимент.

8) Анализ и интерпретация результатов.

9) Принятие решений относительно исследуемого объекта.

10) Документирование.

Перечисленные этапы могут перекрываться по времени (например, документирование должно вестись с первых дней работы над проектом) и охвачены многочисленными обратными связями.

^ Описание системы включает уточнение ее границ с внешней средой, характеристики внешних воздействий, состава внешних и внутренних связей, выбор показателей эффективности, постановку задачи на исследование. Концептуальная модель представляет собой упрощенное математическое или алгоритмическое описание сложной системы.

^ Подготовка исходных данных состоит в сборе и обработке данных наблюдений за моделируемой системой. Обработка в типичном случае заключается в построении функций распределения соответствующих случайных величин или вычислении числовых характеристик распределений (среднего, дисперсии и т.п.). К подготовке исходных данных можно отнести и сбор информации о предполагаемых изменениях в нагрузке системы (или о прогнозируемой нагрузке).

^ Разработка имитационной модели заключается в записи ее на одном из языков программирования (общецелевом или специализированном), трансляции и отладке программы модели. Следует стремиться к блочному (модульному) построению программы, позволяющему независимо вносить изменения в отдельные модули и повторно использовать ранее созданные модули.

^ Оценка адекватности модели заключается в проверке:

  1. полноты учета основных факторов и ограничений, влияющих на работу системы;

  2. согласия постулируемых законов распределения с первичными данными;

  3. синтаксической корректности программы моделирования;

  4. соответствия результатов имитационного моделирования и известного аналитического решения (при условиях существования этого решения);

  5. осмысленности результатов в нормальных условиях и в предельных случаях.

^ Планирование экспериментов определяет совокупность исследуемых вариантов и стратегию их перебора. При этом учитываются: цель проекта (анализ или оптимизация); степень достоверности исходных данных (при малой достоверности необходимы дополнительные исследования чувствительности модели к изменению параметров); ресурсы календарного и машинного времени. На этом этапе полезно применение общей теории планирования экспериментов.

^ Планирование прогонов имеет целью получить возможно лучшие статистические оценки исследуемых показателей: несмещенные, с минимальной дисперсией. При этом объем вычислительных работ обычно ограничен (ограничено время на постановку экспериментов). Отдельным прогоном называется однократное выполнение программы имитационной модели, в котором модельное время монотонно возрастает.

Очень часто моделирование имеет целью получение стационарных характеристик, т.е. соответствующих типичным условиям работы. Поэтому важен вопрос определения длительности разгонного участка и времени вхождения в стационарный режим во время одного прогона. Этот момент обычно определяется экспериментально. Статистика, накопленная за время разгона, не должна учитываться в расчетах.

Важно правильно задать критерий останова прогона (например, рассчитать время моделирования, которое достаточно для получения достаточно точных характеристик системы). К этому этапу относятся вопросы уменьшения или исключения корреляции результатов, уменьшения дисперсии результатов, задания начальных условий моделирования.

Этапы 7-9 в дополнительных пояснениях не нуждаются.

Документирование должно сопровождать весь процесс разработки модели и хода экспериментов. Оно облегчает взаимодействие участников процесса моделирования, обеспечивает возможность использования модели в будущем в других разработках.
^ 1.3. Программное обеспечение имитационного моделирования

Одно из наиболее важных решений, которые приходится принимать разработчику имитационных моделей, касается выбора программного обеспечения. Если программное обеспечение недостаточно гибко или с ним сложно работать, то имитация может дать неправильные результаты или будет вообще невыполнима.

Программное обеспечение, используемое для создания имитационных моделей, можно классифицировать следующим образом (см.рис.2):


^ ПО имитационного моделирования




Универсальные языки программирования

Системы имитационного моделирования




^ Языки имитационного моделирования

Проблемно-ориентированные системы имитационного моделирования



Рис.2. Классификация ПО имитационного моделирования

Универсальные языки моделирования позволяют достичь гибкости при разработке модели, а также их высокого быстродействия. Их знает большинство разработчиков. Однако затраты времени и средств на разработку и отладку модели гораздо выше, чем при использовании специальных систем имитационного моделирования. Обычно универсальные языки применяют для создания уникальных моделей, когда важна скорость выполнения программы (работа в реальном времени), например в оборонной сфере.

^ Системы имитационного моделирования по сравнению с универсальными языками программирования имеют несколько преимуществ:

  1. Они автоматически предоставляют функциональные возможности, которые требуются для создания имитационных моделей:

  1. генераторы случайных чисел;

  2. продвижение модельного времени;

  3. добавление и удаление записей из списка событий;

  4. сбор выходных статистических данных и создание отчета с результатами

  5. и т.д.

Это позволяет сократить время, требуемое для программирования и общую стоимость проекта.

  1. Основные конструкции систем имитационного моделирования больше подходят для создания имитационных моделей, чем конструкции универсальных языков программирования (естественная среда моделирования).

  2. Системы имитационного моделирования обеспечивают более совершенный механизм обнаружения ошибок имитации.

Исторически системы имитационного моделирования разделились на два основных типа: языки имитационного моделирования и проблемно - ориентированные системы моделирования.

^ Языки моделирования по своей природе универсальны, они предполагают написание кода модели. Хотя некоторые языки могут быть ориентированы на решение конкретного вида задач (например, моделирование СМО), но при этом спектр решаемых задач достаточно широк.

^ Проблемно-ориентированные системы моделирования предназначены для решения определенной задачи. В них модель разрабатывается не с помощью программирования, а с использованием графики, диалоговых окон и раскрывающихся меню. Они проще для изучения, но не могут обеспечить достаточную гибкость моделирования.

Многообразие систем имитационного моделирования (сейчас их известно более 500) вызвано применением имитационного моделирования в различных предметных областях, ориентацией на различные типы систем (дискретные или непрерывные), использованием различных типов компьютеров и способов имитации.
Тема 2. Основные понятия имитационного моделирования
^ 2.1. Пример моделируемой системы

Основные понятия моделирования будем рассматривать на примере простой системы массового обслуживания с одним обслуживающим устройством и одной очередью. Таким обслуживающим устройством может быть продавец в маленьком магазине, билетер в театральной кассе, кладовщик на складе или центральный процессор в вычислительной системе. В литературе обслуживающее устройство может называться также прибором или каналом обслуживания. Пусть для определенности мы будем рассматривать парикмахерскую с одним креслом. Обслуживающим устройством является парикмахер. Клиенты приходят в парикмахерскую в случайные моменты времени, ждут своей очереди на обслуживание (если в этом возникает необходимость). Их обслуживают по принципу “первый пришел – первым обслужен”. После этого они уходят. Схематично структура этой системы показана на рис.3.


Приход
  1   2   3



Скачать файл (592.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации