Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по сопромату - файл 1.doc


Лекции по сопромату
скачать (758.5 kb.)

Доступные файлы (1):

1.doc759kb.25.11.2011 13:37скачать

содержание

1.doc

  1   2   3
Лекции по сопромату, теория, практика, задачи.

Содержание:

1. Геометрические характеристики сечений.

1.1. Статический момент сечения.
1.2. Моменты инерции сечения.
1.3. Моменты инерции простых сечений.
1.4. Моменты инерции сложных фигур.
1.5. Главные оси и главные моменты инерции.

2. Кручение.

2.1. Построение эпюр крутящих моментов.
2.2. Определение напряжений в стержнях круглого сечения.
2.3. Деформации и перемещения при кручении валов.
2.4. Построение эпюр угловых перемещений при кручении.
2.5. Кручение тонкостенных стержней замкнутого сечения.
2.6. Статически неопределимые задачи.
2.7. Рациональные формы сечений при кручении.

3. Изгиб. Определение напряжений.

3.1. Общие понятия о деформации изгиба.
3.2. Типы опор балок.
3.3. Определение опорных реакций.
3.4. Правило знаков для изгибающих моментов и поперечных сил.
3.5. Построение эпюр изгибающих моментов и поперечных сил.

4. Изгиб. определение перемещений.

4.1. Дифференциальное уравнение изогнутой оси балки.
4.2. Определение перемещений при нескольких участках нагружения и переменной жесткости балок. Универсальные уравнения.
4.3. Примеры определения перемещений при изгибе графоаналитическим методом и по универсальным уравнениям.
4.4. Теорема о взаимности работ. теорема о взаимности перемещений.
4.5. Определение перемещений методом Мора. Правило Верещагина.
4.6. Расчет статически неопределимых балок.
4.7. Примеры расчета статически неопределимых балок.
4.8. Основы общего метода расчета статически неопределимых систем (основы метода сил).
4.9. Рациональное размещение опор балок.
4.10. Рациональные формы сечения балок.


1. Геометрические характеристики сечений.

1.1. Статический момент сечения.

При дальнейшем изучении вопросов прочности, жесткости и устойчивости нам придется иметь дело с некоторыми геометрическими характеристиками сечения: статическими моментами, моментами инерции, моментами сопротивления.

Статическим моментом Sx сечения (фигуры) относительно какой-либо оси х (рис.1.1) называется геометрическая характеристика, определяемая интегралом вида

          (1.1)

где y - расстояние от элементарной площадки dA до оси x.



Единицей измерения статического момента является единица длины в третьей степени, обычно см3(см в третьей степени). Статический момент может быть положительным, отрицательным и, в частности, равным нулю. Если отождествить площадь с силой, действующей перпендикулярно плоскости чертежа, то интеграл (4.1) можно рассматривать как сумму моментов сил относительно оси х. По известной из теоретической механике теореме о моменте равнодействующей можно написать

          (1.2)

где А - площадь всей фигуры (равнодействующая); ус - расстояние от центра тяжести фигуры до оси х.

Из формулы (1.2) следует формула определения ординаты центра тяжести

ус = Sx/A.           (1.3)

Аналогично, статический момент относительно оси у равен

          (1.4)

Откуда

xс = Sy/A.           (1.5)

Центр тяжести обладает тем свойством, что если тело опереть в этой точке, то оно будет находиться в равновесии.

Из формулы (1.2) и (1.4) следует, что если оси х и у проходят через центр тяжести фигуры, то статический момент относительно этих осей равен нулю. Такие оси называются центральными осями.

Если фигуру можно представить в виде отдельных простых фигур (квадратов, треугольников и т.д.), для которых известны положения центров тяжести, то в этом случае статический момент всей фигуры можно получить как сумму статических моментов этих простых фигурю Это непостредственно следует из свойств определенного интеграла.



Если фигура имеент ось симметрии, то последняя всегда проходит через центр тяжести фигуры, а потому статический момент фигуры относительно оси симметрии всегда равен нулю.

Во многих случаях вместо простых интегралов вида (1.1) и (1.4) удобнее иметь дело с двойными интегралами вида:

          (1.1a)

          (1.4a)

Здесь D - облать интегрирования.

Пример 1.1. Определить положение центра тяжести сечения, показанного на рис. 1.2, а.

Решение. Разбиваем сечение на два прямоугольника. Проводим вспомогательные оси х и у.

По формулам (1.3) и (1.5) получим:



По этим координатам находим точку С - центр тяести сечения. Она лежит на линии, соединяющей точки С1 и С2, ближе к фигуре, имеющей большую площадь.

Пример 1.2. Вычислить ординату центра тяжести половины круга (рис. 1.2, б).

Решение. Пользуемся формулой



Вычисляем числитель, используя уравнение окружности х2 + y2 = R2:



Вычисляем ус



^ 1. Геометрические характеристики сечений.

1.2. Моменты инерции сечения.

Осевым, или экваториальным, моментом инерции сечения называется геометрическая характеристика, численно равная интегралу:
относительно оси х

          (1.6)

относительно оси у



где у - расстояние от элементарной площадки dA до оси х (см. рис. 1.1.); х - расстояние от элементарной площадки dA до до оси у; D - область интегрирования.

Полярным моментом инерции сечения называется геометрическая характеристика, определяемая интегралом вида

          (1.7)

где p - расстояние от площадки dA до точки (полюса) (см. рис. 1.1.) относительно которой вычисляется полярный момент инерции.

Осевой и полярный моменты инерции - величины всегда положительные.

Действительно, независимо от знака координаты произвольной площадки соответствующее слагаемое положительно, так как в него входит квадрат этой координаты.

Центробежным моментом инерции сечения называется геометрическая характеристика, определяемая интегралом вида

          (1.8)

где х,у - расстояния от площадки dA до осей x и y.

Моменты инерции измеряются в единицах длины в четвертой степени (по СИ - м4, хотя для прокатных профилей по ГОСТу - см4).

Центробежный момент инерции может быть положительным, отрицательным и, в частном случае, равным нулю.



Если взаимно перпендикулярные оси х и у или одна из них являются осями симметрии фигуры, то относительно таких осей центробежный момент инерции равен нулю. Действительно, для симметричной фигуры всегда можно выделить два элемента ее площади (рис. 1.3.), которые имеют одинаковые ординаты у и равные, но противоположные по знаку абсциссы х. Составляя сумму произведений xydA для таких элементов, т.е. вычисляя интеграл (1.8.), получают в результате нуль.

Легко доказать, что полярный момент инерции относительно какой-либо точки равен сумме осевых моментов инерции относительно двух взаимно перпендикулярных осей, проходящих через эту точку.

Действительно, из рис. 1.1 видно, что


Подставив это значение p2 в выражение (1.7.) получим



Следовательно, Ip = Ix + Iy.

^ 1. Геометрические характеристики сечений.

1.3. Моменты инерции простых сечений.



1. Прямоугольник (рис. 1.5,а). Вычислим момент инерции сечения относительно оси Х0, проходящей через центр тяжести параллельно основанию.

За dA примем площадь бесконечно тонкого слоя dA = bdy. Тогда

Итак,
          (1.11)

Аналогично, получим
          (1.12)

2. Круг (рис. 1.5,б). Сначала определим полярный момент инерции относительно центра круга


За dA принимаем площадь бесконечно тонкого кольца толщиной dp


тогда


Следовательно,
          (1.13)

Теперь легко найдем Ixo. Действительно, для круга согласно формуле (1.9.), имеем Iр = 2Iхо = 2Iуо, откуда
          (1.14)

2. Кольцо (рис. 1.5,в). Осевой момент инерции в этом случае равен разности моментов инерции внешнего и внутреннего кругов
          (1.15)
где c = d/D.

Аналогично полярный момент инерции
          (1.16)

2. Треугольник (рис. 1.5,г). Определим момент инерции относительно оси x1, параллельной основанию и проходящей через вершину треугольника


За dA примем площадь бесконечно тонкой трапеции KBDE, площадь которой можно считать равной площади прямоугольника:

dA = bydy,

где by - длина прямоугольника.

Легко получить из подобия треугольников

by = yb/h;

тогда
          (1.17)

Определим момент инерции относительно центральной оси; для этого используем формулу (1.10)
          (1.18)

Определим момент инерции относительно оси, проходящей через основание:
          (1.19)

^ 1. Геометрические характеристики сечений.

1.4. Моменты инерции сложных фигур.

Момент инерции сложной фигуры равен сумме моментов инерции ее составных частей
          (1.20)

Это непостредственно следует из свойств определенного инетеграла

где А = А1 + А2 + ...

Таким образом, для вычисления момента инерции сложной фигуры надо разбить ее на ряд простых фигур, вычислить моменты инерции этих фигур и затем просуммировать эти моменты инерции.

Указанная теорема справедлива также и для центробежного момента инерции.

Моменты инерции прокатных сечений (двутавров, швеллеров, уголков и т.д.) приводятся в таблицах сортамента.
^ 1. Геометрические характеристики сечений.

1.5. Главные оси инерции и главные моменты инерции.

При изменении угла величины Ix1, Iy1 и Ix1y1 изменяются. Найдем значение угла, при котором Ix1 и Iy1 имеют экстремальные значения; для этого возьмем от Ix1 или Iy1 первую производную по и преравняем ее нулю:



или



откуда

          (1.28)

Эта формула определяет положение двух осей, относительно одной из которых осевой момент инерции максимален, а относительно другой - минемален.

Такие оси называют главными. Моменты инерции относительно главных осей называются главными моментами инерции.

Значения главных моментов инерции найдем из формул (1.23) и (1.24), подставив в них из формулы (1.28), при этом используем известные формулы тригонометрии для функций двойных углов.

После преобразований получим следующую формулу для определения главных моментов инерции:

          (1.29)

Исследуя вторую производную можно установить, что для данного случая (Ix < Iy) максимальный момент инерции Imax имеет место относительно главной оси, повернутой на угол по отношению к оси х, а минимальный момент инерции - относительно другой, перпендикулярной оси. В большинстве случаев в этом исследовании нет надобности, так как по конфигурации сечений видно, какая из главных осей соответствует максимуму момента инерции.

Главные оси, проходящие через центр тяжести сечения, называются главными центральными осями.

Во многих случаях удается сразу определить положение главных центральных осей. Если фигура имеет ось симметрии, то она является одной из главных центральных осей, вторая проходит через центр тяжести сечения перпендикулярно первой. Сказанное следует из того обстоятельства, что относительно оси симметрии и любой оси, ей перпендикулярной, центробежный момент инерции равен нулю.

В случае если два главных центральных момента инерции сечения равны между собой, то у этого сечения любая центральная ось является главной, и все главные центральные моменты инерции одинаковы (круг, квадрат, шестиугольник, равносторонний шестиугольник).

2. Кручение.

2.1. Построение эпюр крутящих моментов.

Стержень испытывает кручение, если в его поперечных сечениях возникают крутящие моменты, т.е. моменты, лежащие в плоскости сечения. Обычно эти крутящие моменты Тк возникают под действием внешних моментов Т (рис. 2.1). Внешние моменты передаются на вал, как правило, в местах посадки на него шкивов, зубчатых колес и т.п.

Однако и поперечная нагрузка, смещенная относительно оси стержня, вызывает крутящие моменты (рис. 2.2), но в указанном слечае



в поперечных сечениях наряду с крутящими моментами возникают и другие внутренние усилия - поперечные силы и изгибающие моменты.

Вращающиеся и работающие на кручение стержни называют валами.

Вместо аксонометрического изображения будем применять главным образом плоское, как более простое. Внешние скручивающие моменты и внутренние крутящие моменты будем изображать в виде линии с двумя кружочками. В одном из них будем ставить точку, обозначающую начало стрелки (на нас), в другом - крестик, обозначающий конец стрелки, направленный от нас (рис. 2.3).

Для определения крутящих моментов Тк возникающих в сечениях вала под действием внешних скручивающих моментов или поперечной нагрузки, будем применять метод сечений. Сделаем мысленный разрез стержня (рис. 2.3), например по а - а, отбросим одну часть стержня, в данном случае левую, и рассмотрим равновесие оставшейся правой части.



Взаимодействие частей стержня заменим крутящим моментом Тк, уравновешивающим внешний момент Т. Для равновесия отсеченной части необходимо, чтобы алгебраическая сумма всех моментов, действующих на нее, была равна нулю. Отсюда в рассматриваемом случае получим, что Тк = Т. Если на отсеченную часть будет действовать несколько внешних моментов, то, проведя аналогичное рассуждения, можно убедиться, что крутящий момент в сечении численно равен алгебраической сумме внешних скручивающих моментов, действующих по одну сторону от сечения.

Для наглядного представления о характере распределения и величине крутящих моментов по длине стержня строят эпюры (графики) этих моментов. Построение их вполне аналогично построению эпюр продольных сил при растяжении или сжатии. Для построения эпюр необходимо условиться о правиле знаков. Общепринятого правила знаков для крутящих моментов не существует. Может быть принято любое правило знаков. Важно лишь принятое правило выдержать на всем протяжении эпюры.



Примем следующее правило знаков (рис. 2.4). Крутящий момент в сечении а - а считается положительным, когда внешний момент вращает отсеченную часть против часовой стрелки, если смотреть на отсеченную часть со стороны сечения. Если же внешний момент вращает отсеченную часть по часовой стрелке (при взгляде со стороны сечения), то крутящий момент в сечении будем считать отрицательным.

Построение эпюры крутящих моментов поясним на следующем примере (рис. 2.5): рассмотрим вал CD, опирающийся на подшипники B и A и находящийся в равновесии под действием приложенных к нему в сечениях E, K и L моментов. Сделав сечение а - а где-либо на участке DL и рассмотрев равновесие правой отсеченной части, убедимся, что Тк = 0. Если мы сделаем затем сечение b - b в любом месте участка LK, то из условия равновесия правой от сечения части получим Тк = 20 кН * м.

Момент считаем положительным в соответствии с принятым правилом знаков. Сделав сечение с - с на участке KE из условия равновесия правой части, получаем 20 - 30 - Тк = 0. Откуда Тк = -10 кН * м.



Получившаяся эпюра имеет форму двух прямоугольников. Важно заметить, что в местах приложения внешних моментов ординаты эпюры скачкообразно изменяюися на величину приложенного здесь внешнего момента.

Если заданы поперечные нагрузки, вызывающие кручение стержня (рис. 2.2), то предварительно вычисляют внешние скручивающие моменты, создаваемые этими силами. В случае, представленном на рис. 2.2, внешний скручивающий момент от силы F равен T = Fr. После определения внешних моментов определяют внутренние крутящие моменты и строят эпюры, как указано выше.

2. Кручение.

2.2. Определение напряжений в стержнях круглого сечения.

Крутящие моменты, о которых шла речь выше, представляют лишь равнодействующие внутренние усилия. Фактически в поперечном сечении скручиваемого стержня действуют непрерывно распределенные внутренние касательные напряжения, к определению которых теперь и перейдем.

Ознакомимся прежде всего с результатами опытов. Если на поверхность стержня круглого сечения нанести прямоугольную сетку, то после деформации окажется (рис. 2.6):

1) прямоугольная сетка превратится в сетку, состоящую из параллелограммов, что свидетельствует о наличии касательных напряжений в поперечных сечениях бруса, а по закону парности касательных напряжений - и в продольных его сечениях;

2) расстояния между окружностями, например между I и II, не изменятся. Не изменится длина стержня и его диаметр. Естественно допустить, что каждое поперечное сечение поворачивается в своей плоскости на некоторый угол, как жесткое целое (гипотеза плоских и жестких сечений). На основании этой гипотезы можно считать, что радиусы всех поперечных сечений будут поворачиваться (на равные углы), оставаясь прямолинейными.

На основании этого можно принять, что при кручении в поперечных сечениях стержня действуют только касательные напряжения, т.е. напряженное состояние в точках скручиваемого стержня представляет собой чистый сдвиг.



Формулы, полученные на основе этого допущения, подтверждаются опытами. Точка D переместится по дуге DD', точка C - по меньшей дуге CC' (рис. 2.7).



Для установления закона распределения касательных напряжений по поперечному сечению скручиваемого стержня рассмотрим более детально деформации стержня (рис. 2.6 и 2.8). На рис. 2.8 в более крупном масштабе изображена часть стержня между сечениями I и II и показана одна сторона KN элемента KLMN (рис. 2.6).

Угол сдвига для элемента KLMN, лежащего на поверхности стержня, равен отношению отрезка NN' к длине элемента dz (см. рис. 2.8)

          (2.1)

Выделяя мысленно из рассматриваемой части бруса цилиндр произвольного радиуса p и повторяя те же рассуждения, получим угол сдвига для элемента, отстоящего на расстоянии p от оси стержня

          (2.2)

на основании закона Гука при сдвиге имеем

          (2.3)

Как видим, при кручении деформации сдвига и касательные напряжения прямо пропорциональны расстоянию от центра тяжести сечения.

Эпюра касательных напряжений по поперечному сечению стержня представлена на рис. 2.7 справа.

В центре тяжести круглого сечения касательные напряжения равны нулю. Наибольшие касательные напряжения будут в точах сечения, расположенных у поверхности стержня.



Зная закон распределения касательных напряжений, легко определить их величину из учловия, что крутящий момент в сечении представляет собой равнодействующий момент касательных напряжений в сечении:

          (2.4)

где ТрdA - элементарный крутящий момент внутренних сил, действующий по площадке dA.

Подставив в (2.4) значение напряжений из формулы (2.3) получим

          (2.5)

Имея ввиду, что

          (2.6)

где Ip - полярный момент инерции сечения, получим

          (2.7)

Подставляя значение в формулу (2.3), имеем

          (2.8)

В частном случае, когда на стержень действует один внешний скручивающий момент Т (рис. 2.9), из условия равновесия отсеченной части стержня получим Тк = Т.

Таким образом, окончательная формула для определения касательных напряжений при кручении имеет вид

          (2.9)

Как видно из этой формулы, в точках, одинаково удаленных от центра сечения, напряжения одинаковы.

Наибольшие напряжения в точках у контура сечения равны

          (2.10)

где

          (2.11)

Геометрическая характеристика Wp называется полярным моментом сопротивления или моментом сопротивления при кручении.



Для круглого сплошного сечения

          (2.12)

Для колцевого сечения

          (2.13)

где c = d/D.

Условие статической прочности вала при кручении имеет вид

          (2.14)

Здесь - допускаемое касательное напряжение.

При действии статической нагрузки принимают (без учета концентрации напряжений и других факторов, снижающих прочность)



Кроме проверки прочности, по этой формуле можно также подбирать диаметр вала или определять допускаемыйкрутящий момент при известных остальных величинах.

Имея в виду, что для круглого сплошного сечения , получаем

          (2.15)

По этой формуле определяют диаметр вала из условия прочности.

Допускаемый из условия прочности крутящий момент определяют по формуле

          (2.16)

Касательные напряжения действуют не только в поперечных сечениях стержня, но и (как это следует из закона парности касательных напряжений) в продольных сечениях (рис. 2.10).

В наклонных же сечениях стержня действуют и нормальные и касательные напряжения. Они могут быть вычислены.



Опыты показывают, что хрупкие материалы, например чугун, при кручении разрушаются по плоскости (говоря точнее, по винтовой поверхности), наклоненной к оси вала под углом 45 градусов (рис. 2.11, б), т.е. по тем плоскостям, где действуют наибольшие растягивающие напряжения.

Следовательно, при кручении во всех точках стержня, кроме точек его оси (в которых вообще не возникает напряжений), имеет место двухосное напряженное состояние - чистый сдвиг. При кручении материал у поверхности стержня напряжен сильнее, чем материал, расположенный, ближе к оси стержня. Таким образом, напряженное состояние является неоднородным. Если же скручивать тонкостенную трубу, то можно считать, что практически во всех точках ее стенки возникают одинаковые напряжения, т.е. в этом случае напряженное состояние будет однородным. Опыты с кручением таких труб используют обычно для изучения чистого сдвига и, в частности, для установления предела текучести при сдвиге .

2. Кручение.
  1   2   3



Скачать файл (758.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации