Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Инжектор ВАЗ 21213 - файл 1.doc


Инжектор ВАЗ 21213
скачать (1161.5 kb.)

Доступные файлы (1):

1.doc1162kb.23.11.2011 01:09скачать

содержание

1.doc

  1   2   3
Содержание

стр

1 Введение 1

2 Преимущества впрысковых систем подачи топлива 3

3 Устройство системы впрыска топлива автомобиля ВАЗ 21213 6

4 Электросхема системы впрыска топлива автомобиля ВАЗ 21213 10

5 Работа системы впрыска топлива автомобиля ВАЗ 21213 15

6 Диагностические коды системы впрыска автомобиля ВАЗ 21213 20

7 Диагностика и ремонт системы впрыска топлива ВАЗ 21213 23

7.1 Диагностические приборы 23

7.2 Основные этапы диагностики 43

7.3 Промывка инжектора 49

8 Заключение 51

9 Список литературы 52
1 Введение
Под общим понятием «впрыск топлива», которому многие наши автомобилисты предпочитают не совсем корректное «инжектор» (это не вся система, а лишь форсунка), скрывается немало схем подачи топлива терминов, их обозначающих, и того больше.

Первые системы впрыска топлива появились в 1894 году – даже раньше, чем простейшие карбюраторы. Однако из-за сложности конструкции о них долгое время не вспоминали. Внедрение систем впрыска бензина в серийные автомобили началось в 60-е годы, когда впервые возникла необходимость снизить токсичность отработавших газов. Вначале это были чисто механические системы, в которых количество впрыскиваемого топлива напрямую зависело от степени открытия дроссельной заслонки. С развитием электротехники на смену механическим системам пришли электронные. Именно ими и оснащено большинство эксплуатируемых у нас иномарок.

Почетное место первопроходца занял так называемый моно или одноточечный впрыск (single point fuel injection), который в русскоязычных изданиях принято называть центральным. В этой схеме топливо подает всего одна форсунка, которая расположена над дроссельной заслонкой во впускном коллекторе. Многие автомобилисты, не без оснований, считают одноточечный впрыск самым надежным - ведь чем меньше узлов и проще конструкция, тем меньше поводов для отказа. Но одноточечный впрыск, особенно ранние его версии с механическим приводом форсунки, - это вчерашний, если не позавчерашний день двигателестроения.

В стремлении подогнать моторы под более жесткие экологические требования и сделать их экономичнее, конструкторы развили схему: свою форсунку во впускном тракте получил каждый цилиндр. Так родился многоточечный впрыск топлива (multipoint fuel injection). Система получилось сложнее, но, главное, подачу топлива и, соответственно, процесс сгорания стала контролировать точнее. По аналогии с центральным, такой впрыск назвали распределенным.

Сила электроники - в стабильности работы, в точности и надёжности, способности парировать отказы. Поэтому впрыск бесповоротно вытеснил карбюратор как на зарубежных, так и на отечественных автомобилях.

В данной курсовой работе рассматривалась система моно впрыска топлива, установленная на автомобиле ВАЗ 21213 (Chevrolet Niva).



2 Преимущества впрысковых систем подачи топлива
Как известно, бензиновые двигатели оснащаются карбюратором или имеют топливный инжектор. Инжекторные системы подачи топлива имеют ряд преимуществ над карбюраторными и являются более прогрессивными практически по всем параметрам.

Карбюраторный двигатель смешивает топливо с воздухом перед подачей в камеры сгорания с большим усилием через узкое горло - карбюратор, расходуя при этом около 10 процентов своей мощности. На смешивание бензина с воздухом тоже уходят силы двигателя. Если карбюратор получает много горючего, то он захлебывается и начинает «коптить», если мало, то тогда «не тянет».

В инжекторном двигателе бензин не засасывается, а впрыскивается из форсунки под давлением сразу в камеру сгорания, либо во впускной коллектор. И впрыскивается ровно столько, сколько нужно, ведь за этим следит электроника. Соответственно, мощность и экономичность увеличиваются. Простейшая электронная система впрыска включает в себя: электрический бензонасос, регулятор давления, электронный блок управления, датчик угла поворота дроссельной заслонки, датчик температуры охлаждающей жидкости, датчик числа оборотов коленвала и непосредственно инжектор.

В общем, инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

Точное дозирование топлива и, следовательно, более экономичный его расход. Дозирование топлива осуществляется довольно просто. Форсунки впрыскивают топливо каждый раз перед открытием впускного клапана. Причем столько, сколько решил дать блок управления, соответственно возникает импульс разной длины. Чем длиннее импульс, тем больше бензина за раз попадет.

Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов.

Увеличение мощности двигателя примерно на 7-10%. Происходит за счет улучшения наполнения цилиндров, оптимальной геометрии впускного коллектора, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя.

Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки. Улучшенные параметры топливно-воздушной смеси увеличивают динамический момент двигателя.

Легкость пуска независимо от погодных условий. Например, в сильные морозы двигатель практически не требует прогрева и запускается «с пол-оборота», так что почти сразу можно ехать. За счет качества приготовления смеси и стабильность её состава реже, чем карбюратор требует чистки и замены.

Контроль за системой производит электроника. Наличие электроники в инжекторе и вовсе может рассматриваться и как преимущество и как недостаток. Ведь электроника может выйти из строя в самый неподходящий момент, например, в дальней дороге. И если нет запасного блока, то придется вызывать помощь. А с карбюратором, кроме засорения жиклёров - устройств, распрыскивающих топливо в воздух, практически ничего не может случиться, и вы в любом случае доберетесь до пункта назначения или хотя бы до ближайшего сервиса.

Большая надежность и долговечность и т.д.

В зависимости от количества форсунок и места подачи топлива, системы впрыска подразделяются на три типа: одноточечный (одна форсунка во впускном коллекторе на четыре цилиндра), многоточечный или распределенный (у каждого цилиндра своя форсунка, которая подает топливо в коллектор) и непосредственный (топливо подается форсункой непосредственно в цилиндры, как у дизелей).

Одноточечный впрыск конечно проще, он менее начинен управляющей электроникой, но и менее эффективен. Управляющая электроника позволяет снимать информацию с датчиков и сразу же менять параметры впрыска.

У одноточечного впрыска преимущество перед карбюратором состоит в экономии топлива, экологической чистоте и относительной стабильности и надежности параметров. А вот в приёмистости двигателя одноточечный впрыск проигрывает. Еще один недостаток: при использовании одноточечного впрыска, как и при использовании карбюратора до 30% бензина оседает на стенках коллектора.

Распределенный впрыск мощнее, экономичнее и сложнее. Применение такого впрыска увеличивает мощность двигателя примерно на 7-10 процентов.

Основные преимущества распределенного впрыска:

1 возможность настройки на разных оборотах и соответственно улучшение наполнения цилиндров, в итоге при той же максимальной мощности инжектор разгоняется гораздо быстрее;

2 бензин брызгает непосредственно прямо на клапан, что позволяет сделать более точную регулировку подачи топлива.

Что касается преимуществ бензинового двигателя с прямым или непосредственным впрыском, то они заключаются в том, что благодаря форсункам с электромагнитными клапанами возможен впрыск дозированного количества топлива в камеру сгорания в определенное время. Электронный блок подает в камеры сгорания ровно столько топлива и масла, сколько требуется двигателю при определенном числе оборотов коленчатого вала, реагируя на изменение режима работы мотора, меняя дозировку. Все это обеспечивает моторам улучшенные технические характеристики.

Кроме того, при использовании прямого впрыска концентрация токсичных веществ в выхлопных газах также уменьшается. А двигатели с прямым впрыском FSI еще и на 15% экономичнее бензиновых двигателей с обычной системой впрыска. FSI расшифровывается как fuel stratified injection, что в переводе с английского означает «послойный впрыск топлива». В системе прямого впрыска FSI насос высокого давления нагнетает бензин в общую для всех цилиндров топливную рампу. При этом топливо попадает сразу в камеру сгорания через форсунки. Блок управления дает команду на открытие каждой форсунки, а фазы ее работы значительно зависят от нагрузки двигателя и его оборотов.

Прямой впрыск позволяет добиться преимущества перед карбюратором не только в увеличении мощности двигателя, эта система также обеспечивает хорошую тягу на низких и средних оборотах из-за постоянно изменяемых фаз газораспределения и позволяет серьезно экономить бензин.

Однако все свои положительные качества инжектор проявляет только при условии соблюдения правил пользования и эксплуатации.
3 Устройство системы впрыска топлива автомобиля ВАЗ-21213
Схема устройства системы впрыска топлива автомобиля ВАЗ-21213 изображена на рисунке 1
Рисунок 1 Схема устройства системы впрыска топлива автомобиля ВАЗ-21213



Корпус дроссельной заслонки 2. Регулятор холостого хода 3. Сектор привода дроссельной заслонки 4. Корпус топливоподачи 5. Регулятор давления топлива 6. Форсунка 7. Держатель форсунки 8. Штуцер подвода топлива 9. Топливный бак 10. Электробензонасос с датчиком уровня топлива 11. Магистраль подачи топлива 12. Магистраль слива топлива 13. Топливный фильтр 14. Агрегат центрального впрыска топлива 15. Датчик положения дроссельной заслонки 16. Клапан регулятора давления топлива 17. Диафрагма 18. Ось дроссельной заслонки 19. Дроссельная заслонка 20. Модуль вакуумных трубок 21. Клапан регулятора холостого хода а) Канал подвода топлива в) Канал слива топлива с) Патрубок для шланга продувки адсорбера d) Патрубок для шаланга системы вентиляции картера е) Патрубок для шаланга к датчику абсолютногодавления I. Схема работы регулятора давления топлива II. Схема работы регулятора холостого хода: А-подача воздуха в обход дроссельной заслонки
На автомобилях ВАЗ-21214 устанавливается двигатель с системой центрального впрыска топлива, т.е. топливо впрыскивается одной форсункой в агрегат центрального впрыска. Здесь топливо перемешивается с воздухом и в виде горючей смеси по впускной трубе подается в цилиндры двигателя.

Система впрыска топлива в сочетании с каталитическим нейтрализатором в системе выпуска позволяет снизить токсичность отработавших газов при улучшении ездовых качеств автомобиля. В качестве топлива необходимо применять только неэтилированный бензин. Применение этилированного бензина приведет к повреждению нейтрализатора, датчика кислорода и к отказу системы.

Нейтрализатор устанавливается в системе выпуска отработавших газов перед дополнительным глушителем. Он содержит два окислительных катализатора (ускорителя химической реакции) и один восстановительный. Окислительные катализаторы (платина и палладий) способствуют преобразованию углеводородов в водяной пар, а окиси углерода в двуокись углерода. Восстановительный катализатор (родий) способствует преобразованию окислов азота в безвредный азот.

В связи с тем, что каталитическому нейтрализатору требуется кислород для нейтрализации углеводородов и окиси углерода, и одновременно он должен отнимать кислород для нейтрализации окислов азота, необходимо очень строго поддерживать баланс смеси воздух/топливо (примерно 14,7:1), поступающей в двигатель. Эту функцию выполняет электронный блок управления.

Электронный блок управления (ЭБУ), расположенный под панелью приборов на левой боковине кузова, является управляющим центром системы впрыска топлива. Это специализированный компьютер. Он непрерывно обрабатывает информацию от различных датчиков и управляет системами, влияющими на токсичность отработавших газов и на эксплуатационные показатели автомобиля.

ЭБУ выполняет также диагностическую функцию системы впрыска топлива. Он может распознавать неполадки в работе системы, предупреждая о них водителя через контрольную лампу «CHECK ENGINE». Кроме того, он хранит диагностические коды, указывающие области неисправности, чтобы помочь специалистам в проведении ремонта.

Агрегат центрального впрыска топлива 14 устанавливается на впускной трубе вместо карбюратора. В нем находится форсунка 6 для впрыска топлива, регулятор 5 давления топлива, регулятор 2 холостого хода, дроссельная заслонка 19 и датчик 15 положения дроссельной заслонки. Для отбора разрежения имеются три патрубка с, d и е, соединенные с задроссельным пространством.

Форсунка 6 представляет собой электромагнитный клапан. Когда на нее от ЭБУ поступает импульс напряжения, то клапан открывается и топливо через распылитель тонко распыленной струей под давлением впрыскивается в смесительную камеру над дроссельной заслонкой. После прекращения подачи электрического импульса подпружиненный клапан перекрывает подачу топлива.

Регулятор 5 давления топлива состоит из клапана 16 с диафрагмой 17, поджатого пружиной к седлу в корпусе 4. Когда давление топлива превышает 190-210 кПа, клапан открывается, и избыток топлива по сливной магистрали 12 сливается в топливный бак.

Регулятор 2 холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки 19. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана 21. Клапан выдвигается или убирается по сигналам ЭБУ.

Датчик 15 положения дроссельной заслонки установлен на корпусе 1 дроссельной заслонки и связан с осью 18 дроссельной заслонки. Датчик представляет собой потенциометр, на один конец которого подается напряжение питания 5 В, а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идет выходной сигнал к ЭБУ.
4 Электросхема системы впрыска топлива автомобиля ВАЗ 21213
Электросхема системы впрыска топлива автомобиля ВАЗ 21213 приведена на рисунке 2.
Рисунок 2 Схема электрических соединений системы впрыска топлива автомобиля ВАЗ 21213

Датчик температуры воздуха; 2. Регулятор холостого хода; 3. Электронный блок управления; 4. Октан-потенциометр; 5. Свечи зажигания; 6. Модуль зажигания; 7. Датчик положения коленчатого вала; 8. Электробензонасос с датчиком уровня топлива; 9. Комбинация приборов с тахометром и контрольной лампой «CHECK ENGINE»; 10. Основной блок предохранителей автомобиля; 11. Датчик скорости; 12. Колодка диагностики; 13. Форсунка; 14. Клапан продувки адсорбера; 15. Блок предохранителей системы впрыска; 16. Реле зажигания; 17. Реле включения бензонасоса; 18. Реле электроподогревателя впускной трубы; 19. Электроподогреватель впускной трубы; 20. Предохранитель подогревателя впускной трубы; 21. Датчик концентрации кислорода; 22. Датчик температуры охлаждающей жидкости; 23. Датчик положения дроссельной заслонки; 24. Датчик абсолютного давления; А. К клемме «плюс» аккумуляторной батареи; В. К клемме "15" выключателя зажигания.
Электробензонасос 10 - двухступенчатый, роторного типа, установлен в топливном баке. Топливо из насоса через топливный фильтр 13 тонкой очистки (рисунок 1) подается в агрегат центрального впрыска под давлением более 184 кПа. Электробензонасос включается с помощью вспомогательного реле 17. Топливный фильтр с бумажным фильтрующим элементом установлен в моторном отсеке на левом брызговике.

Датчик температуры охлаждающей жидкости представляет собой термистор (резистор, сопротивление которого изменяется от температуры). Датчик завернут в выпускной патрубок охлаждающей жидкости на головке цилиндров. При низкой температуре датчик имеет высокое сопротивление (100 Ом при 40°С), а при высокой температуре - низкое (70 Ом при 130°С).

Датчик температуры воздуха, завернутый в дно корпуса воздушного фильтра, также является термистором. При понижении температуры воздуха его сопротивление возрастает, а при повышении - уменьшается.

Датчик концентрации кислорода устанавливается на выпускном коллекторе. Кислород, содержащийся в отработавших газах, реагирует с датчиком кислорода, создавая разность потенциалов на выходе датчика. Она изменяется приблизительно от 0,1 В (высокое содержание кислорода - бедная смесь) до 0,9 В (мало кислорода - богатая смесь). В датчик встроен нагревательный элемент для повышения эффективности его работы.

Датчик абсолютного давления воздуха закреплен в коробке воздухопритока, и соединен шлангом с патрубком е. Чувствительный элемент датчика - миниатюрная диафрагма с напыленным на ней резистором. В зависимости от давления воздуха изменяется натяжение диафрагмы и соответственно меняется сопротивление резистора. Встроенная в датчик микросхема преобразует это изменение сопротивления в изменение напряжения на выходе датчика.

Датчик скорости автомобиля устанавливается на раздаточной коробке между приводом спидометра и наконечником гибкого вала привода спидометра. Принцип действия датчика основан на эффекте Холла. Датчик выдает на ЭБУ прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.

Октан-потенциометр установлен в моторном отсеке на стенке коробки воздухопритока и представляет собой переменный резистор. Он выдает в электронный блок управления сигнал корректировки угла опережения зажигания. Регулировка октан-потенциометра выполняется только на станции технического обслуживания с применением диагностического оборудования.

Датчик положения коленчатого вала - индуктивного типа, установлен на крышке привода распределительного вала напротив задающего диска на шкиве привода генератора. На диске имеется 6 прорезей, равно расположенных по окружности и одна прорезь, расположенная на 10° от одной из них и служащая для генерирования импульса синхронизации. При вращении коленчатого вала прорези изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. В системе зажигания применяется метод распределения искры, называемый методом «холостой искры». Цилиндры двигателя объединены в пары 1-4 и 2-3, и искрообразование происходит одновременно в двух цилиндрах: в цилиндре, в котором заканчивается такт сжатия (рабочая искра) и в цилиндре, в котором происходит такт выпуска (холостая искра). В связи с постоянным направлением тока в обмотках катушек зажигания, ток искрообразования у одной свечи всегда протекает с центрального электрода на боковой, а у второй - с бокового на центральный. Свечи применяются типа А17ДВРМ или AC.R43XLS с зазором между электродами 1,0-1,13 мм.

Система зажигания. В системе зажигания не используются традиционные распределитель и катушка зажигания. Здесь применяется модуль зажигания, состоящий из двух катушек зажигания и управляющей электроники высокой энергии. Система зажигания не имеет подвижных деталей и поэтому не требует обслуживания. Она также не имеет регулировок (в том числе и угла опережения зажигания), т.к. управление зажиганием осуществляет ЭБУ.

Модуль зажигания получает сигнал от датчика положения коленчатого вала, обрабатывает его и посылает в ЭБУ опорный сигнал с. частотой один импульс за 180° поворота коленчатого вала. Модуль зажигания также посылает сигнал для работы тахометра в комбинации приборов. При оборотах двигателя до 500 об/мин зажиганием управляет модуль зажигания путем включения каждой катушки с заданным интервалом только на базе данных частоты вращения коленчатого вала.

При оборотах выше 500 об/мин - зажиганием управляет ЭБУ, используя следующую информацию:

- частота вращения коленчатого вала;

- нагрузка двигателя (абсолютное давление воздуха);

- атмосферное (барометрическое) давление воздуха;

- температура охлаждающей жидкости;

- температура воздуха на впуске;

- положение коленчатого вала.

Система улавливания паров бензина. В системе применен метод улавливания паров угольным адсорбером, установленным в моторном отсеке. На неработающем двигателе пары бензина из сепаратора подаются через гравитационный клапан в адсорбер, где они поглощаются активированным углем. Затем при работающем двигателе адсорбер продувается воздухом и пары отсасываются к патрубку с, а затем во впускную трубу для сжигания в ходе рабочего процесса.

ЭБУ управляет продувкой адсорбера, включая электромагнитный клапан 14, расположенный на крышке адсорбера. При подаче на клапан напряжения он открывается, выпуская пары во впускную трубу. Управление клапаном осуществляется методом широтно-импульсной модуляции. Клапан включается и выключается с частотой 16 раз в секунду (16 Гц). Чем выше расход воздуха, тем больше длительность импульсов включения клапана.

ЭБУ включает клапан продувки адсорбера при выполнении всех следующих условий:

- температура охлаждающей жидкости выше 80°С;

- система управления топливоподачей работает в режиме замкнутого цикла;

- скорость автомобиля превышает 21 км/ч. После включения клапана критерий скорости меняется. Клапан отключится только при снижении скорости до 9 км/ч;

- открытие дроссельной заслонки превышает 2%. Этот фактор в дальнейшем не имеет значения, если он не превышает 99%. При полном открытии дроссельной заслонки ЭБУ отключает клапан продувки адсорбера.

Электроподогреватель впускной трубы установлен в нижней части впускной трубы непосредственно под агрегатом центрального впрыска топлива. Он служит для ускоренного прогрева системы впуска холодного двигателя. Это обеспечивает быстрое испарение топлива и его равномерное распределение по цилиндрам. В результате улучшаются ездовые качества с холодным двигателем и уменьшается токсичность отработавших газов.

ЭБУ включает электроподогреватель 19 с помощью вспомогательного реле 18 при выполнении следующих условий: температура охлаждающей жидкости ниже 65°С, температура воздуха на впуске ниже 80°С и напряжение питания более 8 В. Эти условия имеют место на непрогретом работающем двигателе с минимальной электрической нагрузкой от вспомогательных агрегатов.

ЭБУ выключает электроподогреватель при выполнении следующих условий: температура охлаждающей жидкости выше или равна 65°С, температура воздуха на впуске больше 80°С и напряжение питания меньше 6 В. Эти условия имеют место на прогретом двигателе и/или при высокой электрической нагрузке от вспомогательных агрегатов.
5 Работа системы впрыска топлива автомобиля ВАЗ 21213
Количество топлива, подаваемого форсункой, регулируется электрическим импульсным сигналом от электронного блока управления (ЭБУ). ЭБУ отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсункой (длительность импульса). Для увеличения количества подаваемого топлива длительность импульса увеличивается, а для уменьшения подачи топлива - сокращается.

ЭБУ обладает способностью оценивать результаты своих расчетов и команд, а также запоминать опыт недавней работы и действовать в соответствии с ним. «Самообучение» ЭБУ является непрерывным процессом, продолжающимся в течение всего срока эксплуатации автомобиля.

Обычно к форсунке подается один импульс на один опорный импульс датчика положения коленчатого вала. Топливо подается либо синхронно с опорными импульсами, либо асинхронно, т.е. без совпадения с ними по времени. Синхронный впрыск топлива - наиболее употребительный способ подачи топлива. Асинхронный впрыск топлива применяется, когда необходимо дополнительное топливо при резком открытии дроссельной заслонки, о чем сигнализирует датчик положения дроссельной заслонки. Этот впрыск топлива подобен подаче топлива ускорительным насосом карбюратора при резком открытии дроссельной заслонки.

Независимо от метода впрыска подача топлива определяется состоянием двигателя, т.е. режимом его работы. Эти режимы обеспечиваются ЭБУ и описаны ниже.

Режим пуска двигателя. При включении зажигания ЭБУ включает на 2 сек реле электробензонасоса, и он создает давление в магистрали подачи топлива к агрегату центрального впрыска. ЭБУ учитывает показания от датчиков температуры охлаждающей жидкости и положения дроссельной заслонки и определяет правильное соотношение воздух/топливо для пуска.

После начала вращения коленчатого вала ЭБУ будет работать в пусковом режиме, пока обороты не превысят 420 об/мин, в противном случае возможно переключение на режим «продувки» двигателя. Длительность каждого импульса на форсунку при пуске составляет 4-6 мс в зависимости от температуры охлаждающей жидкости и положения дроссельной заслонки.

Режим продувки двигателя. Если двигатель «залит топливом», он может быть пущен путем полного открытия дроссельной заслонки при одновременном проворачивании коленчатого вала. ЭБУ в этом режиме выдает на форсунку импульсы, соответствующие соотношению воздух/топливо 26:1 (длительность импульса около 2 мсек), что «очищает» залитый двигатель. ЭБУ поддерживает указанную длительность импульсов до тех пор, пока обороты двигателя ниже 420 об/мин, и датчик положения дроссельной заслонки показывает, что она почти полностью открыта (более 85%).

Если дроссельная заслонка удерживается почти полностью открытой при попытке нормального пуска «не залитого» двигателя, то двигатель может не пуститься. Соотношение воздух/топливо 26:1 может быть недостаточным для пуска «незалитого» двигателя, особенно если он не прогрет.

Режим открытого цикла после пуска (без обратной связи). После пуска двигателя (когда обороты более 420 об/мин) ЭБУ будет управлять системой подачи топлива в режиме «открытого цикла». На этом режиме ЭБУ игнорирует сигнал от датчика кислорода и рассчитывает длительность импульса на форсунку по сигналам от датчика положения коленчатого вала (информация о частоте вращения), датчика абсолютного давления воздуха, датчика температуры охлаждающей жидкости и датчика положения дроссельной заслонки.

В режиме открытого цикла рассчитанная длительность импульса впрыска может давать соотношение воздух/топливо, отличающееся от 14,7:1. Примером может служить непрогретое состояние двигателя, т.к. при этом для обеспечения хороших ездовых качеств требуется обогащенная смесь.

Система будет оставаться в режиме открытого цикла до тех пор, пока не будут выполнены все следующие условия:

-сигнал датчика кислорода изменяется, показывая, что он достаточно прогрет для нормальной работы;

- температура охлаждающей жидкости больше 32°С;

- двигатель проработал определенный период времени с момента пуска.

Время может варьироваться от 6 сек до 5 мин в зависимости от температуры охлаждающей жидкости в момент пуска двигателя. В том случае, если температура была ниже 18°С, период составляет 5 мин. Если температура была выше 75°С, задержка составляет 6 сек.

Режим замкнутого цикла после пуска (с обратной связью). На режиме замкнутого цикла ЭБУ сначала рассчитывает длительность импульса на форсунку на основе сигналов от тех же датчиков, что и в режиме открытого цикла. Отличие состоит в том, что в режиме замкнутого цикла ЭБУ еще использует сигнал от датчика кислорода для корректировки и тонкой регулировки расчетного импульса, чтобы точно поддерживать соотношение воздух/топливо на уровне 14,6-14,7:1. Это позволяет каталитическому нейтрализатору работать с максимальной эффективностью.

Режим обогащения при ускорении. ЭБУ следит за резкими изменениями положения дроссельной заслонки (по датчику положения дроссельной заслонки) и за давлением во впускной трубе (по датчику абсолютного давления) и обеспечивает подачу добавочного количества топлива за счет увеличения длительности импульса на форсунку.

Если возросшая потребность в топливе слишком велика из-за резкого открытия дроссельной заслонки, то ЭБУ может добавить асинхронные импульсы на форсунку в промежутках между синхронными, которых при нормальной работе приходится один на каждый опорный импульс от датчика положения коленчатого вала.

Режим мощностного обогащения. ЭБУ следит за сигналом датчика положения дроссельной заслонки и частотой вращения коленчатого вала для определения моментов, в которые водителю необходима максимальная мощность двигателя. Для достижения максимальной мощности требуется обогащенная горючая смесь, и ЭБУ изменяет соотношение воздух/топливо приблизительно до 12:1. На этом режиме сигнал датчика концентрации кислорода игнорируется, т.к. он будет указывать на обогащенность смеси.

Режим обеднения при торможении. При торможении автомобиля с закрытой дроссельной заслонкой могут увеличиваться выбросы в атмосферу токсичных компонентов. Чтобы не допустить этого, электронный блок управления следит за уменьшением угла открытия дроссельной заслонки и величины давления во впускной трубе и своевременно уменьшает количество подаваемого топлива путем сокращения импульса впрыска.

Режим отключения подачи топлива при торможении двигателем. При торможении двигателем с включенной передачей и сцеплением ЭБУ может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение подачи топлива наступает при выполнении всех следующих условий:

1. Температура охлаждающей жидкости выше 44°С.

2. Частота вращения коленчатого вала выше 3150 об/мин.

3. Скорость автомобиля выше 42 км/ч.

4. Дроссельная заслонка закрыта.

5. Сигнал датчика абсолютного давления показывает отсутствие нагрузки двигателя (давление меньше 24 кПа).

6. Таблица, вложенная в постоянную память ЭБУ и сравнивающая частоту вращения коленчатого вала со скоростью автомобиля, определяет включенную передачу коробки передач.

При торможении автомобиля двигателем любое из следующих условий вызовет возобновление импульсов впрыска топлива:

1. Частота вращения коленчатого вала ниже 2100 об/мин.

2. Скорость автомобиля менее 42 км/ч.

3. Дроссельная заслонка открыта не менее, чем на 2%.

4. Сигнал датчика абсолютного давления во впускной трубе показывает наличие нагрузки (давление более 25 кПа).

5. Сцепление выключено. Это может быть определено по быстрому падению частоты вращения коленчатого вала.

Компенсация падения напряжения питания. При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. ЭБУ компенсирует это путем увеличения времени накопления тока в катушке зажигания при падении напряжения питания ниже 12 В, а при падении напряжения ниже 8 В - путем увеличения оборотов холостого хода и длительности импульса впрыска.

Режим отключения подачи топлива. При выключенном зажигании топливо форсункой не подается, чем исключается самовоспламенение смеси при перегретом двигателе. Кроме того, импульсы впрыска топлива не подаются, если ЭБУ не получает опорных сигналов положения коленчатого вала, т.е. это означает, что двигатель не работает.

Отключение подачи топлива также происходит при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной 6500 об/мин. Импульсы впрыска возобновятся после падения частоты вращения коленчатого вала ниже 5850 об/мин.
6 Диагностические коды системы впрыска автомобиля ВАЗ 21213
Семейство автомобилей Chevrolet Niva (ВАЗ 21213) выпускается с контроллером Bosch MP 7.0. Масса ЭСУД берется с блока двигателя, со шпилек М8, находящихся в его нижней левой части, под модулем зажигания.
  1   2   3



Скачать файл (1161.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации