Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Алюминий как токсикант в окружающей среде - файл 1.doc


Алюминий как токсикант в окружающей среде
скачать (163 kb.)

Доступные файлы (1):

1.doc163kb.20.11.2011 17:30скачать

содержание
Загрузка...

1.doc

Реклама MarketGid:
Загрузка...
НИЖЕГОРОДСКАЯ ГОСУДАРСТВЕННАЯ СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ
Факультет почвоведения, агрохимии, агроэкологии

Заочное отделение
КУРСОВАЯ РАБОТА

По дисциплине Экотоксикология

Тема «Алюминий как токсикант в окружающей среде»

Выполнила:

Студентка 4 курса, гр.

Проверил:
Нижний Новгород

2006
Введение

  1. Общие закономерности действия токсикантов на природные системы

  2. Химические и физические свойства алюминия, определяющие его токсическое действие

  3. Воздействие алюминия на компоненты экосистем

  4. Мероприятия по уменьшению воздействия тяжелых металлов на окружающую среду

Заключение

Список литературы
Введение

В XX веке, особенно во второй его половине, стало очевидным то отрицательное влияние на окружающую среду, которое способен оказать своей деятельностью человек. В связи с этим возникла, с одной стороны, проблема защиты окружающей среды от человека, а с другой – человека от факторов им же нарушенной среды обитания  

   Экологическое неблагополучие почвы, воды и воздуха определяется накоплением в этих средах широкого спектра опасных для здоровья чужеродных веществ, поступающих через продукты питания в организм человека. К ним относятся металлы, радионуклиды, пестициды, нитраты и нитриты, полициклические ароматические и хлорсодержащие углеводороды, диоксины, а также метаболиты микроорганизмов. Эти вещества могут в большей или меньшей степени мигрировать из одной среды в другую, а также взаимодействовать между собой как вне организма, так и внутри него.

Металлы - это основа человеческой цивилизации. Поэтому неудивительно, что объемы добычи их и использования огромны. Считается, что если добыча данного элемента опережает его естественный перенос в биогеохимическим цикле в 10 раз, то такой элемент должен рассматриваться как загрязнитель. По многим металлам эта норма перекрыта сейчас в 15-20 и более раз. Особенно опасно загрязнение окружающей среды тяжелыми металлами.

Многие металлы, находящиеся в окружающей среде, имеют токсикологическое значение. В частности, к таковым относятся мышьяк, кадмий, медь, кобальт, хром, ртуть, марганец, никель, свинец, селен, цинк и некоторые другие. Важно, что большинство из них играет важную роль в физиологических процессах, а их дефицит вызывает серьезные заболевания. В то же время повышенное поступление этих металлов в организм человека способно вызвать тяжелые токсические реакции. Соединения и ионы этих металлов, попадая в организм, взаимодействуют с рядом ферментов, подавляя их активность. Согласно решению, принятому Объединенной комиссией ФАО/ВОЗ и закрепленному в Codex Alimentarius, обязательному контролю при производстве и торговле подлежат концентрации ртути, кадмия, свинца, мышьяка, стронция, цинка и железа. В России обязательному контролю подлежат также сурьма, никель, хром, алюминий, фтор, йод.

Цель данной работы - изучить токсические свойства алюминия, его роль в экосистемах, а также механизм токсического воздействия на живые организмы.
^ 1. Общие закономерности действия токсикантов на природные системы

В настоящее время токсичное воздействие техногенных загрязнителей на окружающую среду является общепризнанным.

К приоритетным загрязняющим веществам, воздействие которых достаточно хорошо изучено, относятся двуокись серы, озон, окислы азота и фториды. В зависимости от природы техногенных факторов их воздействие на природные и аграрные экосистемы может осуществляться как в результате непосредственного облучения от источника, так и при миграции загрязняющих веществ (рис. 1).



^ Рис. 1. Пути воздействия техногенных факторов и пути миграции токсикантов в

агроэкосистемах
Выбросы загрязняющих веществ могут оказывать как прямое, так и опосредованное (непрямое) воздействие на растительные и животные организмы. Прямые эффекты (в первую очередь, влияние на здоровье человека и животных, поражение растительности) происходит за счет повышенного содержания загрязняющих веществ в атмосферном воздухе, они носят в основном локальный характер. Среди вторичных эффектов загрязнения природных и аграрных экосистем можно назвать поражение наземной растительности за счет изменения характеристик почвы и соответствующего изменения характера питания растений.

Среди токсикантов значительную опасность представляют металлы и их соединения. Поведение металлов в природных средах во многом зависит от специфичности миграционных форм и вклада каждой из них в общую концентрацию металла в экосистеме. Для понимания миграционных процессов и оценки токсичности тяжелых металлов недостаточно определить только их валовое содержание. Необходимо дифференцировать формы металлов в зависимости от химического состава и физической структуры: окисленные, восстановленные, метилированные, хелатированные и др. Наибольшую опасность представляют лабильные формы, которые характеризуются высокой биохимической активностью и накапливаются в биосредах. По чувствительности к ним животных и человека металлы можно расположить в следующий приблизительный ряд: Hg > Cu > Zn > Ni > Pb > Cd > Cr > Sn > Fe > Mn > Al.

Воздействие химических токсикантов на почву

Основная часть вредных химических веществ промышленных выбросов попадает на поверхность почвы, при этом газы преимущественно в виде осадков или непосредственно самих газов, а пыль выпадает под действием силы тяжести в виде различных частиц. В зависимости от свойств почв и характеристик выпадений могут проявляться как положительные, так и отрицательные последствия. Вредные химические вещества могут оказывать непосредственное влияние на биоту, осаждаясь на зеленую массу растений, или косвенно, закисляя почву и меняя ее химический состав.

Воздействие химических токсикантов на растения. Действие на растения зависит от вида и концентрации вредных веществ, длительности их воздействия, восприимчивости различных видов растений к загрязнителям, стадии физиологического развития в момент воздействия. Наиболее существенными факторами являются концентрация вредных веществ и длительность их воздействия. Влияние загрязнителей возрастает: при высокой влажности воздуха или тумане; при наличии других вредных веществ; в случае каких-либо неблагоприятных факторов (мороз, засуха, жара); при определенных стадиях роста и развития растений /Влияние загрязнений воздуха..., 1981/. В зависимости от внешних факторов среды действие токсикантов может быть снижено в период ограниченной физиологической активности растений (например, ночью, а у хвойных деревьев - зимой).

Различают 2 типа видимых повреждений растений: острые и хронические. Острое поражение происходит при кратковременном воздействии высокими концентрациями загрязняющих веществ. У растений появляются некротические или обесцвеченные участки листьев. Хроническое поражение вызывается многократными выбросами загрязнителя и обычно проявляется в виде хлороза
Действие химических веществ на растения /Влияние загрязнений воздуха..., 1981/

Вид

воздействия

Характер действия


Фенология


Физиология

Последствия для всего

растения

Хроничес-

кое


Низкая, большей

частью непостоянная концентрация,

действующая через

длинные промежутки времени, а также токсичная пыль, попадающая на почву

Отсутствие некрозов (изменение цвета только временное); замедленный рост; преждевременное отмирание старых хвоинок; ослабление новых побегов (укороченный рост)


Скопление вред-

ных веществ в

листьях; снижение

листовой поверх-

ности и ассими-

ляции, изменение

рН почвы и функ-

циональной деяте

льности корневой

системы (при ток-

сичной пыли)

Уменьшение прироста; выживание растений определяется степенью нарушения

физиологических функций; отрицательное воздействие вредных веществ усиливается при неблагоприятных

условиях(заморозки, жара, недостаток элементов питания могут привести к острым повреждениям)

Острое


Быстрое действие

высоких концент-

раций


Некроз и изменение цвета листьев,

нарушение роста и развития растений


Гибель клеток в

некротических

тканях; наруше-

ние ассимиляци-

оных процессов

Выживание зависит от доли оставшейся физиологически

активной вегетативной массы и восстанавливающейся

способности растений


Воздействие химических токсикантов на животных. Загрязнение воздуха, как пылевидные, так и газообразные, могут нанести ущерб не только растениям, но и животным. Токсичные вещества действуют непосредственно через органы дыхания животного или во время поедания им загрязненного корма. Подобно растениям у животных тоже существуют различные реакции на некоторые токсические вещества (Влияние загрязнений воздуха…, 1976).

Воздействия вредных веществ на животных могут быть любого вида и неспецифичными, но, тем не менее, характерными и даже патогномичными (Cohrs, 1960; Kiihnert, 1973). В большинстве случаев наблюдаются меняющиеся картины болезней.

Причины кроются, в первую очередь, в концентрациях и количествах вредных веществ, а также в длительности их поглощения. Кроме того, играют роль и различные метеорологические параметры, а также конституция, возраст и физиологическое состояние животного. Особые и наиболее типичные картины болезней проявляются под воздействием мышьяка, свинца, меди, молибдена, селена, фтора, а также двуокиси серы.

Последствия отравления общего характера у животных проявляются в уменьшении аппетита, нарушении пищеварения, поносе, истощении, нарушении полового цикла, выкидышах, рождении слабых животных, сухости кожи, ломком и взъерошенном волосяном покрове, различных дерматитов, а также в снижении продуктивности животных. В результате общих повреждений возникает предрасположенность к другим заболеваниям на фоне снижения общей резистентности организма животного.

Потребление пыли проходит через корм. Наиболее прочно загрязнения удерживаются на пастбищном травостое, на сене и кормовых культурах, выращиваемых на силос или сенаж. Экспериментально было установлено влияние загрязненного пылью корма на удои молока у коров, содержащихся в районе выбросов ТЭС. Абсолютное снижение удоев молока в период проведения исследований варьировало от 1,1 до 1,3 кг на каждое животное в день.

Установлено, что под действием пыли сильно страдает качество подножного корма и сена, в результате чего снижение удоев молока может дойти до 9,1-12,5%. Прирост живой массы у мясных пород крупного рогатого скота снижается от 19,4 до 37,5%. Holte (1957) установил, что прирост живой массы у крупного рогатого скота под действием летучей золы бурого угля снижается от 3,9 до 39,7%.


  1. ^ Химические и физические свойства алюминия, определяющие его токсическое действие

 Алюминий - один из наиболее распространенных в земной коре элементов, легкий металл. На его долю приходится 5,5-6,6 мол. доли % или 8 масс. %. Главная масса его сосредоточена в алюмосиликатах. Чрезвычайно распространенным продуктом разрушения образованных ими горных пород является глина, основной состав которой отвечает формуле Al2O3.2SiO2.2H2O. Из других природных форм нахождения алюминия наибольшее значение имеют боксит Al2O3.H2O. и минералы корунд Al2O3 и криолит AlF3.3NaF.

Впервые алюминий был получен Велером в 1827 году действием металлического калия на хлорид алюминия. Однако, несмотря на широкую распространенность в природе, алюминий до конца XIX века принадлежал к числу редких металлов.

В настоящее время в промышленности алюминий получают электролизом раствора глинозема Al2O3 в расплавленном криолите. Al2O3 должен быть достаточно чистым, поскольку из выплавленного алюминия примеси удаляются с большим трудом. Температура плавления Al2O3 около 2050оС, а криолита - 1100оС. Электролизу подвергают расплавленную смесь криолита и Al2O3, содержащую около 10 масс.% Al2O3, которая плавится при 960оС и обладает электрической проводимостью, плотностью и вязкостью, наиболее благоприятствующими проведению процесса. При добавлении AlF3, CaF2 и MgF2 проведение электролиза оказывается возможным при 950оС.

В периодической системе алюминий находится в третьем периоде, в главной подгруппе третьей группы. Заряд ядра +13. Электронное строение атома 1s22s22p63s23p1. Металлический атомный радиус 0,143 нм, ковалентный - 0,126 нм, условный радиус иона Al3+ - 0,057 нм. Энергия ионизации Al - Al+ 5,99 эВ.

Наиболее характерная степень окисления атома алюминия +3.Отрицательная степень окисления проявляется редко. Во внешнем электронном слое атома существуют свободные d-подуровни. Благодаря этому его координационное число в соединениях может равняться не только 4 (AlCl4-, AlH4-, алюмосиликаты), но и 6 (Al2O3,[Al(OH2)6]3+).

В виде простого вещества алюминий - серебристо-белый, довольно твердый металл с плотностью 2,7 г/см3 (т.пл. 660оС, т. кип. ~2500 оС). Кристаллизуется в гранецентрированной кубической решетке. Характеризуется высокой тягучестью, теплопроводностью и электропроводностью (составляющей 0,6 электропроводности меди). С этим связано его использование в производстве электрических проводов. При одинаковой электрической проводимости алюминиевый провод весит вдвое меньше медного.

На воздухе алюминий покрывается тончайшей (0,00001 мм), но очень плотной пленкой оксида, предохраняющей металл от дальнейшего окисления и придающей ему матовый вид. При обработке поверхности алюминия сильными окислителями (конц. HNO3, K2Cr2O7) или анодным окислением толщина защитной пленки возрастает. Устойчивость алюминия позволяет изготавливать из него химическую аппаратуру и емкости для хранения и транспортировки азотной кислоты.

Алюминий легко вытягивается в проволоку и прокатывается в тонкие листы. Алюминиевая фольга (толщиной 0,005 мм) применяется в пищевой и фармацевтической промышленности для упаковки продуктов и препаратов. Основную массу алюминия используют для получения различных сплавов, наряду с хорошими механическими качествами характеризующихся своей легкостью. Важнейшие из них - дюралюминий (94% Al, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумин (85 - 90% Al, 10 - 14% Sk, 0,1% Na) и др. Алюминиевые сплавы применяются в ракетной технике, в авиа-, авто-, судо- и приборостроении, в производстве посуды и во многих других отраслях промышленности. По широте применения сплавы алюминия занимают второе место после стали и чугуна.

Алюминий, кроме того, применяется как легирующая добавка ко многим сплавам для придания им жаростойкости.

Соединения алюминия с хлором, бромом и иодом легкоплавки, весьма реакционноспособны и хорошо растворимы не только в воде, но и во многих органических растворителях. Взаимодействие галогенидов алюминия с водой сопровождается значительным выделением теплоты. В водном растворе все они сильно гидролизованы, но в отличие от типичных кислотных галогенидов неметаллов их гидролиз неполный и обратимый. Будучи заметно летучими уже при обычных условиях, AlCl3, AlBr3 и AlI3 дымят во влажном воздухе (вследствие гидролиза). Они могут быть получены прямым взаимодействием простых веществ.

С галогенидными солями ряда одновалентных металлов галогениды алюминия образуют комплексные соединения, главным образом типов M3[AlF6] и M[AlHal4] (где Hal - хлор, бром или иод). Склонность к реакциям присоединения вообще сильно выражена у рассматриваемых галогенидов. Именно с этим связано важнейшее техническое применение AlCl3 в качестве катализатора (при переработке нефти и при органических синтезах).

Из фторалюминатов наибольшее применение (для получения Al, F2, эмалей, стекла и пр.) имеет криолит Na3[AlF6]. Промышленное производство искусственного криолита основано на обработке гидроксида алюминия плавиковой кислотой и содой:

2Al(OH)3 + 12HF + 3Na2CO3 = 2Na3[AlF6] + 3CO2 + 9H2O

Хлоро-, бромо- и иодоалюминаты получаются при сплавлении тригалогенидов алюминия с галогенидами соответствующих металлов.

Хотя с водородом алюминий химически не взаимодействует, гидрид алюминия можно получить косвенным путем. Он представляет собой белую аморфную массу состава (AlH3)n. Разлагается при нагревании выше 105оС с выделением водорода. Гидридоалюминаты - белые твердые вещества. Бурно разлагаются водой. Они - сильные восстановители. Применяются (в особенности Li[AlH4]) в органическом синтезе.

Сульфат алюминия Al2(SO4)3.18H2O получается при действии горячей серной кислоты на оксид алюминия или на каолин. Применяется для очистки воды, а также при приготовлении некоторых сортов бумаги.

Алюмокалиевые квасцы KAl(SO4)2.12H2O применяются в больших количествах для дубления кож, а также в красильном деле в качестве протравы для хлопчатобумажных тканей. В последнем случае действие квасцов основано на том, что образующиеся вследствие их гидролиза гидроксид алюминия отлагается в волокнах ткани в мелкодисперсном состоянии и, адсордбируя краситель, прочно удерживает его на волокне.

Из остальных производных алюминия следует упомянуть его ацетат (иначе - уксуснокислую соль) Al(CH3COO)3, используемый при крашении тканей (в качестве протравы) и в медицине (примочки и компрессы). Нитрат алюминия легко растворим в воде. Фосфат алюминия нерастворим в воде и уксусной кислоте, но растворим в сильных кислотах и щелочах.
Однако в обычных условиях алюминий и его соли плохо усваиваются из почвы растениями и попадают в организм человека в очень небольших количествах. Техногенное загрязнение алюминием окружающей среды (металлургия - легкие сплавы, добыча и переработка бокситов, апатитов, производство изделий из алюминия, минеральных удобрений, самолетостроение и др.), экологические проблемы (кислотные дожди, повышенная кислотность почв), плохое качество питьевой воды (мягкая вода - с дефицитом Са и Mg; нарушение технологии очистки воды и др.), широкое применение алюминия в быту (посуда изделия, краски), пищевой и фармацевтической промышленности (консервы, фольга, консерванты, компоненты лекарств - антациды, наполнители и др.) может приводить к непривычно высокому для организма человека уровню поступления А1.
^ 3.Воздействие алюминия на компоненты экосистем
Алюминий, растворенный в сильнокислой среде, является одним из наиболее опасных элементов, для живых организмов живущих в почве. Во многих почвах, например, в северных умеренных и бореальных лесных зонах, наблюдается поглощение более высоких концентраций алюминия по сравнению с концентрациями щелочных катионов. Хотя многие виды растений в состоянии выдержать это соотношение, однако при выпадении значительных количеств кислотных осадков соотношение алюминий-кальций в почвенных водах настолько изменяется, что ослабляется рост корней и создается опасность для существования деревьев.

Происходящие в составе почвы изменения могут преобразовывать состав микроорганизмов в почве, воздействовать на их активность и тем самым влиять на процессы разложения и минерализации, а также на связывание азота и внутреннее закисление.

^ Закисление пресных вод. Закисление пресных вод – это потеря ими способности к нейтрализации. Закисление, как правило, вызывают сильные кислоты такие как серная и азотная кислота. На протяжении длительного периода более важную роль играют сульфаты, но во время эпизодических явлений (таяние снега) сульфаты и нитраты действуют совместно. Роль алюминия в этом процессе также довольно значительна.

Процесс закисления водоемов можно условно разделить на 3 фазы:

  1. Убыль ионов гидрокарбоната, т.е. уменьшение способности к нейтрализации при неизменяющемся значении рН.

  2. Уменьшение рН при уменьшении количества ионов гидрокарбоната. Значение рН тогда падает ниже 5,5. Наиболее чувствительные виды живых организмов начинают погибать уже при рН = 6,5.

  3. При рН = 4,5 кислотность раствора стабилизируется. В этих условиях кислотность раствора регулируется реакцией гидролиза алюминия. В такой среде способны жить только немногие виды насекомых, растительный и животный планктон, а также белые водоросли.

Гибель живых существ помимо действия сильноядовитого иона алюминия может быть вызванна и тем, что под воздействием иона водорода выделяются кадмий, цинк, свинец, марганец, а также другие ядовитые тяжелые металлы. Количество растительных питательных веществ начинает умненьшаться. Ион алюминия образует с ионом ортофосфата нерастворимый фосфат алюминия, который осаждается в форме донного осадка: Al3+ + PO43-  AlPO4. Как правило уменьшение рН воды идет парралельно с сокращением популяций и гибелью рыб, земноводных, фито- и зоопланктона, а также множества различных других организмов.
Токсичность солей алюминия является одним из основных факторов, снижающих продуктивность растений в условиях кислых почв. В природных водах алюминий присутствует в ионной, коллоидной и взвешенной формах, он образует довольно устойчивые комплексы, в том числе органоминеральные, находящиеся в воде в растворенном или взвешенном состоянии. К числу соединений алюминия относятся различные окислы, гидроокислы и их комплексы с различными органическими кислотами, которыми богаты почвенные растворы и поверхностные воды. В кислой среде (рН=4,5) нерастворимые формы алюминия могут переходить в растворимые, что способствует резкому повышению содержания его подвижных форм. Это приводит к изменению у растений обмена веществ, нарушению формирования генеративных органов, снижению общей биомассы корней и существенному уменьшению площади их поглотительной поверхности [1]. В некоторых случаях токсичность алюминия для растений рассматривается в качестве главного фактора, ограничивающего продуктивность зерновых культур на кислых почвах, составляющих до 40 % посевных площадей в мире, в результате чего убыток урожая зерновых достигает около 12 млрд. тонн в год. С целью повышения толерантности растений к солям при создании новых сортов в качестве исходного материала используют как дикие сородичи злаков, так и культурные устойчивые формы. Тритикале, в отличие от пшеницы, относятся к злакам, пригодным для культивирования на кислых почвах, однако у них отмечена генотипическая специфичность по устойчивости к кислотности почвы [1].

С целью отбора генотипов, толерантных к кислотности почвы, обусловленной присутствием подвижных форм алюминия, проводится скрининг набора озимых и яровых форм тритикале. Так как ингибирование роста корней является одним из первых признаков проявления токсичного действия алюминия и связано с уменьшением роста клеток, отложением лигнина, изменением содержания полисахаридов в клеточной стенке, то одним из методов повышения толерантности растений к алюминию является отбор устойчивых форм на фоне искусственных сред, содержащих соли алюминия.

На средах с концентрацией 2,0 mg/L-1 AlCl3 6H2O наблюдается в зависимости от генотипа снижение значения RTI в 1,7–5,0 раз по отношению к контролю. Дальнейшее повышение содержания алюминия значительно угнетает рост и развитие растений. При этом происходят видоизменения корневой системы: образование утолщений на кончиках корешков, рост в обратном направлении. Некоторые растения продолжают медленно расти, приобретая антоциановую окраску.

Также установлено, что толерантные к солям алюминия генотипы тритикале способны к биосинтезу большего количества белка с более высоким содержанием незаменимых аминокислот.

Таким образом, методом тестирования прорастающих семян тритикале на жидких средах с разным содержанием солей алюминия в результате скрининга синтезированных форм тритикале и возможно выделить толерантные к закислению среды генотипы. Определено допустимое (до 2,0 mg/L-1) содержание алюминия в среде, к которому растения относительно толерантны. Наиболее высокие показатели RTI обнаруживают растения геномно-замещенных линий пшеницы, у которых геном D замещен на соответствующие геномы Aegilops.

Избыточное накопление алюминия в организме может влиять на состояние опорно-двигательного аппарата (остеопороз, рахитоподобные заболевания), почек (нефропатия, риск мочекаменной болезни), ЦНС (задержка развития у детей, энцефалопатия у пациентов, подвергшихся диализу, болезнь Альцгеймера). Отложение алюминия в тканях может способствовать развитию в них фиброзных изменений. Условно допустимый уровень алюминия в волосах лиц, находящихся в группе риска по интоксикации этим элементом, по данным ЦБМ, составляет 40 мкг/г волос (взрослые и дети).

Токсичность алюминия во многом связана с его антагонизмом по отношению к кальцию и магнию, способностью влиять на функцию паращитовидных желез, легко образовывать соединения с белками, накапливаясь в почках, костной ткани, центральной нервной системе. Признаками воздействия алюминия на ЦНС могут быть ухудшение памяти, нервозность, склонность к депрессии, трудности в обучении, гиперактивность.

О проявлении дефицита алюминия у человека и животных известно очень мало, однако считается, что пониженное содержание алюминия в волосах может отражать нарушение обменных процессов в костной ткани.


Заключение
Таким образом, алюминий принимает участие в процессах, определяющих кислотно-основные свойства и буферность конденсированных природных сред (водных сред, иловых отложений, почв). Соотношение алюминий-кальций в почвах непосредственно сказывается на функционировании карбонатной и карбонатно-кальциевой систем, играющих ведущую роль в указанных выше процессах и спо­собных изменить степень кислотности вод и актуаль­ную кислотность почв и илов в широких пределах.

Подкисление природных сред существенно воз­действует на экосистемы, нарушая биодоступность элементов питания, повышая миграционную способ­ность токсичных для биоты элементов, тяжелых метал­лов, радионуклидов, изменяя видовое разнообразие системы.

Токсичность Al явилась "выстрелом в спину" для человечества. Будучи третьим по распространенности элементом земной коры и обладая ценными качествами, металлический алюминий нашел широчайшее применение и в технике (уже в 60-е годы Al использовали при производстве около 4 тыс. изделий) и в быту. Опасность алюминия для живых организмов требует не менее тщательного, чем для тяжелых металлов, мониторинга содержания этого элемента в природных средах.

Список литературы

  1. Кенжебаева С.С., Ямомото Е., Матсумото Х. //Физиология растений. – 2001. – Т.41. – № 4. – С. 514–522.

  2. Кретович В. Л. Основы биохимии растений.— М.: Высш. шк., 1980.— 445 с.

  3. Аристовская Т.В. Микробиологические аспекты плодородия почв // Почвоведение. 1988. № 9.С. 53-63.

  4. Евдокимова Г. А. Микробиологическая активность почв при загрязнении тяжелыми металлами // Почвоведение. 1982. №6. С. 125-132.

  5. Евдокимова Г. А., Кислых Е. Е., Мозгова Н. П. Биологическая активность почв в условиях аэротехногенного загрязнения на Крайнем Севере. Л.: Наука, 1984. 121 с.

  6. Евдокимова Г.А., Мозгова Н.П. Влияние выбросов предприятия цветной металлургии на почву в условиях модельного опыта // Почвоведение. 2000. №5. С.630-638. .

  7. Орлов Д.С. Химия почв. М.: Изд-во МГУ, 1992. 400 с.

  8. Перельман А.И. Геохимия. М.: Высш. шк., 1989. 528 с.

  9. Паринкина О.М. Микрофлора тундровых почв. Л.: Наука,1989. 159 с.

  10. Реймерс Н.Ф. Природопользование. Словарь-справочник. М.: Мысль. 1990. 639 с.

  11. Титова В.И., Дабахов М.В., Дабахова Е.В. Экотоксикология тяжелых металлов. Учебное пособие – НГСХА, 2001, 39 с.



Скачать файл (163 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации