Лекции - курс: Математические методы в психологии. Часть 1
скачать (2067.5 kb.)
Доступные файлы (1):
1.doc | 2068kb. | 16.11.2011 05:07 | ![]() |
содержание
- Смотрите также:
- курс: Математические методы в психологии.Таблицы критических значений. Часть 3 [ лекция ]
- курс: Математические методы в психологии. Часть 2 [ лекция ]
- Математические методы в психологии [ лекция ]
- курс: Методы психологического влияния и техника саморегуляции. Часть 1 [ лекция ]
- Математические методы в психологии (11 решенных задач) [ лабораторная работа ]
- курс: Методы психологического влияния и техника саморегуляции. Часть 3 [ лекция ]
- курс: Методы психологического влияния и техника саморегуляции. Часть 2 [ лекция ]
- курс: Политическая психология. Часть 1 [ лекция ]
- курс: Политическая психология. Часть 3 [ лекция ]
- курс: Политическая психология. Часть 2 [ лекция ]
- по юридической психологии РУДН [ лекция ]
- курс: Организационная психология (Психология организаций). Часть 3 [ документ ]
1.doc
Материалы к курсу
«МАТЕМАТИЧЕСКИЕ МЕТОДЫ В ПСИХОЛОГИИ»
ЧАСТЬ 1
@Преподаватель: Голев Сергей Васильевич, адъюнкт-профессор психологии (доцент).
@Ассистент: Голева Ольга Сергеевна, магистр психологии
(ОМУРЧ «Украина» ХФ. – 2008 г.)
ИПИС ХГУ - 2008 г. )
В лекциях были использованы материалы следующих авторов:
Годфруа Ж. Что такое психология? М.: Мир, 1996. Т 2 . Куликов Л. В. Психологическое исследование: методические рекомендаций по проведению. - СПб., 1995. Немов Р.С. Психология: Экспериментальная педагогическая психология и психодиагностика. - М., 1999.- Т. 3. Практикум по общей экспериментальной психологии / Под ред. А.А. Крылова. - Л. ЛГУ, 1987. Сидоренко Е.В. Методы математической обработки в психологии. –СПб.: ООО «Речь», 2000. -350 с. Шевандрин Н.И. Психодиагностика, коррекция и развитие личности. - М.: Владос, 1998.-С.123. Суходольский Г.В. Математические методы в психологии. – Харьков: Изд-во Гуманитарный Центр, 2004. – 284 с.
Курс «Математические методы в психологии»
(Материалы для самостоятельного изучения студентами)
Лекция № 1
^
Вопросы:
1.Математика и психология
2.Методологические вопросы применения математики в психологии
3.Математическая психология
3.1.Введение
3.2.История развития
3.3.Психологические измерения
3.4.Нетрадиционные методы моделирования
4.Словарь по математическим методам в психологии
5.Список рекомендованной литературы по курсу
Вопрос 1. МАТЕМАТИКА И ПСИХОЛОГИЯ
Существует мнение, неоднократно высказывавшееся крупными учеными прошлого: область знания становится наукой, лишь применяя математику. С этим мнением, возможно, не согласятся многие гуманитарии. А зря: именно математика позволяет количественно сравнивать явления, проверять правильность словесных утверждений и тем самым добираться до истины либо приближаться к ней. Математика делает обозримыми длинные и подчас туманные словесные описания, проясняет и экономит мысль.
Математические методы позволяют обоснованно прогнозировать будущие события, вместо того, чтобы гадать на кофейной гуще или как-либо иначе. В общем, польза от применения математики велика, но и труда на ее освоение требуется много. Однако он окупается сполна.
Психология в своем научном становлении неизбежно должна была пройти и прошла путь математизации, хотя не во всех странах и не в полной мере. Точной даты начала пути математизации, пожалуй, не знает ни одна наука. Однако для психологии в качестве условной даты начата этого пути можно принять 18 апреля
1822 г. Именно тогда в Королевском немецком научном обществе Иоганн Фридрих Гербарт прочел доклад «О возможности и необходимости применять в психологии математику». Основная идея доклада сводилась к упомянутому выше мнению: если психология хочет быть наукой, подобно физике, в ней нужно и можно применять математику.
Спустя два года после этого программного по своей сути доклада ^ издал книгу «Психология как наука, заново основанная на опыте, метафизике и математике». Эта книга примечательна во многих отношениях. Она, на мой взгляд (см. Г.В Суходольский, [8]), явилась первой попыткой создания психологической теории, опирающейся на тот круг явлений, которые непосредственно доступны каждому субъекту, а именно на поток представлений, сменяющих друг друга в сознании. Никаких эмпирических данных о характеристиках этого потока, полученных, подобно физике, экспериментальным путем, тогда не существовало. Поэтому Гербарт в отсутствие этих данных, как он сам писал, должен был придумывать гипотетические модели борьбы всплывающих и исчезающих в сознании представлений. Облекая эти модели в аналитическую форму,например φ =α(l-exp[-βt]) ,где t—время, φ—скорость изменения представлений, α и β — константы, зависящие от опыта, Гербарт, манипулируя числовыми значениями параметров, пытался описать возможные характеристики смены представлений.
По-видимому, И. Ф. Гербарту первому принадлежит мысль о том, что свойства потока сознания — это величины и, следовательно, они в дальнейшем развитии научной психологии подлежат измерению. Ему также принадлежит идея «порога сознания», и он первый употребил выражение «математическая психология».
У И. Ф. Гербарта в Лейпцигском университете нашелся ученик и последователь, позднее ставший профессором философии и математики, — Мориц-Вильгельм Дробиш. Он воспринял, развил и по-своему реализовал программную идею учителя. В словаре Брокгауза и Ефрона о Дробише сказано, что еще в 30-х годах Х1Х века он занимался исследованиями по математике и психологии и публиковался на латинском языке. Но в 1842г. М.В.Дробиш издал в Лейпциге на немецком языке монографию под недвусмысленным названием: «Эмпирическая психология согласно естественнонаучному методу».
На мой взгляд, эта книга М.-В. Дробиша дает замечательный пример первичной формализации знаний в области психологии сознания. Там нет математики в смысле формул, символики и расчетов, но там есть четкая система понятий о характеристиках потока представлений в сознании как взаимосвязанных величинах. Уже в предисловии М.-В. Дробиш написал, что эта книга предваряет другую, уже готовую, — имеется в виду книга по математической психологии. Но поскольку его коллеги-психологи недостаточно подготовлены в математике, постольку он счел необходимым продемонстрировать эмпирическую психологию сначала безо всякой математики, а лишь на твердых естественнонаучных основах.
Не знаю, подействовала ли эта книга на тогдашних философов и богословов, занимавшихся психологией. Скорее всего — нет. Но она, несомненно, подействовала, как и работы И. Ф. Гербарта, на лейпцигских ученых с естественнонаучным образованием.
Лишь через восемь лет, в 1850 г. в Лейпциге вышла в свет вторая основополагающая книга М.-В. Дробиша—«Первоосновы математической психологии». Таким образом, у этой психологической дисциплины тоже есть точная дата появления в науке. Некоторые современные психологи, пишущие в области математической психологии, ухитряются начинать ее развитие с американского журнала, появившегося в 1963 г. Воистину, «все новое — это хорошо забытое старое». Целое столетие до американцев развивалась математическая психология, точнее — математизированная психология. И начало процессу математизации нашей науки положили И. Ф. Гербарт и М.-В. Дробиш.
Надо сказать, что по части новаций математическая психология Дробиша уступает сделанному его учителем — Гербартом. Правда, Дробиш к двум борющимся в сознании представлениям добавил третье, а это сильно усложнило решения. Но главное, по-моему, в другом. Большую часть объема книги составляют примеры численного моделирования. К сожалению, ни современники, ни потомки не поняли и не оценили научного подвига, совершенного М.-В. Дробишем: у него ведь не было компьютера для численного моделирования. А в современной психологии математическое моделирование — это продукт второй половины XX века. В предисловии к нечаевскому переводу гербартианской психологии российский профессор А. И. Введенский, знаменитый своей «психологией без всякой метафизики», весьма пренебрежительно отозвался о попытке Гербарта применять в психологии математику. Но не такова была реакция естествоиспытателей. И психофизики, в частности Теодор Фехнер, и знаменитый Вильгельм Вундт, работавшие в Лейпциге, не могли пройти мимо основополагающих публикаций И.Ф.Гербартаи М.-В. Дробиша. Ведь именно они математически реализовали в психологии идеи Гербарта о психологических величинах, порогах сознания, времени реакций сознания человека, причем реализовали с использованием современной им математики.
Основные методы тогдашней математики—дифференциальное и интегральное исчисления, уравнения сравнительно несложных зависимостей — оказались вполне пригодными для выявления и описания простейших психофизических законов и различных реакций человека Но они не годились для изучения сложных психических явлений и сущностей. Не зря В.Вундт категорически отрицал возможность эмпирической психологии исследовать высшие психические функции. Они оставались, по Вундту, в ведении особой, по сути метафизической, психологии народов.
Математические средства для изучения сложных многомерных объектов, в том числе высших психических функции — интеллекта, способностей, личности, стали создавать англоязычные ученые. Среди других результатов оказалось, что рост потомков как бы стремится возвратиться к среднему росту предков. Появилось понятие «регрессия», и были получены уравнения, выражающие эту зависимость. Был усовершенствован коэффициент, раньше предложенный французом Бравэ. Этот коэффициент количественно выражает соотношение двух изменяющихся переменных, т. е. корреляцию. Теперь этот коэффициент — одно из важнейших средств многомерного анализа данных, дажесимвол сохранил аббревиатурный: малое латинское «г» от английского relation — отношение.
Еще будучи студентом Кембриджа, Фрэнсис Гальтон заметил, что рейтинг успешности сдачи экзаменов по математике,—а это был выпускной экзамен, —- изменяется от нескольких тысяч до немногих сотен баллов. Позднее, связав это с распределением талантов, Гальтон пришел к мысли о том, что специальные испытания позволяют прогнозировать дальнейшие жизненные успехи людей. Так в 80-х гг. XIX века родился гальтоновский метод тестов.
Идею тестов подхватили и развили французы—А. Бит, В. Анри и другие, создавшие первые тесты для селекции социально отсталых детей. Это послужило началом психологической тестологии, что, в свою очередь, повлекло за собой развитие психологических измерений.
Большие массивы числовых результатов измерений по тестам— в баллах, стали объектом многочисленных исследований, в том числе математико-психологических. Особая роль здесь принадлежит английскому инженеру, работавшему в Америке, —Чарльзу Спирмену
Во-первых, Ч. Спирмен, полагавший, что для вычисления корреляции между рядами целочисленных баллов, или рангов, нужна специальная мера, перепробовав разные варианты (я читал его объемную статью в Американском психологическом журнале за 1904 г.), остановился, наконец, на той форме коэффициента корреляции рангов, которая с тех пор носит его имя.
Во-вторых, имея дело с большими массивами числовых результатов по тестам и корреляций между этими результатами, Ч. Спирмен предположил, что эти корреляции вовсе не выражают взаимовлияние результатов, а эксплицируют их совместную изменчивость под влиянием обшей латентной психической причины, или фактора, например интеллекта. Соответственно этому Спирмен предложил теорию «генерального» фактора, определяющего совместную изменчивость переменных тестовых результатов, а также разработал метод выявления этого фактора по корреляционной матрице. Это был первый метод факторного анализа, созданный в психологии и для психологических целей.
У однофакторной теории Ч. Спирмена быстро нашлись оппоненты. Противоположную, многофакторную теорию, объясняющую корреляции, предложил Леон Терстоун. Ему же принадлежит первый метод мультифакторного анализа, основанный на применении линейной алгебры. После Ч. Спирмена и Л. Терстоуна факторный анализ, не только стал одним из важнейших математических методов многомерного анализа данных в психологии, но и вышел далеко за ее пределы, превратился в общенаучный метод анализа, данных.
С конца 20-х гг XX века математические методы все шире проникают в психологию и творчески используются в ней. Интенсивно развивается психологическая теория измерений. На основе аппарата цепей Маркова разрабатываются стохастические модели научения в психологии поведения. Созданный в области биологии Рональдом Фишером дисперсионный анализ становится основным математическим методом в генетической психологии. Математические модели из теории автоматического регулирования и шенноновская теория информации широко применяются в инженерной и общей психологии. В итоге современная научная психология во многих своих отраслях математизирована значительным образом. При этом вновь появляющиеся математические новации нередко заимствуются психологами для своих целей. К примеру, появление алгоритмического языка для задач управления, предложенного А. А. Ляпуновым и Г. А. Шестопалом, почти сразу же бьшо использовано В.Н.Пушкиным для составления алгоритмов деятельности железнодорожного диспетчера.
Должен возникнуть вопрос: какими особыми свойствами обладает математика, если одни и те же математические методы успешно применяются в различных науках. Отвечая на этот вопрос, следует обратиться к предмету математики и ее объектам.
На протяжении многих столетий считалось, что предметом математики является все сущее — природа в широком смысле. Математики древности полагали, что математические формы имеют божественное происхождение. Так, Платон рассматривал геометрические фигуры как идеальные эйдосы, т. е. образы, созданные высшими богами для копирования людьми, конечно, уже не в той совершенной форме. А знаменитый Пифагор видел в числах и определенных числовых сочетаниях предустановленную гармонию небесных сфер.
Религиозное мировоззрение людей веками связывало божественное творение мира с математическими средствами, с помощью которых выражаются законы природы. Глубоко религиозный сэр Исаак Ньютон верил, что «книга природы написана на языке математики», и широко использовал математические методы в своей натуральной философии.
Надо сказать, что, даже отказавшись от веры в божественное творение мира, многие математики продолжали считать природу предметом математики. Нам широко известна формулировка, данная в свое время Ф. Энгельсом: «Предметом математики служат пространственные формы и количественные отношения материального мира». Еще и сегодня можно встретить эту формулировку в учебной литературе. Правда, появились и другие трактовки предмета — как наиболее абстрактных моделей всего сущего. Но здесь, намой взгляд, предмет математики опять-таки сужен до служебной функции — моделирования и снова природы в широком смысле.
Спрашивается, а правильно ли это, отказавшись от идеи творения, по-прежнему считать природу предметом математики? Ведь это не только не последовательно. Дело в том, что один и тот же природный закон можно выразить математически по-разному и в пределах научной точности нельзя доказать, какое из выражений истинно. Примером могут служить логарифмический закон Вебера—Фехнера и степенной закон Стивенса, которые, как показал Ю. М. Забродин, оба выводятся при определенных допущениях из некоего обобщенного психофизического закона. То обстоятельство, что один и тот же математический метод описывает явления из разных наук, тоже свидетельствует не в пользу природы как предмета математики.
Так если не природа, то что же является предметом математики? Мой ответ, несомненно, крайне удивит многих представителей физико-математических наук: предметом математики является ее собственный продукт—те математические объекты, из которых состоит математика как наука.
Математический объект — это продукт человеческой мысли, материализованный хотя бы в одной из пяти основных форм: вербальной, графической, табличной, символической или аналитической. Конечно, древний мыслитель мог найти в природе аналоги математическим объектам — геометрическим формам, числам, как-либо физически воплощенным (прямая тростинка, пять камней и т. п.). Но ведь математическую сущность надо было абстрагировать от материальной природной формы. Лишь после этого она становилась математической, а не физической (биологической и т.д.). И сделать это мог только человек. В длинном ряду поколений — и для практических целей, и ради интереса — люди создавали тот мир математических объектов (включая отношения и операции над объектами, которые тоже суть математические объекты), который называется математикой.
Подобно психологии, математика — это обширная и бурно развивающаяся область знаний. Но она также далеко не однородна: в ее составе выделяются не только многочисленные отрасли, но и «разные математики». Существуют «чистая» и прикладная, «непрерывная» и дискретная, «не конструктивная» и конструктивная, формально-логическая и содержательная математики.
Пожалуй, так же как нет психолога, знающего все отрасли психологии, так нет и математика, знающего все отрасли и направления современной математики. Ведь даже энциклопедии и справочники наряду с классическими, традиционными разделами, общими для всех, содержат различные дополнительные, причем отнюдь не новые разделы математических сведений. Обилие и разнообразие математических теорий и методов порождает проблемы выбора и практического использования математики за ее пределами, в том числе в психологии. Но об этом мы поговорим в последней главе книги.
Абстрактный характер математики, ее независимость от природы в широком смысле и позволяют использовать математические методы в самых разных приложениях. Разумеется, при этом важно, чтобы метод был адекватен объекту, для изучения которого применяется.
Для того чтобы завершить рассмотрение общих вопросов, остановимся на том, что понимается под математическими методами.
В каждой науке, помимо ее предмета, предполагают существующими особые, свойственные данной науке методы. Так, для современной психологии характерным является метод тестов. Используемые в ней методы наблюдения, беседы, эксперимента и т.д., о которых пишется в учебниках, не являются специфичными для психологии и широко используются в других науках. Вообще, за редким исключением, современные научные методы универсальны и применяются везде, где можно.
Аналогично обстоит дело с математикой. И хотя большинство математиков убеждены в специфичности аксиоматического подхода, математической индукции и доказательств, на самом деле все эти методы используются и за пределами математики.
Как я уже отмечал, математические объекты существуют в текстах и мыслях думающих о них людей в одной, нескольких или всех из пяти основных форм — словесной, графической, табличной, символической и аналитической. Это названия объектов, геометрические фигуры или чертежи и графики, различные таблицы, символы объектов, операций и отношений, наконец, различные формулы, которыми выражаются отношения между объектами. Так вот математические методы представляют собой правила или процедуры построения, преобразования, метризации и вычисления математических объектов—всего четыре основных типа методов. Среди каждого из них есть простые и сложные, как, например, суммирование двух чисел и факторизация корреляционной матрицы. Пятый тип — комбинированный из основных — открывает неограниченные возможности конструирования новых математических методов, необходимых для определенных научных приложений.
Заканчивая, отмечу, что многие методы играют служебную роль в самой математике, как, в частности, доказательства теорем или определенные строгости изложения, так приветствуемые математиками. Для практических приложений математических методов за пределами математики, в том числе в психологии, математические строгости и тонкости не нужны: они затеняют суть результатов, в которых математика должна находиться на заднем плане, как, например, логарифмическая основа психофизического закона Вебера—Фехнера.
^
Маститые психологи, имеющие базовое гуманитарное образование, критически относятся к применению математических методов в психологии, сомневаются в их полезности. Их аргументы таковы: математические методы создавались в науках, объекты которых не сравнимы по сложности с психологическими объектами; психология слишком специфична, что бы в ней была польза от математики.
Первый аргумент в определенной мере справедлив. Поэтому именно в психологии создавались математические методы, специально рассчитанные на сложные объекты, например, корреляционный и факторный анализы. Но второй аргумент явно ошибочен: психология не специфичнее многих других наук, где применяется математика. И сама история психологии подтверждает это. Вспомним идеи И. Гербарта и М.-В. Дробиша, да и весь путь развития современной психологии. Он подтверждает расхожую истину: область знания становится наукой, когда начинает применять математику.
^ Об индивидных, субъектных и личностных проявленияхиндивидуальнойтревожности//Ананьевскиечтения - 2003. СПб., Изд-во СПбГУ. С. 58-59.
В психологии всегда было много мигрантов из естественных наук, а в XX веке — из наук технических. Неплохо подготовленные в области математики мигранты, естественно, применяли доступную им математику в новой психологической области, не достаточно учитывая существенную психологическую специфику, которая, конечно, существует в психологии, как и в любой науке. В результате в психологических отраслях появилась масса математических моделей, малоадекватных в содержательном отношении. Особенно это относится к психометрии и инженерной психологии, но и к общей, социальной и другим «популярным» психологическим отраслям.
Малоадекватные математические формализмы отталкивают от себя гуманитарно ориентированных психологов и подрывают доверие к математическим методам. А между тем мигранты в психологию из естественных и технических наук уверены в необходимости математизации психологии вплоть до такого уровня, когда само существо психики будет выражено математически. При этом считается, что в математике достаточно методов для психологического использования и психологам нужно только выучить математику.
В основе этих воззрений лежит ошибочная, как я считаю, мысль о всесилии математики, о ее способности, так сказать, вооружившись пером и бумагой, открывать новые тайны, подобно тому, как в физике был предсказан позитрон.
При всем моем уважении и даже любви к математическим методам, должен сказать, что математика не всесильна; она является одной из наук, но, благодаря абстрактности своих объектов, легко и с пользой применимой в других науках. Действительно , в любой науке полезен расчет, и важно представлять закономерности в лаконичной символической форме, использовать наглядные схемы и чертежи. Однако, применение математических методов за пределами математики должно приводить к утрате математической специфики.
Идущая из глубины веков вера в то, что «книга природы написана на языке математики», идущем от господа Бога — создавшего всего и вся, привела к тому, что и в языке и в мышлении ученых закрепились выражения «математические модели», «математические методы» в экономике, биологии, психологии, физике, но как могут существовать математические модели в физике? Ведь в ней должны быть и, конечно, существуют физические модели, построенные с помощью математики. И создают их физики, владеющие математикой, или математики, владеющие физикой.
Короче говоря, в математической физике должны быть математико-физические модели и методы, а в математической психологии — математико-психологические. Иначе, в традиционном варианте «математических моделей» имеет место математический редукционизм.
Редукционизм вообще является одной из основ математической культуры: всегда сводить неизвестную, новую задачу к известной и решать ее апробированными методами. Именно математический редукционизм служит причиной появления малоадекватных моделей в психологии и других науках.
Еще недавно среди наших психологов было распространенным мнение: психолога должны формулировать задачи для математиков, которые смогут их корректно решить. Это мнение явно ошибочное: решать специфические задачи могут лишь специалисты, но являются ли таковыми в психологии математики, — нет, конечно. Рискну утверждать, что математикам также трудно решать психологические задачи, как психологам — задачи математические: ведь надо изучать ту научную область, к которой задача относится, а на это годы нужны и еще интерес к «чужой» научной области, в которой иные критерии научных достижений. Так, математику для научной стратификации необходимо совершать «математические» открытия—доказывать новые теоремы. Причем же здесь психологические задачи? Их должны решать сами психологи, которым надо научиться использовать подходящие математические методы. Таким образом, снова возвращаемся к вопросу об адекватности и полезности математических методов в психологии.
Не только в психологии, но в любой науке, полезность математики состоит в том, что ее методы обеспечивают возможность количественных сравнений, лаконичные символические интерпретации, обоснованность прогнозов и решений, экспликацию правил управления. Но все это — при условии адекватности применяемых математических методов.
Адекватность — это соответствие: метод должен соответствовать содержанию, причем соответствовать в том смысле, что бы отображение не математического содержания математическими средствами было гомоморфным. К примеру, обычные множества не адекватны для описания процессов познания: в них не отображается частота необходимых повторений. Адекватными здесь будут лишь мультимножества. Читатель, познакомившийся с содержанием текста предыдущих глав, легко поймет, что рассмотренные математические методы в целом адекватны для психологических приложений, а в деталях адекватность нужно оценивать конкретно.
Общее правило таково: если психологический объект характеризуется конечным набором свойств, то адекватный метод отобразит весь набор, а если, что-то не отобразится, то и адекватность снижается. Таким образом, мерой адекватности служит количество отображаемых методом содержательных свойств. При этом важны два обстоятельства: наличие конкурирующих, эквивалентных по возможности применения, методов и возможность взаимных вербально-символических, табличных, графических и аналитических отображений результатов.
Среди конкурирующих методов следует выбирать наиболее простые, либо понятные, и желательно проверять результат разными методами. Например, дисперсионным анализом и математическим планированием эксперимента можно обоснованно выявлять зависимости в науке.
Не следует ограничиваться одной-двумя из математических форм, нужно, по видимости (а она всегда существует) использовать их все, создавая определенную избыточность в математическом описании результатов.
Важнейшим условием конкретного применения математических методов является, — помимо их понимания, разумеется, — содержательная и формальная интерпретация. В психологии следует различать и уметь выполнять четыре вида интерпретаций; психолого-психологические, психолого-математические, математико-математические и (обратные) математико-психологические. Они организованы в цикл.
Любая научно-исследовательская или практическая задача в психологии сначала подвергается психолого-психологическим интерпретациям, посредством которых от теоретических воззрений переходят к операционально определяемым понятиям и эмпирическим процедурам. Затем наступает черед психолого-математических интерпретаций, с помощью которых выбираются и реализуются математические методы эмпирического исследования. Полученные данные надо обработать и в процессе обработки осуществляются математико-математические интерпретации. Наконец, результаты обработки следует интерпретировать содержательно, т. е. выполнить математико-психологическую интерпретацию уровней значимости, аппроксимированных зависимостей и т. д. Цикл замкнулся, и либо задача решена и можно переходить к другой, либо необходимо уточнить предыдущую и повторить исследование. Такова логика действий в применении математики, — и не только в психологии, но и в других науках.
И последнее. Нельзя досконально изучить все рассмотренные в этой книге математические методы впрок, раз и навсегда. Для овладения любым достаточно сложным методам нужны многие десятки, а то и сотни обучающих попыток. Но познакомится с методами и попытаться их понять в общем и целом нужно впрок, а с деталями можно познакомится в дальнейшем, по мере надобности.
Вопрос 3. Математическая психология
3.1. Введение
Математическая психология — это раздел теоретической психологии, использующий для построения теорий и моделей математический аппарат.
«В рамках математической психологии должен осуществляться принцип абстрактно-аналитического исследования, в котором изучается не конкретное содержание субъективных моделей действительности, а общие формы и закономерности психической деятельности» [Крылов, 1995].
Объект математической психологии: естественные системы, обладающие психическими свойствами; содержательные психологические теории и математические модели таких систем. Предмет — разработка и применение формального аппарата для адекватного моделирования систем, обладающих психическими свойствами. Метод — математическое моделирование.
Процесс математизации психологии начался с момента ее выделения в экспериментальную дисциплину. Этот процесс проходит ряд этапов.
Первый — применение математических методов для анализа и обработки результатов экспериментального исследования, а также выведение простых законов (конец XIX в. — начало XX в.). Это время разработки закона научения, психофизического закона, метода факторного анализа.
Второй (40-50-е гг.) — создание моделей психических процессов и поведения человека с использованием ранее разработанного математического аппарата.
Третий (60-е гг. по настоящее время) — выделение математической психологии в отдельную дисциплину, основная цель которой — разработка математического аппарата для моделирования психических процессов и анализа данных психологического эксперимента.
Четвертый этап еще не наступил. Этот период должен характеризоваться становлением психологии теоретической и отмиранием — математической.
Часто математическую психологию отождествляют с математическими методами, что является ошибочным. Математическая психология и математические методы соотносятся друг с другом так же, как теоретическая и экспериментальная психология.
3.2. История развития
Термин «математическая психология» стал применяться с появлением в 1963 г. в США «Руководства по математической психологии» [Handbook, 1963]. В эти же годы здесь начинает издаваться журнал «Journal of Mathematical Psychology».
Проведенный в лаборатории математической психологии ИП РАН анализ работ позволил выделить основные тенденции развития математической психологии.
В 60—70-е гг. получили широкое распространение работы по моделированию обучения, памяти, обнаружения сигналов, поведения, принятия решений. Для их разработки использовался математический аппарат вероятностных процессов, теории игр, теории полезности и др. Было завершено создание математической теории обучения. Наиболее известны модели Р. Буша, Ф. Мостеллера, Г. Бауэра, В. Эс-теса, Р. Аткинсона. (В последующие годы наблюдается снижение количества работ по данной проблематике.) Появляется множество математических моделей по психофизике, например С. Стивенса, Д. Экмана, Ю. Забродина, Дж. Светса, Д. Грина, М. Михайлевской, Р. Льюса (см. разд. 3.1). В работах по моделированию группового и индивидуального поведения, в том числе в ситуации неопределенности, использовались теории полезности, игр, риска и стохастические процессы. Это модели Дж. Неймана, М. Цетлина, В. Крылова, А. Тверского, Р. Льюса. В рассматриваемый период создавались глобальные математические модели основных психических процессов.
В период до 80-х гг. появляются первые работы по психологическим измерениям: осуществляется разработка методов факторного анализа, аксиоматики и моделей измерения, предлагаются различные классификации шкал, ведется работа над созданием методов классификации и геометрического представления данных,
строятся модели, основанные на лингвистической переменной (Л. Заде).
В 80-е гг. особое внимание уделяется уточнению и развитию моделей, связанных с разработкой аксиоматики различных теорий.
В психофизике это: современная теория обнаружения сигналов (Д. Свете, Д. Грин), структуры сенсорных пространств (Ю. Забродин, Ч. Измайлов), случайных блужданий (Р. Льюс, 1986), различения Линка и др.
В области моделирования группового и индивидуального поведения: модель решения и действия в психомоторных актах (Г. Коренев, 1980), модель целенаправленной системы (Г. Коренев), «деревья» предпочтения А. Тверского, модели системы знаний (Дж. Грино), вероятностная модель научения (А. Дрынков, 1985), модель поведения в диадном взаимодействии (Т. Савченко, 1986) моделирование процессов поиска и извлечения информации из памяти (Р. Шифрин, 1974), моделирование стратегий принятия решений в процессе обучения (В. Венда, 1982) и др.
В теории измерения:
• множество моделей многомерного шкалирования (МШ), в которых прослеживается тенденция к снижению точности описания сложных систем — модели предпочтения, неметрическое шкалирование, шкалирование в псевдоевклидовом пространстве, МШ на «размытых» множествах (Р. Шепард, К. Кумбс, Д. Краскал, В. Крылов, Г Головина, А. Дрынков);
модели классификации: иерархические, дендритные, на «размытых» множествах (А. Дрынков, Т. Савченко, В. Плюта);
модели конфирматорного анализа, позволяющие формировать культуру проведения экспериментального исследования;
применение математичеекого моделирования в психодиагностике (А. Анастази, П. Клайн, Д. Кендалл, В. Дружинин)
В 90-х гг. глобальные математические модели психических процессов практически не разрабатываются, однако значительно возрастает количество работ по уточнению и дополнению существующих моделей, продолжает интенсивно развиваться теория измерений, теория конструирования тестов; разрабатываются новые шкалы, более адеквантые реальности (Д. Льюс, П. Саппес, А. Тверски, А. Марли); широко внедряется в психологию синергетический подход к моделированию.
Если в 70-е гг. работы по математической психологии в основном появлялись в США, то в 80-е наблюдается бурный рост ее развития в России, в настоящее время, к сожалению, заметно снизившийся из-за недостаточного финансирования фундаментальной науки.
Наиболее значимые модели появились в 70-е-начале 80-х гг., далее они дополнялись и уточнялись. В 80-е гг. интенсивно развивалась теория измерений. Эта работа продолжается и сегодня. Особенно важно, что многие методы многомерного анализа получили широкое применение в экспериментальных исследованиях; появляется множество специально ориентированных на психологов программ анализа данных психологического тестирования.
В США большое внимание уделяется чисто математическим вопросам моделирования. В России же, наоборот, математические модели зачастую не обладают достаточной строгостью, что приводит к неадекватному описанию реальности.
Математические модели в психологии. В математической психологии принято выделять два направления: математические модели и математические методы. Мы нарушили эту традицию, так как считаем, что нет необходимости выделять отдельно методы анализа данных психологического эксперимента. Они являются средством построения моделей: классификации, латентных структур, семантических пространств и др.
3.3. Психологические измерения
В основе применения математических методов и моделей в любой науке лежит измерение. В психологии объектами измерения являются свойства системы психики или ее подсистем, таких, как восприятие, память, направленность личности, способности и т.д. Измерение — это приписывание объектам числовых значений, отражающих меру наличия свойства у данного объекта.
^
1. Существование семейства шкал, допускающих различные группы преобразований.
Сильное влияние процедуры измерения на значение измеряемой величины.
Многомерность измеряемых психологических величин, т. е. существенная их зависимость от большого числа параметров.
В психологических измерениях используются различные классификации типов шкал. Тип шкалы определяется природой измеряемой величины.
Общая концепция измерения впервые была в достаточно развитом виде сформулирована Д. Скоттом и П. Суппесом. Дальнейшее развитие она получила в работах П. Суппеса и Дж. Зиннеса, Д. Льюса и Е. Галантера и др. В последнее время общая теория измерений интенсивно развивается И. Пфанцаглем, а также Д. Льюсом и Л. Неренсом. В этой концепции широко используется понятие реляционной системы (системы с отношениями), введенное А. Тверским.
С. Стивенс пытался создать свою систему шкальных типов, основываясь на понятиях эмпирической операции и математической структуры. Он различает четыре вида шкал: наименований, порядка, интервалов и отношений.
Типы шкал обусловливаются видом функции f, осуществляющей допустимые преобразования ψ = f (φ).
*Если f — монотонная функция, то соответствующая шкала является шкалой порядка;
*если f — линейная функция, то соответствующая шкала — это шкала интервалов;
*если f определяет преобразование подобия, то соответствующая шкала — шкала отношений.
К. Кумбс расширяет классификацию Стивенса введением шкал, частично упорядоченных и сложных (комбинированных из двух частей: объектов и расстояний). Он различает три основных типа неметрических шкал и девять типов сложных, однако если рассматривать лишь сами объекты, то комбинированные шкалы тождественны номинальным.
Классификация Торгенсона, как и Кумбса, опирается на предположение о том, что шкальные типы следует трактовать как формальные математические модели. Его классификация включает следующие типы шкал: порядковые — без начала отсчета и с началом отсчета, интервальные — без начала отсчета и с началом отсчета.
Суппес и Зиннес переосмыслили теорию классификации Стивенса в терминах классов числового приписывания: для дифференциации шкал существенны лишь свойства числовых приписываний с точки зрения допустимых преобразований, но никак не эмпирические операции. К. Берка (1987) считает, что вполне достаточно различать метрические и неметрические типы шкал, которые представляют два эмпирико-математических метода шкалирования и измерения. Таким образом, интервальную шкалу можно трактовать как специфический вариант шкалы порядка, т. е. шкалы неметрического типа.
Американские авторы в публикациях 90-х гг. (см. журнал «Journal of Mathematical Psychology») описывают множество работ по применению теории измерений к разработке шкал для ранжирования и выбора альтернатив (В. Malakooty,1991), для измерения нетранзитивного аддитивного объединения (P. Fishburn, 1991) и экспериментов с использованием попарного сравнения по шкалам отношений (I. Basak, 1992). Полемика вокруг основ измерений не прекращается.
Анализ существующих методов прямых оценок различия показал, что шкалы, с которыми работает испытуемый, не соответствуют природе психологического механизма, лежащего в основе оценивания. Поэтому был предложен подход, основанный на «нечетких» множествах (Л. Заде, 1974). Суть его в том , что используются так называемые «лингвистические» переменные вместо числовых переменных или в дополнение к ним; отношения между переменными описываются «нечеткими» («размытыми») высказываниями, а сложные отношения описываются «нечеткими» алгоритмами.
Первая — создание теории однородных сред, элементами которых являются устройства, подобные нейронам.
Вторая — компьютерная графика, помогающая решать задачи с помощью актуализации образного мышления. Когнитивная интерактивная компьютерная графика является средством воздействия на правополушарное мышление человека в процессе научного творчества.
Третья — специалисты различных направлений в области ИИ считают важным развитие работ, касающихся представлений знаний и манипулирования ими (экспертные системы).
4.4.Нетрадиционные методы моделирования
Моделирование на «размытых» множествах
Нетрадиционный подход к моделированию связан с приписыванием элементу некоторой числовой оценки, которая не может объясняться объективной или субъективной вероятностью, а трактуется как степень принадлежности элемента к тому или иному множеству. Множество таких элементов называется «нечетким», или «размытым» множеством.
Каждое слово х естественного языка можно рассматривать как сжатое описание нечеткого подмножества М(х) полного множества области рассуждений U, где М(х) есть значение х. В этом смысле весь язык как целое рассматривается в качестве системы, в соответствии с которой нечетким подмножествам множества U приписываются элементарные или составные символы (т. е. слова, группы слов и предложения). Так, цвет объекта как некоторую переменную, значения этой переменной (красный, синий, желтый, зеленый и т. д.) можно интерпретировать как символы нечетких подмножеств полного множества всех объектов. В этом смысле цвет является нечеткой переменной, т. е. переменной, значениями которой являются символы нечетких множеств. Если значения переменных — это предложения в некотором специальном языке, то в данном случае соответствующие переменные называются лингвистическими (Л. Заде, Ю. Шрейдер).
Синергетика в психологии
Еще одна альтернатива традиционному математическому аппарату — синергетический подход, в котором математическая идеализация проявляется чувствительностью к начальным условиям и непредсказуемостью исхода для системы. Поведение можно описать с помощью апериодических и поэтому непредсказуемых временных рядов, не ограничиваясь при моделировании стохастическими процессами. Беспорядок в обществе может предшествовать появлению новой структуры, в то время как стохастические системы имеют низкую вероятность порождения интересных структур. Именно апериодические решения детерминированных уравнений, описывающих самоорганизующиеся структуры, помогут прийти к пониманию психологических механизмов самоорганизации (Фриман, 1992). В этих работах разум рассматривается как «странный аттрактор», управляемый уравнением сознания. Математически «странный аттрактор» — это множество точек, к которому приближается траектория после затухания переходных процессов.
В основе большинства традиционных моделей психотерапии лежит концепция равновесия. Согласно синергетическому подходу, разум является нелинейной системой, которая при далеких от равновесия условиях превращается в части сложных аттракторов, а равновесие — лишь предельный случай. Этот тезис развивают теоретики психотерапии, выбирая тот или иной аспект теории хаоса. Так, например, выделяется феномен хаотического в психофизиологической саморегуляции (Stephen, Franes, 1992) и обнаруживаются аттракторы в паттернах семейного взаимодействия (L. Chamber, 1991).
^
ВЫБОРКА — группа людей, на которой проводится исследование. В противоположность в. генеральной совокупностью называют множество людей, на которых распространяются результаты исследования. В. является частью генеральной совокупности.
^ такая выборка (см.), которая произведена по правилам, т. е. отражает специфику генеральной совокупности как по составу, так и по индивидуальным характеристикам включенных в нее людей.
^ — дисперсия (см.) или разброс данных, характеризующих выборку (см.).
ВЫБОРОЧНОЕ ОТКЛОНЕНИЕ — корень квадратный из величины дисперсии (см.). Определяется по формуле:
^ (в математической статистике) — упорядоченное расположение измеренных в эксперименте или в результате проведенной психодиагностики величин от наименьшей к наибольшей, сопровождаемое данными о каждой величине и частоте ее встречаемости в выборке (см.). В. р. нередко представляется в виде соответствующего графика.
^ — среднее значение некоторой величины, определенное по имеющейся выборке ее частных значений. Устанавливается по формуле:
ГИПОТЕЗА — научно обоснованное, вполне вероятное предположение, требующее, однако, специального доказательств для своего окончательного утверждения в качестве теоретического положения Г провернется на истинность в экспериментальном или эмпирическом научном исследовании.
ГИСТОГРАММА — специальное графическое изображение распределения нескольких дискретных величин в выборке (см.). Представляет собой совокупность расположенных рядом друг с другом и вытянутых вверх прямоугольников или прямоугольных в сечении столбиков, высота которых пропорциональна частоте встречаемости каждого из значений переменной в выборке.
^ — математико-статистический показатель разброса экспериментальных или психодиагностических данных, характеризующий среднюю величину отклонения индивидуальных показателей от среднего значения переменной по выборке. Д. определяется по формуле:
^ — совокупность методов математико-статистического анализа, объектом рассмотрения которых являются дисперсии (см.) случайных величин. Д. а. позволяет оценивать и сравнивать между собой дисперсии различных выборок, отвечая на вопросы о том, каковы эти дисперсии, являются они одинаковыми или разными и др.
ИНТЕРВАЛ (в математической статистике) — упорядоченный набор величин, находящихся в заданных числовых границах и характеризуемых их средней величиной (см.).
^ — метод математико-статистического анализа, связанный с вычислением и изучением коэффициентов корреляций (см.) между переменными.
^ - математико-статистический показатель связи или зависимости, существующей между переменными величинами. Изменяется в пределах от —1 (абсолютная обратно пропорциональная зависимость) через 0 (отсутствие какой-либо зависимости) до +1 (абсолютная прямо пропорциональная зависимость).
^ — математико-статистический критерий, пользуясь которым можно судить о сходстве и различиях в дисперсиях (см.) случайных величин.
МАТЕМАТИЧЕСКАЯ СТАТИСТИКА - область современной математики, основанная на теории вероятностей (см.) и занятая поиском законов изменения и способов измерения случайных величин, обоснованием методов расчетов, производимых с такими величинами.
МЕДИАНА — величина, разделяющая ряд упорядоченных значении на две равные по количеству входящих в них значений половины, так что справа и слева от м. оказываются одинаковые количества значений.
^ методы математической статистики (см.), предполагающие анализ, обобщение и сравнение между собой данных, полученных на некоторой выборке испытуемых или на нескольких разных выборках.
МОДА (в математической статистике) — числовое значение изучаемого признака, наиболее часто встречающееся в изученной выборке (см.).
^ тот объект, на котором проводится научное исследование. Объектом психологического исследования, например, является человек или группа людей.
^ — класс или классы объектов, явлений и т. п., к которым относится или которые включает в себя данное понятие.
ОПЕРАЦИОНАЛИЗАЦИЯ — требование, предъявляемое к научным понятиям. О. понятия предполагает указание на конкретные операции или действия, выполнив которые человек может убедиться в том, что данное понятие не является пустым, т. е. в том, что включенные в него явления действительно существуют.
^ — метод математической статистики, позволяющий свести множество частных зависимостей между отдельными значениями переменных к их непрерывной линейной зависимости. В результате р. а. получают прямую линию, которая наилучшим образом иллюстрирует (аппроксимирует — говоря математическим языком) общий характер зависимости между изучаемыми переменными величинами.
СТАТИСТИКА — термин, имеющий два основных значения:
а) область математических или практических знаний, в которой представлены способы статистического анализа или обобщенные количественные данные о чем-либо;
б) частный показатель, с помощью которого эти данные представляются.
^ — раздел современной математики, рассматривающий случайные величины, а также законы, характеризующие множества и отношения случайных величин.
^ способность данной методики достаточно точно оценивать степень развития у человека тех психологических качеств, для диагностики которых она предназначена. Чем больше различных градаций уровня развития данных качеств позволяет получать методика, тем она точнее.
ФАКТОР — математико-статистическое понятие, означающее общую причину многих случайных изменений совокупности переменных величин, событий и т. п. Ф. выявляется при помощи специальной математической процедуры, называемой факторным анализом (см.).
^ — процедура или метод математической статистики, основанный на анализе корреляций случайных величин и направленный на то, чтобы выявлять группы случайных величин, взаимнокоррелирующих друг с другом. Математико-статистическая основа выявляемых таким образом корреляций называется фактором (см.).
Х критерий — математико-статистический критерий, на основе которого судят о статистической значимости связей, существующих между двумя или несколькими переменными, часть которых рассматривается как причина, часть — как следствия наблюдаемых изменений.
ЭКСПЕРИМЕНТ — метод научного исследования, предполагающий создание некоторых искусственных (экспериментальных) условий и направленный на выявление причинно-следственных зависимостей, существующих между изучаемыми переменными.
Вопрос 5. СПИСОК РЕКОМЕНДОВАНОЇ ЛІТЕРАТУРИ З КУРСУ
А) Перелік підручників та посібників (основна література)
1. Бурлачук Л.Ф. Словарь-справочник по психодиагностике. –СПб.: Питер Ком, 1999. – 528 с. (Серия «Мастера психологии»).
2. Годфруа Ж. Что такое психология? М.: Мир, 1996. Т 2
3. Куликов Л. В. Психологическое исследование: методические рекомендаций по проведению. - СПб., 1995.
4. Немов Р.С. Психология: Экспериментальная педагогическая психология и психодиагностика. - М., 1999.- Т. 3.
5. Практикум по общей экспериментальной психологии / Под ред. А.А. Крылова. - Л. ЛГУ, 1987.
6. Сидоренко Е.В. Методы математической обработки в психологии. –СПб.: ООО «Речь», 2000. -350 с.
7. Шевандрин Н.И. Психодиагностика, коррекция и развитие личности. - М.: Владос, 1998.-С.123.
8. Суходольский Г.В. Математические методы в психологии. – Харьков: Изд-во Гуманитарный Центр, 2004. – 284 с.
Б) Додаткова література
1. Введение в научное исследование по педагогике / Под ред. В. И. Журавлева. М.: 1988.
2. Гершунский Б.С. Педагогическая прогностика. - К., 1986.
3. Гласс Дж., Стенли Дж. Статические методы в педагогике и психологии - М.: 1976.
4. Грабарь М.И., Краснянская К.А. Применение математической статистики в педагогических исследованиях. Непараметрические методы. - М.: Педагогика, 1977.
5. Закс Л. Статистическое оценивание. - М.: Статистика, 1976.
6. Интерпретация и анализ данных в социологических исследованиях / Под ред. В.Г. Андресикова - М.: Наука, 1987.
7. Клименюк А.В. и др. Методология и методика педагогического исследования. Постановка цели и задач исследования. - К., 1988.
8. Крылов В.Ю. Геометрическое представление данных в психологических исследованиях. - М.: Наука, 1990.
9. Кузьмина Н.В. Методы системного педагогического исследования. - Л., 1980.
10. Методичні рекомендації до виконання дипломних робіт студентами педагогічного інституту. - К., 1986.
11. Михеев В.И. Моделирование и методы в теории измерений в педагогике М., 1987.
12. Скалкова Я. Методология и методы педагогического исследования: Пер. с чеш.-М., 1989.
13. Скаткин М.Н. Методология и методика педагогических исследований: в помощь начинающему исследователю. - М., 1986.
14. Сорокин Н.А. Дипломные работы в педагогических вузах: Уч. пос. для студентов пед. вузов-М., 1986.
В) ^
1 Алимов Ю.И. Альтернатива методу математической статистики. М.: Знание, 1986. 64 с.
2 Ананьев Б.Г. Человек как предмет познания. Л.:ЛГУ. 1969. 339 с.
3 Ананьев Б.Г. О методах современной психологии // Психодиагностические методы (в комплексном лонгитюдном исследовании студентов). Л.: ЛГУ, 1976. С. 13-35.
4 Андреенков В.Г., Аргунова К.Д. и др. Математические методы анализа и интерпретация социологических данных. // Под ред. В.Г. Андреенкова, Ю.Н. Толстовой. М.: Наука, 1989. 171 с.
5 Артемьева Е.Ю; Мартынов Е.М. Вероятностные методы в психологии. М.: МГУ, 1985. 206 с.
6 Ашмарин И.П.. Васильев Н.Н.. Амбросов ВА. Быстрые методы статистической обработки и планирование экспериментов. Л.: ЛГУ, 1974. 76 с.
7 Бадасова А. Личностные факторы суггестора, способствующие внушающему воздействию. Дипломная работа выпускницы специального факультета социальной психологии СПбГУ. СПб. 1994. 75 с.
8 Бергер Н.А., Логинова Н.А. К проблеме соотношения некоторых содержательных и структурных характеристик интеллекта (по методике Векслера)// Современные психолого-педагогические проблемы высшей школы. Л.: ЛГУ, 1974.-С. 63-66.
9 Берн Э. Игры, в которые играют люди. Психология человеческих взаимоотношений; Люди, которые играют в игры. Психология человеческой судьбы. / Пер. с англ. // Общ. ред. М.С. Мацковского. СПб.: Лениздат, 1992. 400 с.
10 ^ Таблицы математической статистики. М.: Наука. Главн. редакция физико-математ. литературы, 1983. 416 с.
11 Бурлачук Л.Ф., Морозов СМ Словарь-справочник по математической диагностике. Киев.: Наук. думка, 1989. 200 с.
12 Ван дер Варден В.Л. Математическая статистика. М., 1960. 434 с.
13 Гайда В.К., Захаров В.П. Психологическое тестирование. Учебное пособие. Л.: ЛГУ, 1982. 101с.
14 Ганзен ВА, Балин В.Д. Теория и методология психологического исследования. Практическое руководство. СПб.: СПбГУ, 1991. 74 с.
15 Геодакян В.А. Дифференциальная смертность и норма реакции мужского и женского пола. Онтогенетическая и филогенетическая пластичность. // Журнал общей биологии, 1974, т.35, №3. С. 376-385.
16 Геодакян В.А. Асинхронная асимметрия (половая и латеральная дифференциация — следствие асинхронной эволюции). //Журнал ВНД, 1993, т.43. Вып.З. С. 543-561.
17 Гласс Дж., Стенли Дж. Статистические методы в педагогике и психологии. / Пер. с англ. под общ. ред. Ю.П. Адлера. М.: Прогресс, 1976. 495 с.
18 Гоголь Н.В. Избранные произведения. М.: ДетГИЗ, 1959. С. 473-500.
19 Грекова И. Методологические особенности прикладной математики на современном этапе ее развития. // Вопросы философии, 1976, №6, С. 104-114.
20 Гублер Е.В. Вычислительные методы анализа и распознавания патологических последствий. Л.: Медицина, 1978. 296 с.
21 Гублер Е.В., Генкин А А. Применение непараметрических критериев статистики в медико-биологических исследованиях. Л.: Медицина, 1973. 142 с.
22 Девятко И.Ф. Диагностическая процедура в социологии. Очерки истории и теории. М.: Наука, 1993. 173 с.
23 Дворяшина М.Д., Пехлецкий И. Д. Основные математические процедуры психодиагностического исследования.// Психодиагностические методы (в комплексном лонгитюдном исследовании студентов). Л.: ЛГУ, 1976. С. 35-51.
24. Доброхотова Т.А., Брагина Н.Н. Левши. М.: Книга, 1994. – 230 с.
25 Езекиэл М., Фокс К.А. Методы анализа корреляций и регрессий (линейных и криволинейных).// Пер. с англ. Л.С. Кучаева. М.: Статистика, 1966. 559 с.
26 Захаров В.П. Применение математических методов в социально-психологических исследованиях. Учебное пособие. Л.: ЛГУ, 1985. 64 с.
27 Ивантер Э.В.. Коросов А.В. Основы биометрии: Введение в статистический анализ биологических явлений и процессов. Учебное пособие. Петрозаводск: ПТУ. 1992. 163 с.
28 Ильин Е.П. Психофизиология физического воспитания. Деятельность и состояния. Учебное пособие для студентов факультетов физического воспитания педагогических институтов. М.: Просвещение, 1980. 199 с.
29 ^ Способность к проявлению терпения при мышечном утомлении как отражение общего волевого фактора. / Психомоторика. Сборник ученых трудов. // Под ред. Б.А. Ашмарина и проф Е.П. Ильина (научн. ред.). Л.: ЛГПИ, 1976. С. 49-50.
30 Кендалл М.Дж., Стюарт А. Статистические алгоритмы в социологических исследованиях. Новосибирск: Наука, 1985. 207 с.
31 Кенуй М.Г. Быстрые статистические вычисления. Упрощенные методы оценивания и проверки. / Пер. с англ. и предисловие Д.А. Астринского. М.: Статистика, 1979. 69 с.
32 Королькова НА. Возможности психологической коррекции у болезненных детей. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1994. 72 с.
33 Кузнецов С .А. Стили реагирования на вербальную агрессию. Дипломная работа выпускника кафедры социальной психологии факультета психологии СПбГУ. СПб., 1991. 33с.
34 Кулева Е.Б. Влияние традиционных и православных текстов внушения на процесс аутогенной тренировки. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1990. 45 с-
35 ^ Kurochkin М.. Chumkou U., Sidorenko E.). Opportunities for Leadership in Healthcare. General Practiciner» Research Project for Lilly Industries. Manchester: Manchester Business School, 1992. 22 p.
36 Дашков К.В., Поляков Л.Е. Непараметрические методы медико-статистических исследований. / Методологические вопросы санитарной статистики. Ученые записки по статистике, т. IX. М.: Наука, 1965. С. 136-184.
37 Логвиненко А.Д. Измерения в психологии М.: МГУ. 1993. 480 с.
38 Математические методы анализа и интерпретация социологических данных. // Отв. ред. В.Г. Андреенков, Ю.Н. Толстова. М.: Наука, 1989. - 171 с.
39 Математические методы психолого-педагогнческих исследований. Методические рекомендации. СПб.: Образование. 1994. 28 с.
40 ^ Введение в экспериментальную психологию личности. Учебное пособие для слушателей ИПК преподавателей педагогических дисциплин университетов и педагогических институтов. М.: Просвещение, 1985. 319с.
41 Методы современной биометрии. М.: МГУ, 1978. С. 108-179.
42 Митрополъский А.К. Техника статистических вычислений. М.: Наука, Главная редакция физико-математической литературы., 1971. 576 с.
43 Михеев В.Н. Методика получения и обработки экспериментальных данных в психолого-педагогических исследованиях. М.: УДН, 1986. 84 с.
44 Налимов В. В. Теория эксперимента. М.: Наука, 1975.207 с.
45 Налимов В. В., Голикова Т. И. Логические основания планирования эксперимента. Изд. 2-е. М.: Металлургия, 1981.152 с.
46 Нискина Н.П. Непараметрические методы математической статистики и решение задач проверки гипотез./ Проблемы компьютеризации и статистики в прикладных науках. Сборник трудов. М.: ВНИИСИ, 1990. С. 73-89.
47 Носенко И.А. Начала статистики для лингвистов. М.: Высшая школа, 1981. 157с.
48 Оуэн Д.Б. Сборник статистических таблиц. / Пер. с англ. Л.Н. Большева и В.Ф. Котельниковой. Изд. 2-е, исправл. М.: Вычислительный центр АН СССР. 1973. 586 с.
49 Паповян С.С. Математические методы в социальной психологии. М.: Наука, 1983. 343 с.
50 Плохинский НА. Дисперсионный анализ. / Под ред. чл.-корр. АН СССР Н.П. Дубинина. Новосибирск: Сиб. Отд. АН СССР, 1960. 124 с.
51 Плохинскии НА. Биометрия. 2-е изд. М.: МГУ, 1970. 368 с.
52 Пуни А.Ц. Психологические основы волевой подготовки в спорте. Учебное пособие. Л.: ГИФК,1977.48с.
53 Пустыльник Е.И. Статистические методы анализа и обработки наблюдений. М : Наука, 1968. 185с.
54 Рахова М.Э. Личностная предрасположенность к определенным видам страха. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1994. 54 с.
55 Роджерс К. Взгляд на психотерапию. Становление человека. / Пер. с англ. / /Общ. ред. и предисл. Е.И.Исениной. М.: Прогресс, Универс. 1994. 480 с.
56 Рунион Р. Справочник по непараметрической статистике. М.: Финансы и статистика, 1982. 198с.
57 Сидоренко (Маркова) Е.В. Связь мотивации достижения с индивидными и личностными свойствами / Вопросы экспериментальной и прикладной психологии. Сборник аспирантских работ. Л.: ЛГУ, 1980. Деп. в ВНТИ №435-80 от 7 февр. 1980. С. 64-72
58 Сидоренко (Маркова) Е.В. Исследование психодиагностических возможностей проективной методики Хекхаузена. / Личность в системе коллективных отношений. Тезисы докладов Всесоюзной конференции в г.Курске. Курск: 1980. С. 43-45
59 ^ Мотивационно-волевые особенности личности как фактор успешной деятельности. Дисс. на соискание учен. степ. канд. психол. наук. Л.: ЛГУ. 1984. 262с.
60 Сидоренко (Маркова) Е.В. Психодраматический и недирективный подходы в групповой работе с людьми. Методические описания и комментарии. СПб.: Центр психологической поддержки учителя, 1992. 72 с.
61 Сидоренко Е.В. Экспериментальная групповая психология. Комплекс "неполноценности" и анализ ранних воспоминаний в концепции Альфреда Адлера. Учебное пособие. СПб.: СПбГУ, 1993. 152 с.
62 Сидоренко Е.В. Опыты реоритационного тренинга. СПб.: Институт тренинга, 1995. 248 с.
63 ^ Разработка методики отбора и подготовки кадров в представительные органы муниципальной власти. СПб.: Гуманистический и политологический Центр "Стратегия", 1994. 26 с.
64 ^ Якунин В.А. Математические модели в психолого- педагогических исследованиях. Учебное пособие. Л.: ЛГУ, 1988. 68 с.
65 Справочник по прикладной статистике. В 2-х т. Т.2 / Пер. с англ. под ред. Э.Ллойда, У. Ледермана, С.А. Айвазяна, Ю.Н. Тюрина. М.: Финансы и статистика, 1990. 526 с.
66 Стан Н.В. Социально-психологическое исследование стереотипов мужественности. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1992. 58 с.
67 Стивенс С. Математика, измерение и психофизика // Экспериментальная психология (Под ред. С.С. Стивенса). // Пер. с англ под ред. действ, чл. АМН СССР П.К. Анохина, докт. пед. наук В.А. Артемова. М.: Иностранная литература, 1960. т.1. С. 19-92.
68 Суходольский Г.В. Основы математической статистики для психологов. Л.: ЛГУ, 1972. 428 с.
69 Суходольский Г.В. Математико-психологические модели деятельности. СПб.: Петрополис,1994.64 с.
70 Тлегенова Г.А. Влияние агрессивности на проксемические характеристики невербального поведения. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1990. 28 с.
71 Телешова Ю.Н. Логика математического анализа социологических данных. М.: Наука, 1991.112с.
72 Тюрин Ю.Н. Непараметрические методы статистики. М.: Знание, 1978. 64 с.
73 Тюрин Ю.Н., Макаров А.А, Анализ данных на компьютере. // Под ред. В.В. Фигурнова. М.: Финансы и статистика, 1995. 384 с.
74 Урбах В.Ю. Математическая статистика для биологов и медиков. М.: Академия наук СССР. 1963. 323 с.
75 Урбах В.Ю. Биометрические методы. Статистическая обработка опытных данных в биологии, сельском хозяйстве и медицине. М.: Наука, 1964. 415 с.
76 Урбах В.Ю. Статистический анализ в биологических и медицинских исследованиях. М.: Медицина, 1975. 295 с.
77 Фелингер А.Ф. Статистические алгоритмы в социологических исследованиях. Новосибирск: Наука, 1985. 385 с.
78 Холлендер М. Вулф Д.А. Непараметрические методы статистики. / Пер. с англ. под ред. Ю.П. Адлера и Ю.Н. Тюрина М.: Финансы и статистика, 1983. 518с.
79 Чиркина Р.Т. Психодннамические факторы памяти. Дипломная работа выпускницы кафедры социальной психологии факультета психологии СПбГУ. СПб., 1995. 80 с.
80 Шеффс Г. Дисперсионный анализ. М.: Наука, 1980. 512с.
^
(Материалы для самостоятельного изучения студентам психологам и социальным работникам)
Лекция № 2
^
ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ
Скачать файл (2067.5 kb.)