Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по теории экономического анализа - файл 1.doc


Лекции по теории экономического анализа
скачать (480.5 kb.)

Доступные файлы (1):

1.doc481kb.21.11.2011 09:11скачать

содержание
Загрузка...

1.doc

1   2   3   4
Реклама MarketGid:
Загрузка...

Из примера видно, что после преобразования структура и цены стали одинаковы, а разным остался только общий выпуск продукции, это позволяет правильнее оценить прирост физического объема выпуска продукции.


^ Сопоставимость показателей в ряде случаев может быть обеспечена применением вместо абсолютных величин средних или относительных величин.

Например, несравнимы такие абсолютные показатели как объем производства товарной продукции и прибыль от продаж, если не учесть производственную базу (активы) предприятия. Для обеспечения сопоставимость в этом случае можно вместо абсолютных показателей рассчитать относительные, к примеру относительные показатели: «объем производства на одного работника» и «сумма прибыли на рубль активов».

Важное значение в вопросе обеспечения сопоставимости показателей имеет соответствие методик расчета сравниваемых показателей. Например, рентабельность продукции можно рассчитать по валовой прибыли, по прибыли от продаж, чистой прибыли; по производственной себестоимости проданной продукции или по полной себестоимости. Фондоотдача может быть исчислена по всем основным фондам, по основным производственным фондам или по их активной части; по товарной, валовой или реализованной продукции. Нужно иметь ввиду, что несоответствие методик может не только исказить результаты сравнения, но и вообще изменить их смысл.

В сельском хозяйстве, поставляющем сырье для предприятий пищевой промышленности, важно обеспечить сопоставимость сравниваемых показателей по природно-климатическим условиям.

Для обеспечения сопоставимости добиваются также однородности сравниваемых составляющих. Например, нельзя сравнивать показатели цеха с показателями предприятия в целом, себестоимость товарной и себестоимость реализованной продукции, валовую прибыль и чистую прибыль и т.д.
^ 4.3. Использование относительных и средних величин в АХД

Первичными показателями, характеризующими объект экономического анализа являются абсолютные показатели.

Экономические показатели в форме абсолютных величин характеризуют абсолютные размеры анализируемых процессов и явлений: стоимость, их массу, объем, площадь и т.д. безотносительно к размеру других явлений.

Абсолютные экономические показатели всегда являются именованными числами, они выражаются в натуральных, стоимостных или трудовых единицах измерения.

В условиях рынка наибольшее значение имеют стоимостные показатели, дающие денежную оценку экономическим явлениям и процессам. Они наглядно дают оценку исследуемого явления, но подвержены влиянию инфляции, характеризуют размер явления, но нее дают оценку эффективности использования ресурса.

Относительные показатели, вторичны, отражают результат от деления одного абсолютного показателя на другой.

Все используемые в аналитической практике относительные показатели подразделяют на следующие виды:

  • динамики;

  • плана;

  • реализации плана;

  • структуры;

  • координации;

  • интенсивности;

  • сравнения;

  • эффективности.

Относительный показатель динамики (ОПД) представляет собой отношение уровня исследуемого процесса или явления за анализируемый (отчетный период времени к уровню этого же процесса или явления в прошлом:
Текущий (отчетный) показатель

ОПД =------------------------------------------------------------------- ;

Предшествующий или базисный показатель
Его величина показывает, во сколько раз текущий (отчетный) уровень превышает предшествующий (базисный) или какую долю последнего составляет. Его называют обычно темпом роста.

Все субъекты финансово-хозяйственной сферы, начиная от малых предприятий и заканчивая крупными концернами, в той или иной степени осуществляют перспективное планирование своей деятельности, а также сравнивают фактически достигнутые результаты с плановыми. Для этой цели используются относительные показатели плана (ОПП) и реализации плана (ОПРП):

Показатель, планируемый на (i +1) период

ОПП = ------------------------------------------------------ ;

Показатель достигнутый в i-м периоде
Показатель, достигнутый в (i+1) периоде

ОПРП =------------------------------------------------------ .

Показатель, планируемый на (i+1) период
Между относительными показателями плана, реализации плана и динамики существует следующая взаимосвязь:
ОПП : ОПРП = ОПД.
Основываясь на этой взаимосвязи можно всегда при необходимости по любым двум известным величинам определить третью, неизвестную, величину.

Относительный показатель структуры (ОПС) рассчитывается:

Показатель, характеризующий часть совокупности

ОПС = ------------------------------------------------------------------- .

Показатель по всей совокупности в целом
Относительный показатель структура выражается в доляй единицы или процентах.

Относительные показатели координации (ОПК) характеризуют соотношение отдельных частей и целого между собой.
Показатель, характеризующий i–ю часть совокупности

ОПК = ------------------------------------------------------------------------.

Показатель, характеризующий часть совокупности,

выбранную в качестве базы сравнения
При этом, в качестве базы сравнения выбирается та часть, которая имеет наибольший удельный вес или является приоритетной с экономической точки зрения. В результате получают, сколько единиц каждой структурной части приходится на 1единицу (иногда на 100, 1000 и т.д. единиц) базисной структурной части.

Относительный показатель интенсивности (ОПИ) характеризует степень распространения изучаемого процесса или явления в присущей ему среде:
Показатель, характеризующий явление А

ОПИ = -------------------------------------------------------.

Показатель, характеризующий среду

распространения явления А
Этот показатель исчисляется, когда абсолютная величина оказывается недостаточной для формулирования обоснованных выводов о масштабах экономического явления, его размерах и т.п.

Относительный показатель сравнения (ОПСр) представляет собой соотношение одноименных абсолютных показателей, характеризующих разные объекты ( подразделения, предприятия и т.п.):

Показатель, характеризующий объект А

ОПРс = ------------------------------------------------------.

Показатель, характеризующий объект Б
Относительные величины эффективности (ОВЭ) – это соотношение эффекта с ресурсами или затратами, например прибыль на рубль затрат, на рубль выручки, на одного рабочего и т.д.
В экономическом анализе относительные показатели применяемые при исследовании финансово-хозяйственной деятельности предприятия называют финансовыми коэффициентами.

Аналитические финансовые коэффициенты характеризуют соотношения между различными статьями бухгалтерской (финансовой) отчетности. Наиболее распространенными для анализа являются пять групп относительных финансовые показателей – финансовых коэффициентов:

  1. коэффициенты платежеспособности и ликвидности;

  2. показатели финансовой устойчивости;

  3. показатели деловой активности;

  4. показатели рентабельности;

  5. показатели рыночной активности.

Средние величины используются в экономическом анализе для обобщенной количественной характеристики совокупности однородных явлений, т.е. одним числом характеризуют всю совокупность объектов (средняя стоимость основных производственных фондов, среднесписочная численность работающих, средняя заработная плата и т.д.).

В АХД используются разные типы средних величин (простые и взвешенные среднеарифметические, среднегармонические, среднехронологические, среднегеометрические, среднеквадратические и др.), методика расчета которых детально рассматривается в общей теории статистики.

Наиболее распространенными средними в экономическом анализе являются средняя арифметическая простая и среднегеометрическая.

^ Средняя арифметическая простая равна простой суме отдельных значений осредняемого признака, деленной на общее число этих значений. Она может быть рассчитана по одному из двух алгоритмов.

_ х 1+ х 2+ …хn Σ xi

  1. х = --------------------- = ---------

n n

_ 0,5х1 + х2 + … 0,5 хn

  1. х = -----------------------------.

n
^ Средняя геометрическая применяется в тех случаях, когда индивидуальные значения признака представляют собой, как правило, относительные величины динамики, построенные в виден цепных величин, как отношение к предыдущему уровню каждого уровня в ряду динамики, т.е. характеризуют средний коэффициент роста.

^ Средняя геометрическая исчисляется извлечением корня степени п из произведений отдельных значений – вариантов признака х:

п п

х= γ х1 х2 …хп = γ Σ Пх .
где п – число вариантов; П – знак произведения.
Наибольшее применение средняя геометрическая получила при определении средних темпов изменений в рядах динамики.
^ 4.4. Балансовый способ в АХД

Балансовый способ служит для отражения соотношений, пропорций двух групп взаимосвязанных экономических показателей, итоги которых должны быть тождественными.

Этот способ широко применяется в практике бухгалтерского учета, планирования, используется он также и в экономическом анализе, при исследования степени обеспеченности предприятия материальными, трудовыми и финансовыми ресурсами, полноты их использования, при проведении факторного анализа.

Взаимосвязь между товарной и реализованной продукцией описывается балансом товарной продукции, вид которого зависит от принятого на предприятии метода определения выручки от продаж.

Если выручка на предприятии определяется по отгрузке продукции (методом начислений), то баланс товарной продукции будет иметь вид:
ТП + ГПн = РП + ГПк.
где ТП, РП – соответственно стоимость товарной и реализованной продукции; ГПн, ГПк – соответственно остатки готовой продукции на складах на начало и конец анализируемого периода.

Соответствующий вид будет иметь баланс товарной продукции при определении выручки от продаж кассовым методом.

Для анализа полноты и целесообразности использования рабочего времени составляют и рассматривают баланс рабочего времени, в котором отражается структура времени по следующей схеме:

Календарный фонд времени – Выходные и праздничные дни = Табельное время – Очередные отпуска = Возможный (плановый) фонд времени – Фактически отработанное время = Потери планового фонда времени.

Для углубленного анализа использования активной части основных производственных фондов составляется и изучается баланс времени работы производственного оборудования.

Для определения платежеспособности предприятия используется платежный баланс, в котором соотносятся платежные средства с платежными обязательствами.

Как вспомогательный инструмент балансовый способ используется в экономическом анализе для проверки исходной информации, для проверки правильности самих аналитических расчетов.

Этот способ используется для построения детерминированных аддиттивных факторных моделей , т.е. обеспечивает проведение факторного анализа. Например, факторная модель реализованной продукции, построенная на базе баланса товарной продукции будет иметь вид:
РП = ТП + ГПн – ГПк.
На основе балансового метода разработан также один из способов факторного анализа – пропорционального деления или долевого участия.


^ 4.5.Способы табличного отражения аналитических данных

Табличный способ отражения аналитических данных относится к неформальным способом экономического анализа. Это один из наиболее распространенных приемов экономического анализа.

Аналитическая таблица – форма наиболее рационального, наглядного и систематизированного представления обработанных способами элементарной математики исходных данных. Она представляет собой комбинацию горизонтальных строк и вертикальных граф (столбцов, колонок).

Аналитическая таблица представляет собой систему мыслей, суждений, выраженных языком цифр. Она значительно выразительнее и нагляднее словесного текста. Табличный материал охватывает аналитические данные в целом как единую систему. С помощью таблиц значительно легче проследить связи между изучаемыми показателями.

Виды таблиц:

  • простые таблицы;

  • групповые таблицы;

  • комбинированные таблицы.

В простых таблицах дается только перечень информации об изучаемом экономическом явлении. В групповых таблицах данные по отдельным единицам изучаемой совокупности объединяются в группы по одному существенному признаку, т.е. находит отражение простая группировка. В комбинированных таблицах материал разбивается на группы и подгруппы по нескольким признакам, т.е. находит отражение комбинированная группировка

Простая таблица позволяет дать только перечень информации, а две другие служат целям установления связей между изучаемыми явлениями.

По аналитическому содержанию различают:

  • таблицы, отражающие характеристику изучаемого объекта по тем или иным признакам;

  • таблицы, показывающие порядок расчета аналитических показателей;

  • таблицы, отражающие динамику изучаемых показателей;

  • таблицы, отражающие структурные изменения в составе показателей;

  • таблицы, отражающие взаимосвязь явлений;

  • таблицы предназначенные для оформления результатов факторного анализа;

  • таблицы, отражающие результаты подсчета резервов;

  • сводные таблицы, отражающие результаты анализа.

Аналитическая таблица должна быть должным образом оформлена. Внешне она состоит из общего заголовка, системы горизонтальных строк и вертикальных граф. По своей сути таблица состоит из подлежащего и сказуемого. Подлежащее показывает, о чем идет речь, содержит перечень показателей, характеризующих явление, Сказуемое указывает, какими признаками характеризуется подлежащее.

Каждая таблица должна иметь заголовок, кратко выражающий ее содержание. Он должен быть точным и выразительным.

Графы, содержащие подлежащее, нумеруются, как правило, заглавными буквами алфавита, а графы, содержащие сказуемое, - арабскими цифрами.

Все слова в заголовках подлежащего и сказуемого должны писаться полностью. В заголовках глав при необходимости указывают единицы измерения показателя. Если все элементы таблицы выражены в одинаковых единицах измерения, то эту единицу можно вынести в заголовок таблицы

Для удобства пользования таблицами с абсолютными и относительными показателями следует сначала приводить в таблицах абсолютные, а затем относительные данные.

При отражении динамики показателей данные нужно располагать в хронологическом порядке.

При заполнении клеток таблица нужно придерживаться следующих требований:

        • пустых клеток не должно быть;

        • «-« означает, что явление отсутствует;

        • «…» означает, что нет сведений;

        • 0,0 означает, что число данной клетки находится за пределами точности, принятой в таблице;

        • «Х» означает, что клетка не подлежит заполнению.

Если таблица основана на заимствованных данных, обязательно указывается источник.

Таблица не должна быть громоздкой. Она должна быть как можно меньше по числу показателей, но как можно более полно отвечать на один конкретно поставленный вопрос.

Все расчеты должны быть вынесены за пределы таблицы и дополнять ее. Таблица также дополняется необходимыми пояснениями.
Вопросы для самоконтроля.

1.Какова сущность способа сравнения и в каких ситуациях его используют в экономическом анализе?

2. В каких аспектах может проводится сравнение в АХД?

  1. Назовите способы приведения аналитических показателей в сопоставимый вид?

  2. Что такое «индекс цен»,каков порядок его расчета и порядок практического применения?

  3. Что такое относительные показатели, их разновидности?

  4. Каков порядок расчета финансовых коэффициентов, их группировка по видам?

  5. Какие виды средних величин наиболее широко применяются в экономическом анализе , порядок их расчета и область использования?

  6. Для каких целей используют балансовый способ в экономическом анализе, приведите один из примеров такого применения?

  7. Виды аналитических таблиц, их значение в АХД, требования к составлению?


Тесты к теме.

1.Сравнение может проводиться в следующих аспектах:

а) с плановыми данными;

б) с данными прошлых периодов;

в) с данными предприятий-конкурентов;

г) со средними данными в отрасли;

д) все вышеперечисленное.

2. Сравнение может быть:

а) количественным;

б) качественным;

в) все вышеперечисленное.

3. Несопоставимость показателей может быть вызвана:

а) воздействием на сравниваемые показатели инфляции;

б) разными периодами времени, за который были исчислены показатели;

в) разными методиками расчета показателей;

г) все вышеперечисленное.

4. Для обеспечения сопоставимости показателей объема выпуска продукции за несколько анализируемых периодов применяют:

а) индекс стоимости продукции;

б) индекс цен;

в) все вышеперечисленное.

5.Чтобы привести сравниваемые показатели к одной структуре рекомендуется:

а) использовать индекс цен;

б) привести продукцию к стандартному качеству;

в) физический объем производства пересчитать на структуру базисного периода.

г) все вышеперечисленное.

6. Для устранения влияния на результаты анализа инфляции необходимо применять:

а) относительные показатели;

б) абсолютные показатели;

в) средние величины;

г) все вышеперечисленное.

7. Финансовые коэффициенты относятся к:

а) абсолютным величинам;

б) относительным величинам;

в) средним величинам.

8. Балансовый способ анализа может быть использован для:

а) сравнительного анализа;

б) диагностического анализа;

в) факторного анализа;

г) маржинального анализа;

д) функционально-стоимостного анализа.
Глава 5. Способы измерения влияния факторов в факторном детерминированном и стохастическом анализе

^ 5.1. Понятие факторного анализа

Факторный анализ занимает одно из центральных мест в анализе хозяйствующего субъекта. Факторный анализ относится к методам математической статистики.

Истоки факторного анализа находятся в трудах английского исследователя Фрэнсиса Гальтона (1822-1911). Зародившись в Англии, перед второй мировой войной центр исследования по факторному анализу переместился в США. Именно там была разработана современная методика многофакторного анализа.

Факторный анализ – это совокупность методов и моделей, изучающих и объясняющих связи между наблюдаемыми количественными и качественными признаками, измеряющих степень влияния факторов на изменение результативного показателя. Т.е. факторный анализ – это изучение взаимосвязи результата и факторов (причин).

Различают следующие виды факторного анализа:

  • детерминированный и стохастический;

  • прямой и обратный;

  • одноступенчатый и многоступенчатый;

  • статический и динамический;

  • ретроспективный (исторический) и перспективный прогнозный).


Если между результатом и факторами су0ществует жесткая функциональная зависимость, то изучение этой зависимости называется функциональным (детерминированным) факторным анализом.

При детерминированной форме зависимости результат является либо произведением, либо частным, либо разницей или суммой факторов, а также смешанным из всех этих действий. Т.е., при функциональной зависимости мы можем анализируемый процесс представить в виде математической формулы (функции зависимости). Результат при детерминированном факторном анализе получается точным и однозначным.

Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной).

При его проведении результат получается с некоторой вероятностью (неопределенностью), которую следует оценить. При этой форме зависимости изменение фактора может дать несколько значений изменения результата в зависимости от условий сочетания других факторов, влияющих на этот результат, кроме того, сам показатель, в свою очередь, может зависеть от изменения ряда обстоятельств.

Прямой факторный анализ можно назвать еще дедуктивным, С его помощью исследование проводится от общего к частному, от целого к единичному.

Обратный факторный анализ, наоборот, исследует влияние отдельных факторов на результат методом «от единичного к целому». Еще его называют индуктивным методом анализа.

Исследование экономических показателей можно проводить, изучая факторы только одного уровня зависимости, не детализируя их на отдельные составные части. Такой факторный анализ называется одноступенчатым.

Проводя многоступенчатый анализ, факторы первого уровня детализируются на составные элементы, и исследуется зависимость результата уже и от факторов второго, третьего и т.д. уровней.

Статический факторный анализ используется, когда нужно изучить влияние фактора или группы факторов на изменение результата на определенную дату.

Динамический факторный анализ представляет собой методику исследования причинно-следственных связей в динамике.

Ретроспективный факторный анализ изучает причины изменения результативных показателей за прошлые периоды, а перспективный факторный анализ исследует поведение факторов и результативных показателей в перспективе.

Примерная последовательность факторного анализа:

  1. Отбор факторов, которые определяют исследуемые результативные показатели.

  2. Классификация и систематизация их с целью обеспечения возможностей системного подхода.

  3. Определение формы зависимости между факторами и результативными показателями.

  4. Моделирование взаимосвязей между результативным показателем и факторами.

  5. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.

  6. Работа с факторной моделью (практическое её использование для управления экономическими процессами).


^ 5.2. Виды факторных моделей и методы факторного моделирования

Моделирование – это метод научного познания, с помощью которого создается модель (условный образ) объекта исследования, выражающая взаимосвязь исследуемого показателя с показателями факторами в форме конкретного математического уравнения или системы уравнений.

Различают следующие типы факторных моделей:

  1. Аддитивные модели:

п

Y = Σ X1 + X2 + X3 + …+ Xn

I=1

Результат – это сумма(разность) факторов.

2. Мультипликативные модели:

n

Y = П Хi = X1 x X2 x X3 x…x Xn

i=1

Результат – это произведение факторов.

3.Кратные модели:

X1

Y =---------

X2

Результат – это частное от деления.

4.Смешанные модели:

(X1 – Xo) x X2

Y = (X1 + X2) x X3 ; Y = ---------------------- и т.д.

X3
Результат – это сочетание предыдущих моделей в одной.

Этим основным типам моделей соответствуют методы факторного моделирования:

  1. Метод удлинения факторной модели путем замены одного фактора на сумму однородных показателей. Например, исходная факторная модель:

В

Y = --------,

А

но В состоит из суммы элементов: В=b11 + b12 + b13 + b14, тогда

B b11+b12+b13+b14 b11 b12 b13 b14 n

Y= ------ = -------------------------= ----+ ----+----+-----= x1+x2+x3+x4 = Σ Xi

A A A A A A i=1
Получилась аддитивная факторная модель.


  1. Метод расширения факторной модели путем замены одного или нескольких факторов на произведение однородных показателей.

В

Например, исходная факторная модель: Y = ------

А

Но если умножить и числитель, и знаменатель на одни и те же показатели, тогда:
B B x c x d x e B c d e n

Y = ---- = --------------------= ---- x ---- x ---- x---- = X1 x X2 x X3 x X4 = ПXi

A A x c x d x e c d e A i=1
В результате получилась мультипликативная факторная модель.



  1. Метод сокращения факторной модели, путем деления одного или нескольких факторов на новые показатели.

B

Например, исходная факторная модель: Y = ---------

A

Но если числитель и знаменатель разделить на новый показатель, то

В

----------

С Х1

Y = ---------- = -----------

А Х2

-------

С
Получилась новая кратная модель.
^ 5.3. Способы элиминирования

К способам элиминирования (исключения) относят способ цепной подстановки, способы абсолютных и относительных разниц, индексный способ.

Наиболее универсальным из этих методов является способ цепной подстановки. Он используется для расчета влияния факторов во всех типах детерминированных факторных моделей: аддитивных, мультипликативных, кратных и смешанных.

Реализация этого способа требует реализации следующих последовательных шагов:

а) замена базисной величины одного показателя-фактора его фактической (отчетной) величиной, все остальные факторы при этом остаются неизменными, причём сначала заменяются количественные факторы, а затем – качественные;

б) используя факторную модель, по каждой подстановке производим расчет результата;

в) степень влияния факторов на результат определяется последовательным вычитанием : из первой «подстановки» вычитается базисный результат, из второго расчетного результата вычитается первый, из третьего – второй и т.д., т.е. из каждого последующего вычитается предыдущий результат.

Порядок применения этого способа рассмотрим на примере Савицкой Г.В.
Таблица 5.1.

Данные для факторного анализа объема выпуска товарной продукции

Показатель

Условное обозначение

Базисный период

Отчетный период

Отклонение (+.-)

Выпуск продукции, тыс. руб

ТП

160 000

240 000

+80 000


Среднегодовая численность рабочих, чел.

КР

1000

1200

+200

Отработано всеми рабочими за год:

дней

часов

Σ Д

t

250 000

2 000 000

307 200

2 334 720

+ 57 200

+334 720

Среднегодовая выработка одного рабочего, тыс. руб.

ГВ

160

200

+40

Количество дней отработанных одним рабочим за год

Д

250

256

+6

Среднедневная выработка продукции одним рабочим, руб.

ДВ

640

781,25

+ 141,25

Средняя продолжительность рабочего дня, час.

П

8

7,6

-0,4

Среднечасовая выработка, руб.

ЧВ

80

102,796

+22,796


Зависимость объема выпуска товарной продукции (ТП) от количества рабочих (КР) и среднегодовой выработки каждого из них (ГВ) описывается двухфакторной мультипликативной моделью:

ТП = КР х ГВ.

Из таблицы 5.1. видно, что за анализируемый период объем выпуска товарной продукции вырос на 80 000 тыс. руб. За счет чего это произошло?

Для измерения влияния двух факторов (изменения численности рабочих и их среднегодовой выработки) способом цепной подстановки вначале производятся три расчета:

1-й расчет - все показатели базисные.

ТП баз. = КР баз. Х ГВ баз. = 1000 х 160 = 160 000 (тыс. руб.);

^ 2-й расчет – среднесписочное число рабочих фактическое, среднегодовая выработка базисная.

ТП усл. = КРф х ГВ баз. = 1200 х 160 = 192 000 (тыс. руб.) ;

3-й расчет – все показатели фактические.

ТП ф = КРф х ГВф = 1200 х 200 = 240 000 (тыс. руб.) ;

Затем вычисляют какое изменение в результативный показатель внес каждый фактор.

В нашем примере, отклонение от базисного уровня выпуска товарной продукции за отчетный период ( ΔТП общ.) явилось результатом влияния следующих факторов:

а) увеличения численности рабочих ΔТП кр = ТП усл. – ТП баз. =

= 192 000 –160 000 = + 32 000 (тыс. руб.)

б) повышения уровня производительности труда ΔТП гв = ТПф – ТП усл=

= 240 000 – 192 000 = + 48 000 (тыс. руб.)

____________________________________

Итого + 80 000 тыс. руб.

Алгебраическая сумма влияния факторов обязательно должна быть равна общему приросту результативного показателя:

ΔТП кр + ΔТП гв = ΔТП общ.

Отсутствие такого равенства говорит о допущенных ошибках в расчетах.

Если требуется, например, оценить размер влияния четырех факторов, то производится пять расчетов и рассчитывается три условных показателя и т.п.

Пример 2

Используя исходные данные изложенные в таблице 5.1. оценить влияние на объем товарной продукции воздействия четырёх факторов:

  1. численности рабочих (КР);

  2. количества дней отработанных одним рабочим за отчетный период (Д);

  3. средней продолжительности рабочего дня (П);

  4. среднечасовой выработки (ЧВ).

Имеем четырехфакторную модель:

ТП = КР * Д * П * ЧВ.
Расчеты:

  1. ТП баз. = КР баз. * Д баз. * П баз. * ЧВ баз. = 1000 * 250 * 8 * 80 =

= 160 000 (тыс. руб.);

  1. ТП усл. 1 = КРф * Д баз. * П баз. * ЧВ баз. = 1200 * 250 * 8 * 80 =

= 192 000 (тыс. руб.);

  1. ТП усл.2 = КРф * Дф * П баз. * ЧВ баз = 1200 * 256 * 8 * 80 =

= 196 608 (тыс. руб.);

  1. ТП усл.3 = КРф * Дф * Пф * ЧВ баз. = 1200 * 256 * 7,6 * 80 =

= 186 778 (тыс. руб.);

  1. ТП ф = КРф * Дф * П ф* ЧВ ф = 1200 * 256 * 7,6 * 102,796 =

= 240 000 (тыс. руб.).
Отсюда вывод: отклонения от уровня прошлого года по объему выпуска товарной продукции на 80 000 тыс. руб. явилось следствием влияния следующих факторов:

а) изменения количества рабочих:

ΔТП кр = ТП усл.1 – ТП баз. = 192 000 –160 000 = + 32 000 (тыс. руб.);

б) изменения количества дней отработанных одним рабочим за год:

ΔТПд = ТП усл.2 – ТП усл. 1 = 196 608 – 192 000 = + 4608 (тыс. руб.);

в) изменения средней продолжительности рабочего дня:

ΔТП п = ТП усл.3 – ТП усл.2 = 186 778 – 196 608 = - 9830 (тыс. руб.);

г) изменения среднечасовой выработки:

ΔТП св = ТПф – ТП усл.3 = 240 000 – 186778 = +53 222 тыс. руб.

_____________________________________

Итого + 80 000 тыс. руб.

Используя способ цепной подстановки, следует придерживаться определенной последовательности расчетов:

  • В первую очередь необходимо учитывать изменение количественных факторов, а затем качественных;

  • Если количественных и качественных показателей несколько, то вначале необходимо оценить влияние факторов первого уровня, затем более низкого.

Таким образом, применение способа цепной подстановки требует:

знания взаимосвязи факторов, их соподчиненности;

умения правильно классифицировать факторы.

^ Преимуществом способа цепных подстановок является то, что с его помощью можно исследовать все типы детерминированных моделей.

Недостатками способа являются то, что результаты расчетов зависят от последовательности замены факторов, а также то, что активная рорль в изменении обобщающего показателя необоснованно часто приписывают влиянию качественного фактора.

Способ абсолютных разниц является одной из модификаций элиминирования. Как и способ цепной подстановки, он применяется для расчета влияния факторов на прирост результативного показателя в детерминированном анализе, но только в мультипликативных и мультипликативно-аддитивных моделях: Y = (a –b) c и Y = a (b – c).

И хотя его использование ограничено, но благодаря своей простоте он получил широкое применение в АХД.

^ Сущность способа: величина влияния факторов на результативных показатель рассчитывается умножением абсолютного прироста исследуемого фактора на базовую (плановую) величину факторов, которые находятся справа от него, и на фактическую величину факторов, расположенных слева от него в модели.

Рассмотрим алгоритм расчета для мультипликативной факторной модели типа Y = a * b * c * d . Имеются плановые и фактические значения по каждому факторному показателю, а также их абсолютные отклонения:

Δ a = aф – aпл; Δb = bф – bпл ; Δ c = cф – cпл; Δd = dф – dпл.

Определяем изменение величины результативного показателя за счет каждого фактора:
ΔY а = Δа * b пл * спл * dпл;

ΔYb = aф *Δ b * спл * dпл;

ΔYc = aф * bф * Δc * dпл;

ΔYd = aф * bф * cф * Δd.
Рассмотрим методику расчета влияния факторов этим способом по ранее рассмотренной четырехфакторной модели:

ТП = КР * Д * П * ЧВ.

Δ ТПкр= (КРф – КР пл) * Д пл * П пл * ЧВ пл = (1200 – 1000) * 250 * 8 * 80 =

= + 32 000 (тыс. руб.),

Δ ТП д= КРф * (Дф –Д пл) * П пл * ЧВ пл = 1200 * (256 –250) * 8 * 80 =

= + 4608 (тыс. руб),

Δ ТП п = КРф * Дф * (Пф –П пл) * ЧВ пл = 1200 * 256 * (7,6 –8) * 80 =

= - 9830 (тыс. руб.),

Δ ТП чв = КРф * Дф * Пф * (ЧВф – ЧВ пл) = 1200 * 256 * 7,6 * (102,796 – 80)

= +53 222 (тыс. руб.).

_____________________________________________

Итого + 80 000 тыс. руб.

Таким образом, способ абсолютных разниц дает те же результаты, что и способ цепной подстановки.

Рассмотрим алгоритм расчета влияния фактором этим способом в моделях мультипликативно-аддитивного типа. Для примера возьмем факторную модель прибыли от продаж продукции:

П= VРП (Ц – С\б),

где П – прибыль от продаж; VРП - объем продаж продукции; Ц – цена единицы продукции; С\б – себестоимость единицы продукции.

Прирост суммы прибыли за счет изменения:

объема реализации продукции Δ П vрп =VРП (Цпл – С\б пл);

цены реализации ΔПц = VРП ф * ΔЦ;

себестоимости продукции ΔП с\б =VРП ф * ( - Δ С\б).
Cпособ относительных разниц, как и предыдущий, является одним из способов элиминирования. Он также как и способ абсолютных разностей применяется для измерения влияния факторов на прирост результативного показателя только в мультипликативных и мультипликативно-аддитивных моделях типа Y = (a – b) * c .

Рассмотрим методику влияния факторов этим способом на примере мультипликативной модели типа Y = a*b*c.

Во-первых, рассчитывают относительное отклонение факторных показателей:

aф – aпл

Δa % = ---------- * 100%;

апл

bф - bпл

Δ b % = ---------------- 100% ;

bпл
d ф - d пл

Δ d % = --------------------- 100%.

dпл

Затем рассчитывают изменение результативного показателя за счет каждого фактора:

Δ a

ΔY a = Yпл * -------------- ;

а пл

Δ b

ΔY b = (Yпл – ΔY a) * ------------ ;

b пл
Δ с

Δ Yc =(Yпл+ ΔYa + Δ Yb) * ----------- .

c пл


Пример. Рассчитать влияние факторов на прирост результативного показателя способом относительных разниц, используя данные таблицы 5.1.

ТП пл * КР% 160 000 * 20%

Δ ТП кр = -------------------- = --------------------- = + 32 000 (тыс. руб.);

100% 100%
(ТП пл + ΔТП кр) * ΔД% (160 000 – 32 000) * 2,4%

ΔТПд = -------------------------------------- = --------------------------------------- = + 4608 (т. руб)

100% 100%
(ТП пл + ΔТП кр + ΔТП д) * ΔП% (160000+32000+4608)*(-5%)

ΔТП п = ------------------------------------------------ = -------------------------------------

100% 100%

= - 9830 (тыс. руб.);
(ТП пл + ΔТП кр + ΔТП д + ΔТП п) * ΔЧВ %

ΔТП чв = ------------------------------------------------------------ =

100%

(160 000 + 32 000 + 4608 – 9830) * 28,5

=-------------------------------------------------- = + 53 222 (тыс.руб.).

100%

Итого 80 000тыс. руб.
Индексный метод основан на относительных показателях динамики, пространственных сравнений.

Индекс показывает процентное или долевое изменение определенного значения за какой то период времени.

Применяется этот метод только в кратных и мультипликативных, двухфакторных моделях.

С помощью индексов решаются следующие задачи:

  1. индексы позволяют измерять изменение (динамику) сложных явлений;

  2. с помощью индексов можно определить влияние различных факторов на изменение уровня результативного показателя;

  3. индексы являются показателями сравнений не только с прошлым периодом (сравнений во времени), но с другой территорией (сравнение в пространстве), а также с нормативами, планами, прогнозами.

Для факторного анализа больше подходят агрегатные индексы.

Для примера возьмем агрегатный индекс стоимости продукции:

Σ g1 * p1

I тп = ---------------------------.

Σ go * po

Он отражает изменение физического объема выпуска товарной продукции (g ) и цен (р) и равен произведению их индексов:
Iтп = Ig * I p .
Чтобы установить, как изменилась стоимость товарной продукции за счет изменения объема ее выпуска в натуральных единицах и цен, нужно рассчитать индекс физического объема Ig и индекс цен Ip.
Σ g1 po Σ g 1 p1

Ig = -------------------; Ip = -------------- .

Σ go po Σ g1 po
В нашем примере объем выпуска продукции можно представить в виде произведения численности рабочих и среднегодовой выработки каждого рабочего. Проведем факторный анализ индексным методом.

КРф * ГВф 1200 * 200 240 000

Iтп =------------------- =---------------- = ------------= 1,5;

КР пл * ГВ пл 1000 * 160 160 000

КРф * ГВпл 1200 * 160 192 000

I kp = -------------------- = ----------------- = ------------- = 1,2;

КР пл * ГВ пл 1000 * 160 160 000
КРф * ГВф 1200 * 200 240 000

I гв = ------------------- = ----------------- = ------------------ = 1,25;

КРф * ГВ пл 1200 * 160 192 000
Iтп = Iкр * Iгв = 1,2 * 1,25 = 1,5.
Если из числителя вышеприведенных формул вычесть знаменатель, то получим абсолютные приросты продукции в целом и за счет каждого фактора в отдельности, т.е. те же результаты, что и при помощи других способов элиминирования.


    1. ^ Интегральный способ

Интегральный способ так же как и способы элиминирования широко используются в аналитической практике для измерения влияния факторов на результативный показатель в мультипликативных, кратных и кратно-аддитивных моделях.

Считается что он позволяет получать более точные, а значит и белее обоснованные результаты расчета.

Для использования интегрального способа не требуется знания всего процесса интегрирования, а необходимо знать готовые рабочие формулы.

Так для факторной модели типа У = А * В используются следующие формулы:

Δ У А = Δ А * Во + ½ ΔА * ΔВ; или Δ У А = 1\2 Δ А ( Во + В1);

Δ У в = Δ В * Ао + 1\2 ΔА * ΔВ; или ΔУ в = 1\2 Δ В (Ао + А1).
В нашем примере:

Δ ТПкр = 200 * 160 + 1\2 (200 * 40) = 36 000 (тыс. руб.);
ΔТП гв = 40 * 1000 + 1\2 (200 * 40) + 44 000 (тыс. руб.).
Аналогичные рабочие формулы имеются и для других типов факторных моделей.


    1. ^ Способы изучения стохастических связей

Приемы стохастического (корреляционного) анализа используются для измерения влияния факторов в стохастическом анализе, когда взаимосвязь между показателями вероятностная.

Различают:

  • парную корреляцию;

  • множественную корреляцию.

^ Парная корреляция – это связь между двумя показателями, один из которых является факторным, а другой – результативным.

Множественная корреляция возникает от взаимодействия нескольких факторов с результативным показателем.

Необходимые условия применения корреляционного анализа:

  • наличие достаточно большого количества наблюдений о величине исследуемых факторных и результативных показателей (в динамике или за текущий год по совокупности однородных объектов);

  • исследуемые факторы должны иметь количественное измерение и отражение в тех или иных источниках информации.

Корреляционный анализ позволяет решить следующие задачи:

  1. определить изменение результативного показателя под воздействием одного или нескольких факторов (в абсолютном измерении), т.е. определить, на сколько единиц изменяется величина результативного показателя при изменении факторного на единицу;

  2. установить относительную степень зависимости результативного показателя от каждого фактора.

Первая задача решается путем подбора и обоснования соответствующего типа уравнения связи и нахождения его параметров, уравнение связи обосновывается с помощью графиков, аналитических группировок и т.д.

Зависимость результативного показателя от определяющих его факторов можно выразить:

уравнением парной регрессии: Yx = a + bx;

уравнением множественной регрессии: Yx = a + b1x1+ b2 x2 + …+ bn xn,

где: а – свободный член уравнения при х=0;

х1,х2…хn – факторы, определяющие уровень изучаемого результативного показателя;

b1,b2 …bn – коэффициенты регрессии при факторных показателях, характеризующие уровень влияния каждого фактора на результативный показатель в абсолютном выражении.

По такому же принципу решается уравнение связи при криволинейной зависимости между изучаемыми явлениями. Когда при увеличении одного показателя значения другого возрастают до определенного уровня, а потом начинают снижаться (например, зависимость производительности труда рабочих от их возраста), лучше всего подходит парабола второго порядка:

2

Yx = a + bx + cx .
Кроме параболы для описания криволинейной зависимости в корреляционном анализе очень часто используется гипербола:

b

Yx = a ----- .

x
При более сложном характере зависимости между изучаемыми явлениями используются более сложные параболы (третьего, четвертого порядка и т.д.), а также квадратические, степенные показательные и другие функции.

Таким образом, используя тот или иной тип математического уравнения, можно определить степень зависимости между изучаемыми явлениями, узнать на сколько единиц в абсолютном измерении изменяется величина результативного показателя с изменением факторного на единицу.

Однако регрессионный анализ не дает ответа на вопрос о тесноте связи. Для измерения тесноты связи между факторными и результативным показателями исчисляется коэффициент корреляции.

Решение задач многофакторного корреляционного анализа достаточно сложно и трудоемко, поэтому для их решения широко применяются ПЭВМ и типовые программы.
Вопросы для самоконтроля.

  1. Охарактеризуйте сущность факторного анализа? Где он возник, получил развитие, и какое место занимает в современном АХД?

  2. Какие виды факторного анализа Вы знаете? Раскройте сущность каж-

дого вида.

  1. Какая разница существует между детерминированным и стохастическим факторным анализом?

  2. Доложите последовательность проведения факторного анализа?

  3. Назовите основные приемы, используемые для измерения влияния факторов в детерминированном факторном анализе.

  4. Охарактеризуй те сущность, область применения и процедуры расчетов в приемах: цепной подстановки, абсолютных разниц, относительных разниц, интегральном способе.

  5. Назовите типы моделей используемые в детерминированном факторном анализе и приведите пример каждого типа модели.

  6. Каковы достоинства и недостатки способа цепных подстановок?

  7. В чем преимущество интегрального способа перед способами элиминирования?

  8. В чем состоит различие между способами абсолютных и относительных разниц?

  9. Каковы достоинства и недостатки индексного метода?

  10. Для чего и в каких случаях используются приемы корреляционного анализа? Каковы его задачи?


Тесты по теме.

  1. Факторный анализ можно классифицировать следующим образом:

а) прямой и обратный;

б) положительный и отрицательный;

в) функциональный и вероятностный;

г) одноступенчатый и многоступенчатый;

д) статический и динамический;

е) качественный и количественный;

ж) пространственный и временной;

з) ретроспективный и перспективный.


  1. Высказывание «… факторный анализ направлен на исследование не прямых, а косвенных связей, по которым нельзя построить детерминированную модель, носит вспомогательный характер и являет ся инструментом углубления функционального анализа факторов …» можно отнести:

а) к детерминированному факторному анализу:

б) к стохастическому факторному анализу.



  1. Жесткую математическую зависимость между результатом и факторами изучают с помощью:

а) функционального факторного анализа;

б) вероятностного факторного анализа;

в) комплексного анализа.
4.Если результат в функциональной факторной модели – это сумма показателей-факторов, то это:

а) мультипликативная модель;

б) аддитивная модель;

в) кратная модель.
5.Если результат в функциональной факторной модели – это произведение показателей-факторов, то это:

а) аддитивная модель;

б) мультипликативная модель;

в) кратная модель.
6. Если результат в функциональной факторной модели – это частное показателей-факторов, то это:

а) кратная модель:

б) мультипликативная модель:

в) аддитивная модель.
7. При использовании метода «балансовой увязки» нужно:

а) к отчетной факторной модели прибавить базисную модель;

б) из базисной факторной модели вычесть отчетную модель;

в) составить факторную модель.

г) из отчетной факторной модели вычесть базисную модель;

д) показатели отчетной и базисной факторных моделей поделить

друг на друга.

8. Способ «цепных подстановок» состоит из следующих шагов:

а) последовательная замена базисной величины одного показателя его

фактическим значением;

б) последовательная замена фактической величины одного показателя-

фактора его базисной величиной;

в) при каждой подстановке производится расчет результата, используя

факторную модель;

г) последовательное вычитание из базисной факторной модели

промежуточного результата.

д) последовательное вычитание из последующего результата

предыдущего.

1   2   3   4



Скачать файл (480.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации