Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции - Компьютерная графика для студентов экономических специальностей - файл 1.doc


Лекции - Компьютерная графика для студентов экономических специальностей
скачать (658 kb.)

Доступные файлы (1):

1.doc658kb.26.11.2011 01:08скачать

содержание
Загрузка...

1.doc

1   2   3   4   5   6   7
Реклама MarketGid:
Загрузка...
^

Сравнение стандартов OpenGL и Direct 3D


Главное концептуальное отличие OpenGL от Direct 3D это то, что OpenGL - открытый стандарт, для которого любой производитель может писать свои расширения. Direct 3D - жестко регламентированный стандарт, не допускающий никаких нововведений до появления новой версии. OpenGL - в оригинальном виде это набор функций, которые производитель должен реализовать в драйверах для типа и платы и которые разработчик может использовать в своих программах. Но ради переносимости многие функциональные возможности не введены прямо в стандарт, а выделены в расширение, и любой производитель сам может решить поддержать то или иное расширение. И даже если он не будет поддерживать ни одно расширение, кроме оригинального OpenGL, все равно будет считаться, что он полностью соответствует этому стандарту. Любой член OpenGL написал свои расширения. Есть расширения от Intel, Microsoft и тому подобное. Direct 3D имеет архитектуру, оснащенную на проверке функциональных возможностей, так называемой CAPS TEST. Direct 3D регламентирует все возможности, доступные производителям, которые могут использовать в своих 3D - ускорителях и разработкам ПО, которые используют эти возможности.
Программа (игра) запрашивает у драйвера, какие возможности предоставляет 3D - ускоритель и в зависимости от ответа включаются те или иные эффекты. При этом ни какого расширения не допускается. Microsoft лицензирует программные технологии, например, технологию наложения рельефа у компании TriTech, технологию компрессии текстур у компании S3 и другие. Direct 3D - закрытый стандарт (после публикации он не расширяется)

Прерывания


Концепция прерываний и связанная с ней концепция исключительных ситуаций составляют фундамент конструкции процессоров Intel-80x86. Это очень мощные идеи, позаимствованные от больших ЭВМ. Программно-аппаратное обеспечение, поддерживающее прерывания, дает возможность писать более качественные программы с меньшими затратами сил. Намереваясь управлять видеосистемой или другими устройствами компьютера необходимо понимать принципы работы прерываний. В частности, надо знать о многочисленных возможных конфликтных ситуациях, как их выявить и устранить. Без прерываний невозможно понять работу резидентных программ или драйверов устройств.

Прерывания - это сигналы, заставляющие центральный процессор компьютера приостановить выполнение текущей работы и перейти на выполнение программы, называемой обработчиком прерываний (Interrupt handler). Переход этот осуществляется за малое время с помощью специально разработанных аппаратных средств. Обработчик прерываний определяет причину прерывания, выполняет запланированные действия, после чего возвращает управление приостановленному процессу. Обычно прерывания вызываются событиями внешними по отношению к центральному процессору и требующему немедленных действий. К таким событиям относятся:

  • Завершение операции ввода/вывода;

  • Обнаружение аппаратного сбоя;

  • Катастрофы (отказ питания).

Для обеспечения эффективного обслуживания прерываний большинство современных процессоров поддерживают механизм типов или уровней прерывания. Любому типу обычно соответствует ячейка в памяти, называемая вектором прерывания, который определяет место положения программы обработчика прерываний данного типа. Такая система ускоряет обработку прерываний, т.к. у компьютера есть возможность непосредственной передачи управления соответствующей программе. Отпадает необходимость в центральной программе, которая определяла бы источник прерываний, затрачивая на это драгоценные машинные циклы. Концепция типов прерываний позволяет, к тому же, назначать прерыванию приоритет, чтобы в случае одновременного возникновения нескольких прерываний, наиболее важное могло быть обработано в первую очередь. Процессоры компьютеров, которые поддерживают систему прерываний, должны иметь средства для блокирования прерываний во время выполнения критических участков программы, центральный процессор может блокировать прерывания избирательно или глобально, последнее происходит чаще. Пока идёт обслуживание прерывания, центральный процессор блокирует все остальные прерывания того же или более низких уровней до тех пор, пока программа активного обработчика не завершится. В то же время, если происходит выполнение программы обработчика прерываний и возникает прерывание с более высоким приоритетом, то первая программа будет приостановлена. Семейство процессоров Intel-80x86 поддерживает 256 уровней приоритетных прерываний. Они вызываются тремя типами прерываний:

1. Внутренние аппаратные прерывания;

2. Внешние аппаратные прерывания;

3. Программные прерывания.

Внутренние аппаратные прерывания, например, попытка деления на ноль.

Внешние аппаратные прерывания инициируются контроллерами периферийного оборудования или сопроцессорами.

Когда компьютер выполняет программу, он обычно читает и выполняет одну инструкцию за другой, в том порядке как они размещены в памяти. Все команды, за исключением программных прерываний, отсылают центральный процессор к какой-то другой части той же самой программы. Программа прерывания заставляет процессор приостановить выполнение текущей программы и выполнить программу обработки прерываний (ISR).
^

Программные прерывания


Любая программа может инициировать синхронное программное прерывание с помощью выполнения команды INT. Операционная система MS DOS пользуется для ввода данных со своими модулями и прикладными программами прерывания в диапазоне от 20H до 3FH, например: доступ к диспетчеру функций MS DOS осуществляется с помощью прерывания 21H. Программы BIOS, хранящиеся в ПЗУ и прикладные программы IBM - совместимых компьютеров используют другие прерывания с меньшими или большими прерываниями. Например: прерывание 10H ПЗУ BIOS используется для обслуживания драйвера дисплея; прерывание 42H - используется BIOS для обслуживания дисплея, если установлен видеоадаптер EGA, прерывание 43H - содержит таблицы символов для графических адаптеров EGA, MCGA, VGA.
Замечание.

Программы могут узнавать о внешних событиях путём опроса, но это отнимает много времени, к тому же в программу приходиться встраивать множество команд, чтобы определить что произошло, поэтому для сокращения программ и повышения их производительности используются аппаратные прерывания, подобно дверным звонкам, когда один из таких звонков срабатывает, процессор выясняет номер звонка и реагирует на данное событие. В центральном процессоре есть встроенные средства для слежения за определёнными ситуациями и если такие ситуации возникают, то микропроцессор приостанавливает работу, чтобы не ухудшить ситуацию. Такие прерывающие работу события называются исключительными ситуациями.
^

Устройства ввода, обработки, распознавания, хранения, вывода, отображения информации.



Устройства ввода информации
Главным признаком устройств ввода является преобразование одного вида информации, например, изображений, которые нанесены на бумагу (на фотопленку, фотобумагу) или на любые иные носители — в иной вид информации, а именно в цифровую форму.
Замечание

Это следует особо отметить, т. к. в процессах записи и передачи цифровой информации также выполняются определенные преобразования, например из магнитной формы в электрическую и наоборот, но поскольку при этом не изменяется цифровая форма (и то и другое остается цифровыми кодами), то такие устройства относятся к устройствам хранения (или передачи), а не к устройствам ввода
Клавиатура

Клавиатура (keyboard) по-прежнему является основным устройством для ввода текстовой информации.
Замечание

До недавнего времени клавиатура была единственным способом ввода текстов, а в последние годы значительное развитие получили технологии оптического распознавания текста (OCR, Optical Character Recognition), которые предлагают с достаточно высоким уровнем "распознавать" и конверировать в текстовые коды сканированные изображения страниц. Правда, требуется целый ряд условий (отчетливый печатный текст, достаточно высокое разрешение, только черно-белое штриховое изображение, отсутствие фона). При невыполнении этих и других условий качество распознавания резко снижается, что делает применение таких программ нерентабельным.
В техническом смысле клавиатура — это устройство, являющееся совокупностью механических датчиков, воспринимающих давление на клавиши и замыкающих определенным способом электрическую цепь.

Для нашего курса достаточно представлять себе, что нажатие клавиши или совокупности клавиш (то есть механическое действие) преобразуется в соответствии с принятой кодовой таблицей в цифровой код символа, который сохраняется в текстовых или графических документах.

В специализированных прикладных программах (нетекстовых редакторах), в том числе в любом графическом редакторе, набор текста пользователем осуществляется при включении соответствующего инструмента

^ Мышь и трекболл

Устройство типа мышь (mouse) создавалось как средство свободного, позиционирования курсора на экране с графическим интерфейсом (указатель мыши на экране перемещается синхронно с движением мыши по коврику). С помощью этого устройства можно также осуществлять "ввод" графической информации — это свободное рисование "от руки". Разумеется, мышь не самое оптимальное устройство для рисования, но поскольку им всегда комплектуется компьютерная система, то это самый массовый инструмент художника.

Смотрите далее информацию о графическом планшете.

Вариацией мыши является устройство, названию которого нет эквивалента в русском языке, — трекболл (trackball). Вариация состоит в том, что трекболл легче всего представить как перевернутую мышь, у которой шарик вращается не от трения по поверхности коврика, а от прикосновения пальцев пользователя. Применение трекболла диктуется ограниченным местом или мобильностью, в частности он встраивается в переносные компьютеры (notebook или laptop).

^ Сканер

Сканер (scanner) — это устройство, предназначенное для преобразования изобразительной информации в цифровую форму, точнее в пиксельную графику.

Принцип работы сканера заключается в следующем. Сканируемое изображение освещается белым светом. Отраженный свет через уменьшающую линзу попадает на электронный элемент, называемый прибором с зарядовой связью (ПЗС), который "реагирует" на уровень освещенности уровнем напряжения. Значения напряжения легко преобразуются в цифровую форму и представляются в виде пиксельного изображения.

Для дизайнера сканер представляется необходимейшим устройством. Наиболее широко распространены планшетные сканеры. Как правило, они предназначены для сканирования непрозрачных оригиналов, в том числе "толстых" оригиналов (страницы книг и журналов). Но многие модели позволяют использовать дополнительные модули (слайд-модули), которые обеспечивают сканирование изображений с прозрачных оригиналов. Такой слайд-модуль, имеющий свой источник света, устанавливается на планшетный сканер вместо обычной крышки и превращает сканер в универсальный.

Из профессиональных (и дорогостоящих) типов сканеров можно назвать слайд-сканеры (slide-scanner) и барабанные сканеры (drum scanner). Слайд-сканеры ориентированы на сканирование небольших оригиналов (слайдов), а в барабанных сканерах несколько оригиналов закрепляются на прозрачном барабане, который вращается с большой скоростью. Считывающий элемент располагается очень близко к оригиналу. Данная конструкция обеспечивает наивысшее качество сканирования.

^ Цифровая фотокамера

Самый существенный технологический прогресс в последние годы характерен для цифровых фотокамер (digital camera). Цифровая фототехника по качеству неуклонно приближается к аналоговой (хотя до полной победы еще пройдет немало времени).

Цифровые фотокамеры устроены как обычные фотоаппараты: используются те же объективы, оптика, диафрагмы и другие элементы. Однако вместо пленки световой поток, прошедший через объектив, попадает на светочувствительную матрицу, которая преобразовывает уровень освещенности в цифровую форму и, как сканер, формирует пиксельное изображение, которое может храниться в камере или непосредственно передаваться в компьютер (например, в условиях студийной съемки).

Достоинством цифровых технологий является возможность мгновенного просмотра отснятого материала и отсутствие химических ("мокрых") процессов.

^ Графический планшет

Графические планшеты (graphics tablet) предназначены для тех, кому привычнее и милее кисть и карандаш, нежели неестественные манипуляции с мышью.

Графический планшет, конечно, не является полным аналогом художественного планшета: пользователю все равно приходится смотреть не на

планшет, а на экран монитора, но зато рука получает возможность двигаться свободно (как говорят художники, "пластично") и очень близко к традиционному рисованию.

Разумеется, электронная форма этого инструмента не может не быть насыщенной дополнительными функциями. Например, степень давления (до 1024 уровней) может преобразовываться в толщину штриха, в уровень тона или даже цвета.

^ Электронное перо (stylus), которое входит в состав графического планшета, может служить не только карандашом, но и ластиком и некоторыми другими инструментами, а также заменять мышь для выполнения команд.

Дигитайзер

Дигитайзер (digitizer) первоначально разрабатывался для целей автоматического проектирования и использовался в машиностроении, конструкторских бюро и картографии. Его основное предназначение состоит во введении координат точек, по которым специализированное программное приложение строит векторные контуры. Таким образом, дигитайзеры служат для преобразования перемещения специальной мыши, на которой расположены кнопки, определяющие различные типы точек, в векторные изображения. В начале работы обязательна привязка мыши дигитайзера к началу координат планшета дигитайзера. Это дает возможность точно определять и фиксировать абсолютные координаты.

Определяющей особенностью данного устройства является необходимость достаточно аккуратного и квалифицированного оператора.
^ Устройства обработки, хранения и передачи цифровой информации

Устройством обработки цифровой информации и "мозгом" всей издательской системы является компьютер, который также представляет собой многоуровневую структуру. В нее входят как элементы обработки (процессор), так и несколько типов устройств хранения информации (оперативная память, жесткий диск, видеопамять), а также целый ряд вспомогательных элементов (порты и другие составляющие).
^ Основные параметры компьютера

Работа с графикой, особенно предназначенной для полиграфических целей, требует достаточно значительных параметров используемого компьютера. К сожалению (только для автора), темпы технологического прогресса в этой области необычайно высоки, а сроки написания, подготовки, печатания и распространения книги не поспевают за ними, поэтому мы рассмотрим только принципиальные параметры, которые необходимо понимать каждому дизайнеру, садящемуся за компьютер.

Персональный компьютер — это, прежде всего, системный блок, в котором располагаются все основные узлы компьютера. Для нас важно отметить, что системный блок включает электронные схемы, расположенные на системной (материнской) плате: микропроцессор, сопроцессор, плату памяти, контроллеры устройств (например, клавиатуры и дополнительных устройств), системную магистраль данных (шину данных), которая обеспечивает связь с адаптером монитора, адаптерами портов и контроллерами дисков. "Мозгом" компьютера является микропроцессор — центральное устройство компьютера — электронная схема размером в несколько квадратных сантиметров, которая обеспечивает выполнение всех прикладных программ и управление всеми устройствами. Микропроцессор выполнен в виде сверхбольшой (не по размеру, а по количеству электронных компонентов, число которых достигает нескольких миллионов) интегральной схемы, расположенной на кремниевой пластинке.

Микропроцессоры могут различаться по следующим основным параметрам (не считая, разумеется, цены).

  • ^ Тип (модель) означает поколение микропроцессоров, например существуют процессоры серий, которые обобщенно называются "286", "386", "486", "Pentium".

  • ^ Тактовая частота определяет количество элементарных операций, выполняемых в одну секунду. Она измеряется в герцах (Гц). Тактовая частота служит основным параметром, обеспечивающим производительность процессора. Чем выше тип процессора, тем выше тактовая частота. Одна из первых моделей персональных компьютеров располагала процессором с тактовой частотой 4,77 МГц, а последние процессоры перешагнули барьер в 1 ГГц.

  • Разрядность определяет количество битов, передаваемых одновременно (синхронно) по информационным шинам. Производительность компьютера также напрямую связана с разрядностью. Этот параметр изменяется скачкообразно: 8 разрядов, затем 16, 32 разряда и, наконец, 64-разрядные шины.

Компьютер в целом характеризуется и рядом других параметров, влияющих на его производительность.

  • ^ Оперативная память (или ОЗУ — оперативное запоминающее устройство) определяет объем памяти, которым "распоряжается" процессор. Оперативная память — это быстрая и энергозависимая (при отключении электропитания информация полностью теряется) память, в которой располагается исполняемая в данный момент программа и необходимые для этого данные. Чем выше это значение, тем больший объем информации может быть одновременно доступен для обработки. Объем оперативной памяти за относительно короткий исторический период увеличивался с 640 Кбайт до десятков Мбайт в современных системах (причем даже в самых скромных конфигурациях). Быстродействие (скорость работы) компьютера напрямую зависит и от величины ОЗУ.

  • Видеопамять — это отдельное ОЗУ, расположенное на специализированной видеоплате. Эта память содержит данные, соответствующие текущему изображению на экране.

В современном персональном компьютере реализован принцип открытой архитектуры, который позволяет практически свободно менять состав устройств (модулей). К главной информационной магистрали подключается большое количество периферийных устройств. При этом очень важно, что одни устройства могут заменяться на другие. Не являются исключением даже микропроцессор и микросхемы оперативной памяти.

Аппаратное подключение периферийных устройств к информационной магистрали осуществляется через особый блок, который получил название контроллера (иногда его называют адаптером). А программное управление работой внешних устройств обеспечивается также особыми программами -драйверами, которые, как правило, интегрируются в операционную систему.
Устройства хранения

Оперативная память не может хранить информацию без питания, а если бы и могла, то все равно ограничена по объему, поэтому компьютер снабжается устройствами длительного хранения.

^ Гибкий диск

Гибкий диск (дискета) является самым доступным и дешевым устройством хранения цифровой информации. Практически каждый персональный компьютер снабжается дисководом для дискет. Однако считать их надежным носителем информации не приходится, да и объем их по современным меркам крайне мал. Дискеты 5,25 дюйма уже исчезли из употребления, их место заняли дискеты размером 3,5 дюйма (89 мм) и объемом 1,44 Мбайт. У этих дискет жесткий пластиковый корпус и металлическая защелка

^ Жесткий диск

Жесткий диск — устройство хранения цифровой информации (накопитель, он же винчестер) предназначен для постоянного хранения любой информации, используемой в компьютерных технологиях: модулей операционной системы, программных приложений, в том числе графических редакторов, текстовых, изобразительных и звуковых документов и т. д. Жесткий диск завоевал свое уникальное положение потому, что он обеспечивает наиболее быстрый доступ к данным, высокую скорость чтения и записи данных. Накопитель на жестком диске характеризуется следующими параметрами,

  • ^ Емкость диска, т. е. максимальное количество информации, которое может быть размещено на диске. Этот параметр изменяется чрезвычайно бурно, вместе с тем, никакого объема не бывает достаточно.

  • Быстродействие, т. е. время доступа к информации и скорость чтения и записи информации. Эти параметры соотносятся как время разгона и максимальная скорость автомобиля.

  • Интерфейс, т. е. тип контроллера, с помощью которого жесткий диск присоединяется.

^ Сменный диск

Сменный диск представляет собой вариант гибкого диска повышенного объема. Дисководы, которые "читают" такие диски, приспособлены для транспортировки (имеют малый вес, выделенные адаптеры питания и т. д.)

^ Компактный диск

Компактный диск (CD — compact disk) представляет собой подобие граммофонной пластинки на новом технологическом уровне, поскольку предназначен только для "проигрывания" однажды записанной информации. Компакт-диски используются только для чтения содержащейся на них информации. Компьютерные компакт-диски очень дешевы в производстве и вмещают до 640 Мбайт информации, поэтому сейчас практически большинство дистрибутивов программ, в особенности большие программные пакеты, игры, энциклопедии, справочники, словари и многое другое распространяются только на компакт-дисках.

^ Магнитооптический диск

Магнитооптический диск применяется для резервирования и хранения данных. Пользователь может работать с такими дисками, как с обычными жесткими дисками, только они съемные и являются более медленными. Дис-ководы для магнитооптических дисков выпускаются емкостью от 230 Мбайт до 4,6 Гбайт.

Стриммер

Все предыдущие устройства хранения в основе своей конструкции имеют диск, а следовательно, обеспечивают произвольный доступ к любому сектору информации. Для резервирования больших массивов информации, размещенной на жестких дисках, широко используется стриммер — устройство для записи информации на кассеты с магнитной лентой.

Магнитная лента предполагает только последовательный доступ к информации, поэтому со стриммеров никогда не происходит загрузка программ. Стримеры просты в использовании и обеспечивают самое дешевое хранение данных
^ Устройства вывода информации

Устройства вывода

Если какая бы то ни было информация вводится, обрабатывается и сохраняется, то только для того, чтобы, в конечном счете, быть выведенной в форме, понятной человеку. Исходя из этого, можно сказать, что все устройства вывода (output devices) — это, по сути дела, устройства визуализации, т. е. они выполняют функцию, обратную вводу информации, и обеспечивают преобразование цифровой информации в традиционную (шрифт, рисунок, цвет и т. д.).

Можно выделить два основных класса устройств в зависимости от способа визуализции: средства электронной визуализации и средства материальной визуализации.

К первому типу устройств относится класс мониторов, которые в настоящий момент кажутся неотъемлемой принадлежностью компьютеров.

Ко второму типу устройств принадлежит разнообразный класс принтеров в самом широком значении этого слова, куда можно включить и особый тип выводных устройств — фотонаборные автоматы и полиграфические печатные машины (печатные прессы).
Мониторы

Кажется, что мониторы представляют собой неотъемлемую часть компьютера, однако так было не всегда, кроме того, монитор — это только наиболее заметная часть видеосистемы.

На самом деле видеосистема IBM-совместимого компьютера состоит, как минимум, из двух частей: собственно монитора, который очевиден каждому, и видеоплаты (адаптера), которая располагается в системном блоке компьютера. Такая структура позволяет осуществлять индивидуальное конфигурирование видеосистемы.

Монитор (дисплей) предназначен для вывода на экран текстовой и графической информации. Современное программное обеспечение использует только графический режим. В таком режиме экран состоит из множества точек, каждая из которых обеспечивает определенный диапазон цветов. Количество точек на экране называется разрешающей способностью монитора в одном из стандартных режимов. Следует заметить, что разрешение экрана не зависит от размеров экрана монитора. Эта информация очень важна для Web-дизайнеров.

Монитор с электронно-лучевой трубкой (ЭЛТ) по принципам работы ничем не отличается от обычного телевизора (при наличии тюнера может служить телеприемником), но имеет более высокие параметры, т. к. предназначен для работы на достаточно близком расстоянии и призван служить для задач, связанных с точными работами с изображением и цветом.

Принтеры

Принтеры, как и мониторы, стали почти непременным атрибутом любой компьютерной системы, а уж графической тем более. Принтеры совершенно необходимы для вывода результатов работы, поскольку известно, что монитор не может обеспечить достоверного впечатления.

^ Струйные принтеры

Принцип работы струйных принтеров основан на выбросе капель чернил несколькими способами.

В термальных струйных принтерах в камере создается воздушный пузырек, который выдавливает каплю чернил из сопла. Для обеспечения более высокого качества применяются материалы со специальным покрытием.

В пьезоэлектрических струйных принтерах используется электрическое поле, которым поляризуются кристаллы печатной головки. Можно использовать масляные чернила, обладающие более высоким качеством и надежностью.

Сублимационные принтеры формируют изображение, испаряя краситель с лавсановой пленки. Пары краски затем конденсируются в специальном покрытии бумаги (на базе полистирола). При этом печатается целая строка изображения, т. к. печатающая головка с большим количеством термических элементов равна ширине бумаги. Количество краски определяется временем нагрева печатного элемента, что обеспечивает довольно значительное число градаций тона для каждой краски. После нанесения одной краски лист возвращается к началу, лента перемещается на следующий цвет и т. д. В результате образуется изображение без растровых точек.

Преимуществом сублимационных принтеров является замечательная цветопередача без заметной для глаза структуры изображения, а недостатком — некоторое снижение четкости изображения, невозможность использования обычной бумаги.

В принтерах на твердых чернилах (dry jet) используются твердые чернила на основе воска с цветными пигментами. Они расплавляются нагревателями (поэтому такие принтеры называют также принтерами со сменой фаз) и выбрасываются из сопла-форсунки с помощью пьезоэлектрических устройств. Для получения большего количества градаций используют по два комплекта печатающих головок (стандартной и половинной плотности). Пигмент твердых чернил аналогичен пигменту типографских красок, что позволяет использовать их для цветопробной печати. Достоинствами принтеров с твердыми чернилами являются высокая четкость изображения, передача очень мелких деталей и печать на обычной бумаге, а недостатком — довольно крупная структура растра

Фотопринтеры

Устройство печати, которое обеспечивает вывод цифровых изображений на стандартные фотоматериалы (фотобумагу или фотопленку), называется фотопринтером. Разумеется, что в этом случае требуется соответствующая обработка экспонированного фотоматериала. По сути дела, фотопринтер выступает в роли традиционного фотоувеличителя, которым пользуются фотографы, работающие с оригиналами на фотопленках.

Стойкость изображений, перенесенных на фотоматериалы, выше, чем у отпечатков, выполненных на струйных принтерах.

Экспонирование фотоматериалов выполняется различными способами с применением лазеров или светодиодов, генерирующих красное, зеленое и синее излучения. Возможно использование галогенной лампы и цветных фильтров.

Такие принтеры характеризуются высоким разрешением. Поскольку на каждый пиксел изображения обеспечивается 256 уровней яркости, даже при относительно небольших значениях разрешения (диапазон от 200 до 500 ppi) "полутоновое" разрешение увеличивается до 4000 dpi

^ Лазерные принтеры

Работа монохромных лазерных принтеров основана на электрографическом принципе.

Сначала барабан с фоточувствительным покрытием приобретает поверхностный электрический заряд (покрытие не проводит электрический ток в темноте и заряд сохраняется, как в конденсаторе). Затем луч лазера, который отражается от многогранного вращающегося зеркала, пробегает вдоль поверхности барабана и рисует изображение. Те точки на поверхности барабана, на которые попал свет лазерного луча, теряют электрический заряд (покрытие начинает проводить ток под действием света).

На поверхности барабана образуется скрытый рисунок в виде отсутствия/присутствия точечных электрических зарядов. Затем специальное устройство, содержащее порошок тонера (красителя), частички которого имеют такой же электрический заряд, как исходная поверхность барабана, переносит тонер на барабан (тонер прилипает к тем точкам, которые уже подверглись действию света, а точки барабана, сохранившие заряд, отталкивают тонер). Теперь лист бумаги плотно прижимается к барабану, тонер переносится в основном на бумагу, а лист бумаги проходит через печку, тонер подплавляется и прочно сцепляется с бумагой.

Особенностью электрографического принципа является то, что весь рисунок перед печатью должен быть загружен во внутреннюю память принтера именно в виде пиксельного (битового, bitmap) представления. Для цветных лазерных принтеров требуемый объем внутренней памяти возрастает в три-четыре раза.

^ Фотонаборные автоматы

Фотонаборный автомат (ФНА, в английской терминологии — image setter) предназначен для получения изображения на фотопленке (фотоформе), которая служат промежуточным звеном в создании печатных форм. Фотонаборные автоматы являются самыми высококачественными выводными устройствами, поскольку высокое разрешение сочетается с надежной повторяемостью и жесткостью растровой точки.

Графопостроители

Устройство, позволяющее представлять цифровые изобразительные данные в виде линейных рисунков, графиков, схем, чертежей и карт на бумаге, называют обычно графопостроителем, или плоттером. Компьютер управляет специальным рисующим элементом, который чертит линии по поверхности бумаги (или режущим элементом, который обеспечивает разрезание).

Различают планшетные и барабанные графопостроители. В планшетном пишущий элемент передвигается по поверхности в двух направлениях, в барабанном — только поперек рулона бумаги, а бумага перемещается вперед-назад.

^

Разрешающая способность устройств


Разрешающая способность устройств ввода и вывода определяется наименьшим элементом соответствующего устройства. В большинстве случаев оно задается в элементах на дюйм, но для некоторых устройств удобнее использовать сантиметры или миллиметры. Устройства ввода, такие как мышь и графический планшет имеют разрешающую способность ввода. Фиксированная разрешающая способность определяется точность отслеживания аппаратурой физического перемещения. Для разных устройств эта величина не одинакова и зависит от качества устройств и от вида работ, для которой оно предназначено.

Большинство устройств ввода имеют так же переменную разрешающую способность, зависящую от программного обеспечения, которое интерпретирует сигналы от устройства. Такая программа считывает сигналы, приходящие от устройства ввода и переводит их в эквивалентное перемещение курсора на экране компьютера.

Программу можно настроить так, чтобы перемещение курсора на 1 элемент соответствовало перемещению устройства так же на 1 элемент или чтобы несколько элементов перемещения давали 1 элемент перемещения курсора. Некоторые программы способны динамически менять коэффициент перемещения. В этом случае, чем быстрее будет передвигаться мышь, тем дальше на экране переместится курсор.

^ Разрешающая способность принтера. Разрешающая способность лазерного принтера - это количество лазерных точек, которые принтер может сгенерировать на одном дюйме. Лазерные принтеры обладают широким диапазоном разрешающей способности. Наиболее популярные принтеры имеют 300 и 600 точек на дюйм, сейчас также получают распространение принтеры с разрешающей способностью 1200 точек на дюйм. Принтеры, которые могут печатать более 1200 точек на дюйм, называются фотонаборными автоматами. Они используются в сервисных бюро или издательствах. Лазерные точки, генерируемые этими автоматами так малы, что их размеры обычно измеряются микронами. Однако разрешающая способность фотонаборного автомата часто измеряется по полутоновым пятнам, с помощью которых он имитирует оттенки серого, так как лазерные принтеры могут печатать точки только черного цвета, то они эмулируют оттенки серого, располагая черные точки близко друг к другу. Такой прием основан на особенности человеческого глаза.
^

Графические адаптеры и акселераторы



Видеоадаптеры предназначены для преобразования информации от процессора в видеосигнал для монитора. Видеокарты (видеоплаты) характеризуются разрешением, которое они могут поддерживать, частотой вертикальной и горизонтальной развёртки, количеством одновременно отображаемых цветов и количеством видеостраниц, в соответствующем видеорежиме и дополнительными возможностями.

Первые графические платы позволяли выводить только текст или графику с низким разрешением.

MDA (Monochrome Display Adapter) - максимальное разрешение 80 символов х 25 строк в текстовом режиме; 640x200 точек, 2 цвета (чёрно-белый) в графическом режиме.

CGA (Color Graphics Adapter), разрешение 320x200, 4 цвета и все режимы MDA.

Hercules - монохромный, 720x340, 2 цвета.

EGA (Enhanced Graphics Adapter) - расширенный графический адаптер: 640x350, 16 цветов, 80 символов х 43 строки, поддерживает все режимы MDA и CGA. Размер видеопамяти - 64 и 256 kb.

VGA (Video Graphics Array) - 640x480, 16 цветов, 1 видеостраница; 640x350x16, 2 видеостраницы; 320x200x256, 1 видеостраница. В текстовом режиме 80 символов х 50 строк. Поддерживает все режимы MDA, CGA и EGA. Размер видеопамяти 256 и 512 kb.

SVGA (Super Video Graphics Array). Видеокарта обязательно должна поддерживать режим 800x600x16. При размере видеопамяти в 256kb поддерживаются режимы 640x480x256, 512kb 800x600x256, с 1Mb поддерживаются 800x600x65536 или 1024x786x256; с 2Mb поддерживаются 800x600x16,7 млн. цветов или 1024x786x65536 и т.д.

XGA - разновидность SVGA, должна поддерживать разрешения 1024x768 и 1280x1024.

UltraVGA - также разновидность SVGA, должна поддерживать разрешение 1600x1200.

Для ускорения графики раньше (в эпоху 8086-80386) ставили графический сопроцессор. Одним из распространённых графических сопроцессоров являлся Weitek.

Скорость работы графической платы существенно зависит от используемой шины. ISA (Industry Standard Architecture) самая медленная.

Для ускорения работы с графикой ассоциацией VESA была разработана шина, и соответственно установлен стандарт VLB (Video Local Bus) или VESA. Эта шина использовалась на последних поколениях 80386 и на 80486.

Следующим шагом для ускорения работы видеосистемы и других периферийных устройств стала разработка нового стандарта - PCI (Peripheral Component Interconnect), которая стала использоваться в компьютерах на базе процессоров Pentium и последующих поколениях процессоров.

Улучшенные графические порты AGP 1.x - 4.x были разработаны в связи с недостаточной скоростью при выводе на монитор сложных, реалистических анимированных сцен.

Одним из решений для ускорения работы графической системы стало применение технологии MMX (Multi Media Extension), разработанной фирмой Intel и аналогичных технологий фирм AMD и Cyrix. Дальнейшим развитием расширения возможностей графики, интегрированной в центральный процессор, явилась разработка фирмой AMD технологии 3Dnow!, а затем разработка фирмой Intel технологии SSE (Streaming SIMD Extensions), известной ранее как MMX-2 или KNI (Katmai New Instructions). В Pentium III реализовано 70 новых SIMD-инструкций и полностью поддерживаются все возможности AGP 4.x.
^

Устройство современной графической платы


Графическая плата обычно состоит из чипа графического ускорителя; памяти, представляющей собой фреймовый буфер, ЦАП (цифро-аналоговый преобразователь) или RAMDAC; шинного интерфейса, который обеспечивает обмен данными между видеокартой и процессором. Изображение, которое создаётся графическим ускорителем, управляемым инструкциями от центрального процессора, помещается во фреймовый буфер, затем изображение посылается в ЦАП, там оно преобразуется в аналоговый сигнал RGB (Red Green Blue).

Современные мультимедийные акселераторы построены по той же схеме, но имеют большее число функциональных блоков, так как в их задачу входит преобразование некоторых других видов сигналов, например, YUV в RGB или декодированием MPEG данных и их пересылка на монитор и звуковую плату. Во всех случаях данные в оригинальном формате хранятся как можно дольше, при этом достигается оптимальное использование ресурсов и памяти. Существуют различные способы управления потоками данных, например, Unified Memory Architecture (UMA) является одним из таких методов. UMA архитектура - это способ использования части системной памяти в качестве видеопамяти. Преимущество такого подхода заключается в том, что иногда, например, при сложных вычислениях, системная (оперативная) память может быть увеличена за счёт видеопамяти и наоборот. Типы памяти, используемой в графических платах:

DRAM (Dynamic RAM) - самая дешёвая и медленная память.

EDORAM, SRAM (Synchronous RAM), WRAM (Windows RAM) - двухпортовые типы памяти, позволяющие ЦАП и графическому процессору одновременно обращаться к фреймовому буферу.

VRAM - двухпортовая, самая быстрая.

Отличие EDORAM от обычной заключается в большей производительности за счёт наложения циклов чтения.
^

Устройства визуального отображения


Современные устройства на ЭЛТ снабжены микропроцессором и буферной памятью. Главная ЭВМ загружает информацию, представляющую изображение, в буферную память, а затем микропроцессор просматривает память и воспроизводит изображение с частотой, необходимой для обеспечения зрительного восприятия. Если устройство визуального отображения не связано с ЭВМ (работает автономно), то для записи в буферную память используются любые доступные средства ввода. Содержимое буферной памяти представляет собой команды для микропроцессора.

Обычно микропроцессор подвергает содержимое буферной памяти ряду преобразований и поэтому главная ЭВМ (или пользователь, работающий на автономных системах) не должна "заботиться" о деталях процесса получения отображения и может использовать для создания файла воспроизведения визуального отображения команды "более высокого уровня". Устройства, предназначенные для получения копий изображений, также могут располагать определенной вычислительной мощностью, которая, однако, обычно намного меньше, чем у устройств на ЭЛТ.
^

Основные технические характеристики мониторов


Тип ЭЛТ. Различают трубки четырех основных типов: сферические (чаще всего встречаются в недорогих 14-дюймовых мониторах), прямоугольные с почти плоским экраном (ими оборудованы практически все современные модели с диагональю 15-21 дюйм), трубки типа Trinitron (DiamondTron, SonicTron) и полностью плоская трубка PanaFlat фирмы Panasonic. Отличие трубок Trinitron заключается в том, что их экран представляет собой сегмент цилиндра, тогда как экраны других типов являются сегментами сферы.

Шаг точек/полосок (dot/stripe pitch). Каждый светящийся элемент экрана формируется тремя точками люминофора - красного, зеленого и синего свечения. Расстояние между центрами этих мельчайших элементов называется шагом точек (или шагом полосок для трубок с апертурной решеткой). У современных мониторов шаг точек, как правило, не превышает 0,28 мм, хотя в моделях с диагональю 20-21 дюйм он может быть и больше, так как в этом случае повышенная зернистость изображения не так заметна из-за большой площади экрана.

Тип теневой маски (shadow mask/aperture grille). Теневая маска - это своего рода фильтрующее "сито", расположенное на пути электронов перед люминофором и обеспечивающее точное попадание электронов в нужные точки люминофора. Большинство мониторов оснащено теневыми масками двух типов - дельтовидными масками, представляющими собой перфорированные решетки с треугольным расположением отверстий, и апертурными решетками (щелевыми масками), состоящими из тонких вертикально натянутых металлических нитей, стабилизируемых одной или двумя более толстыми горизонтальными нитями.

Больше распространены кинескопы с дельтовидными масками. Подвергаясь электронной "бомбардировке", маска нагревается и от этого расширяется, что ведет к ухудшению фокусировки изображения. Во избежание подобных термических деформаций большинство современных дельтовидных масок изготавливаются из инвара (от invariabilis (лат.) - неизменный) - специального сплава, обладающего малым коэффициентом температурного расширения, в состав которого входят железо и никель. Апертурные решетки используются только в трубках типа Trinitron.

Кадровая частота (vertical refresh rate). С помощью фокусирующей и отклоняющей систем тонкий электронный луч "пробегает" построчно по экрану из верхнего левого угла в правый нижний. Число "пробегов" луча в единицу времени называется кадровой частотой монитора, или частотой регенерации. Так, кадровая частота в 60 Гц означает 60 перерисовок экрана в секунду. Нужно отметить, что при частоте кадров менее 70 Гц человеческий глаз, как правило, замечает некоторое мерцание экрана; в таком режиме с монитором можно работать не более часа в день, иначе это может отрицательно сказаться на зрении и привести к возникновению головных болей.

Существует два режима работы монитора. Режим с чересстрочным (interlaced) сканированием экрана (при этом кадровая частота обычно составляет 87 Гц). В таких режимах электронный луч рисует изображение за два прохода, т. е. сначала воздействию электронного потока подвергаются только все нечетные строки, а затем - все четные. Чересстрочная развертка чрезвычайно вредна для глаз. Все современные мониторы даже при максимальном разрешении имеют построчную (non-interlaced, NI) кадровую развертку.

Строчная частота (horizontal refresh rate). Эта характеристика определяет скорость перемещения луча вдоль строки. От строчной частоты зависит разрешение по вертикали при фиксированной кадровой частоте. Разумеется, чем более высокую строчную частоту поддерживает монитор, тем качественнее изображение.

^ Ширина полосы пропускания видеосигнала (bandwidth). Данная характеристика определяет максимальное количество элементов изображения, которые могут быть выведены в строке. Чем шире полоса пропускания, тем больше четкость изображения. Ширина полосы пропускания рассчитывается по формуле: W = Н х V x F,

где V - максимальное разрешение по вертикали, H - максимальное разрешение по горизонтали, F - кадровая частота, на которой способен работать монитор при максимальном разрешении (например, в режиме 1024х768 точек при частоте регенерации 60 Гц ширина полосы пропускания составит 47 МГц).

^ Динамическая фокусировка (dynamic focus). Расстояние, которое необходимо преодолеть электрону до центра экрана, несколько меньше, чем расстояние до краев или углов. Вследствие этого по краям экрана пиксел искажается, принимая эллипсоидную форму и увеличиваясь в размерах. Для поддержания одинакового размера электронного пятна по всему полю кинескопа применяется динамическая фокусировка, которая достигается изменением ускоряющего или фокусирующего напряжений системы пушек кинескопа по параболическому закону в соответствии с перемещением электронного луча от центра к краям экрана. Мониторы, соответствующие европейскому стандарту ISO 9241-3, практически не имеют искажений по краям экрана.

^ Антибликовое покрытие (anti-glare coating). Такое покрытие уменьшает отражение внешнего света от стеклянной поверхности экрана. Различают несколько типов покрытия: например, специальная, рассеивающая световой поток, гравировка экрана (etching); более эффективное кремниевое покрытие (silica coating), часто применяемое в стеклянных фильтрах; особые виды устанавливаемых на кинескоп антибликовых панелей (AR panel). Следует, однако, отметить, что первые два способа уменьшения отражающей способности экрана несколько снижают контрастность и ухудшают цветопередачу, поэтому мониторы с блестящими экранами обычно передают цвета ярче.

^ Атистатическое покрытие (antistatic coating). Это покрытие препятствует возникновению на поверхности экрана электростатического заряда, притягивающего пыль и неблагоприятно влияющего на здоровье пользователя
^

Стандарты на мониторы


Выделяют две основные группы стандартов и рекомендаций - по безопасности и эргономике. К первой группе относятся стандарты UL, CSA, DHHS, СЕ, скандинавские SEMRO, DEMKO, NEMKO и FIMKO, а также FCC Class В. Из второй группы наиболее известны МPR-II, ТСО '92 и ТСО'95, ISO 9241-3, ЕРА Energy Star, TUV Ergonomie.

FCC Class В. Этот стандарт разработан канадской Федеральной комиссией по коммуникациям для обеспечения приемлемой защиты окружающей среды от влияния радиопомех в замкнутом пространстве. Оборудование, соответствующее требованиям FCC Class В, не должно мешать работе теле- и радиоаппаратуры. MPR-II. Этот стандарт был выпущен в 1990 г. Шведским национальным департаментом стандартов и утвержден ЕЭС.

MPR-II налагает ограничения на излучения от компьютерных мониторов и промышленной техники, используемой в офисе.

ТСО '92. Рекомендация, разработанная Шведской конфедерацией профсоюзов и Национальным советом индустриального и технического развития Швеции (NUTEK), регламентирует взаимодействие с окружающей средой. Она требует уменьшения электрического и магнитного полей до технически возможного уровня с целью защиты пользователя. Для того чтобы получить сертификат ТСО '92, монитор должен отвечать стандартам низкого излучения (Low Radiation), т. е. иметь низкий уровень электромагнитного поля, обеспечивать автоматическое снижение энергопотребления при долгом не использовании, отвечать европейским стандартам пожарной и электрической безопасности. Как видно из таблицы 3, требования ТСО '92 являются гораздо более жесткими, чем требования MPR-II. В 1995 г. требования ТСО были ужесточены. В настоящее время самые жесткие требования предъявляет стандарт TCO'99.

Таблица 3

Сравнение характеристик стандартов безопасности MPR-II и TCO '92

Диапазон частот

Требования MPR-II (расстояние 0,5 м)

Требования ТСО '92 (расстояние 0,5 м)

 

Электрическое поле

 

Сверхнизкие (5 Гц–2 кГц)

25 В/м

10 В/м

Низкие (2 кГц–40в кГц)

2,5 В/м

1 В/м

 

Магнитное поле

 

Сверхнизкие (5 Гц–2 кГц)

250 нТ

200 нТ

Низкие (2 кГц – 400 кГц)

25 нТ

25 нТ
1   2   3   4   5   6   7



Скачать файл (658 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации