Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Ответы - Сетевые технологии - файл 1.doc


Ответы - Сетевые технологии
скачать (2570 kb.)

Доступные файлы (1):

1.doc2570kb.29.11.2011 20:34скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5
Реклама MarketGid:
Загрузка...

frame1

Общий принцип действия телефонных серверов IP-телефонии таков: с одной стороны, сервер связан с телефонными линиями и может соединиться с любым телефоном мира. С другой стороны, сервер связан с Интернетом и может связаться с любым компьютером в мире. Сервер принимает стандартный телефонный сигнал, оцифровывает его (если он исходно не цифровой), значительно сжимает, разбивает на пакеты и отправляет через Интернет по назначению с использованием протокола Интернет (TCP/IP). Для пакетов, приходящих из Сети на телефонный сервер и уходящих в телефонную линию, операция происходит в обратном порядке. Обе составляющие операции (вход сигнала в телефонную сеть и его выход из телефонной сети) происходят практически одновременно, что позволяет обеспечить полнодуплексный разговор. На основе этих базовых операций можно построить много различных конфигураций. Допустим, звонок телефон-компьютер или компьютер-телефон может обеспечивать один телефонный сервер. Для организации связи телефон (факс)-телефон (факс) нужно два сервера.

Междугородняя (международная) связь осуществляется с помощью телефонных серверов, организация или оператор услуги должны иметь по серверу в тех местах, куда и откуда планируются звонки. Стоимость такой связи на порядок меньше стоимости телефонного звонка по обычным телефонным линиям. Особенно велика эта разница для международных переговоров.

Для организации телефонной связи по IP-сетям используется специальное оборудование - шлюзы IP-телефонии. Каждый шлюз должен быть соединен с телефонным аппаратом или абонентской линией АТС, пользователи которых будут являться абонентами IP-шлюза. Два абонента разных IP-шлюзов, разделенные расстоянием в тысячи километров, могут общаться в режиме реального времени, оплачивая только время подключения к IP-сети. С равным успехом IP-шлюз может использоваться и в корпоративной ЛВС.

Общий принцип действия телефонных шлюзов IP-телефонии таков: шлюз принимает телефонный сигнал, оцифровывает его, значительно сжимает, разбивает на пакеты и отправляет через IP-сеть по назначению. Определение и соединение с нужным шлюзом происходит по таблице маршрутизации, заполняемой через Web-интерфейс или telnet. Изменение/добавление/удаление IP-адреса возможно в любое время.

Наиболее экономичный способ организации выноса емкости УАТС в филиалы (например, связь центрального офиса с магазинами) - использование IP-шлюзов. Такое решение позволяет отказаться от оплаты абонентских линий ГТС и ограничиться лишь подключением филиала к сети передачи данных. В случае если филиалы расположены в разных городах, существенно снижаются и расходы на междугородную связь.


Еще одним способом применения IP-шлюзов является подключение к сети оператора IP-телефонии. В этом случае можно совершать вызовы на любые телефонные номера ТфОП. Стоимость звонка будет существенно дешевле, так как междугородние/международные тарифы операторов IP-телефонии существенно ниже тарифов операторов телефонной связи.





IP-телефония. Протоколы RTP.

Транспортный протокол реального времени RTP обеспечивает сквозную передачу в реальном времени мультимедийных данных, таких как интерактивное аудио и видео. Этот протокол реализует распознавание типа трафика, нумерацию последовательности пакетов, работу с метками времени и контроль передачи.

Действие протокола RTP сводится к присваиванию каждому исходящему пакету временных меток. На приемной стороне временные метки пакетов указывают на то, в какой последовательности и с какими задержками их необходимо воспроизводить. Поддержка RTP и RTCP позволяет принимающему узлу располагать принимаемые пакеты в надлежащем порядке, снижать влияние неравномерности времени задержки пакетов в сети на качество сигнала и восстанавливать синхронизацию между аудио и видео, чтобы поступающая информация могла правильно прослушиваться и просматриваться пользователями.

Порядковые номера, включенные в RTP, позволяют получателю восстанавливать последовательность пакетов отправителя.

Протокол RTP поддерживает как двустороннюю связь, так и передачу данных группе адресатов, если групповая передача поддерживается нижележащей сетью. RTP предназначен для обеспечения информации, требуемой отдельным приложениям, и в большинстве случаев интегрируется в работу приложения.

Протокольные блоки данных RTP/RTCP называются пакетами. Пакет RTP включает в свой состав фиксированный заголовок, необязательное расширение заголовка переменной длины и поле данных. Пакет RTCP начинается с фиксированной части, за которой следуют структурные элементы, имеющие переменную длину.

Полная спецификация RTP для конкретного приложения должна включать дополнительные документы, к которым относятся описание профиля, а также описание формата трафика, определяющее, как трафик конкретного типа, такой как аудио или видео, будет обрабатываться в RTP.
^
Групповая аудио-конференц-связь

Для организации групповой аудио-конференц-связи требуется многопользовательский групповой адрес и два порта. При этом один порт необходим для обмена звуковыми данными, а другой используется для пакетов управления протокола RTCP. Информация о групповом адресе и портах передается предполагаемым участникам телеконференции. Если требуется секретность, то информационные и управляющие пакеты могут быть зашифрованы, в этом случае также должен быть сгенерирован и распределен ключ шифрования.

Приложение аудио-конференц-связи, используемое каждым участником конференции, посылает звуковые данные малыми порциями, например, продолжительностью 20 мс. Каждой порции звуковых данных предшествует заголовок RTP; заголовок RTP и данные поочередно формируются (инкапсулируются) в пакет UDP. Заголовок RTP показывает, какой тип кодирования звука (например, ИКМ, АДИКМ или LPC) применялся при формировании данных в пакете. Это дает возможность изменять тип кодирования в процессе конференции, например, при появлении нового участника, который использует линию связи с низкой полосой пропускания, или при перегрузках сети.
Видео-конференц-связь

Если в телеконференции используются и звуковые, и видеосигналы, то они передаются отдельно. Для передачи каждого типа трафика независимо от другого спецификацией протокола вводится понятие сеанса связи RTP. Сеанс определяется конкретной парой транспортных адресов назначения (один сетевой адрес плюс пара портов для RTP и RTCP). Пакеты для каждого типа трафика передаются с использованием двух различных пар портов UDP и/или групповых адресов. Никакого непосредственного соединения на уровне RTP между аудио- и видеосеансами связи не имеется, за исключением того, что пользователь, участвующий в обоих сеансах, должен использовать одно и то же каноническое имя в RTCP-пакетах для обоих сеансов, чтобы сеансы могли быть связаны.

Одна из причин такого разделения состоит в том, что некоторым участникам конференции необходимо позволить получать только один тип трафика, если они этого желают. Несмотря на разделение, синхронное воспроизведение мультимедийных данных источника (звука и видео) может быть достигнуто при использовании информации таймирования, которая переносится в пакетах RTCP для обоих сеансов.

IP-телефония. Протоколы RTCP.
^
Протокол управления RTCP

Протокол управления RTСP (RTCP - Real-Time Control Protocol) основан на периодической передаче пакетов управления всем участникам сеанса связи при использовании того же механизма распределения, что и протокол RTP. Протокол нижележащего уровня должен обеспечить мультиплексирование информационных и управляющих пакетов, например, с использованием различных номеров портов UDP. Протокол RTCP выполняет четыре основные функции.

  1. Главная функция - обеспечение обратной связи для оценки качества распределения данных. Это неотъемлемая функция RTСP как транспортного протокола, она связана с функциями управления потоком и перегрузками других транспортных протоколов. Обратная связь может быть непосредственно полезна для управления адаптивным кодированием, но эксперименты с IP-мультивещанием показали, что обратную связь с получателями также важно иметь для диагностики дефектов при распространении информации. Посылка отчетов обратной связи о приеме данных всем участникам позволяет при наблюдении проблем оценивать, являются они локальными или глобальными. С механизмом распределения IPM для таких объектов, как поставщики услуг сети, можно также получать информацию обратной связи и действовать при диагностике проблем сети как монитор третьей стороны. Эта функция обратной связи обеспечивается отчетами отправителя и приемника RTCP.

  2. RTCP поддерживает устойчивый идентификатор источника данных RTP на транспортном уровне, называемый "каноническим именем" (CNAME - canonical name). Так как идентификатор SSRC может изменяться, если обнаружен конфликт или перезапущена программа, то получателям для отслеживания каждого участника требуется каноническое имя CNAME. Получатели также требуют CNAME для отображения множества потоков информации от данного участника на множество связанных сеансов RTP, например, при синхронизации звукового и видеосигнала.

  3. Первые две функции требуют, чтобы все участники посылали пакеты RTCP, следовательно, для предоставления возможности масштабирования числа участников протоколом RTP должна регулироваться частота передачи таких пакетов. При посылке каждым участником телеконференции управляющих пакетов всем остальным участникам, каждый может независимо оценивать общее число участников.

  4. Четвертая, дополнительная, функция RTCP должна обеспечивать информацию управления сеансом (например, идентификацию участника), которая будет отражена в интерфейсе пользователя. Наиболее вероятно, что это будет полезным в "свободно управляемых" сеансах, где участники вступают в группу и выходят из нее без контроля принадлежности или согласования параметров.

Функции с первой по третью являются обязательными, когда RTP используется в IP-мультивещании, и рекомендуемыми во всех остальных случаях. Разработчикам приложений RTP предлагается избегать механизмов, работающих только в двустороннем режиме и не масштабируемых для увеличения числа пользователей.
^
Интенсивность передачи пакетов RTCP

Протокол RTP позволяет приложению автоматически масштабировать представительность сеанса связи в пределах от нескольких участников до нескольких тысяч. Предусмотрен специальный механизм понижения частоты передачи управляющих пакетов.

Для каждого сеанса предполагается, что трафик данных соответствует агрегированному пределу, называемому полосой пропускания сеанса связи, которая совместно используется всеми участниками. Эта полоса пропускания может быть зарезервирована, и ее предел установлен сетью. Полоса пропускания сеанса не зависит от типа кодирования мультимедийных данных, но выбор типа кодирования может быть ограничен полосой пропускания сеанса связи.

В одном блоке данных протокола нижележащего уровня, например, в пакете UDP, могут передаваться несколько пакетов протокола RTP. Это позволяет уменьшить избыточность заголовков и упростить синхронизацию между различными потоками.
Передачи речевой информации по IP-сети. Сжатие, джиттер, эхо.

1.1. Терминология


IP-телефония (или VoIP - Voice over Internet protocol) - технология, которая использует сеть с пакетной коммутацией сообщений на базе протокола IP для передачи голоса в режиме реального времени.

При разговоре наши голосовые сигналы преобразуются в пакеты данных, которые затем сжимаются. Далее эти пакеты данных посылаются через Интернет приемной стороне. Когда пакеты данных достигают адресата, они декодируются в аналоговый голосовой сигнал.

IP-телефония в чистом виде может применяться в качестве линий передачи голоса, для чего могут использоваться специально выделенные цифровые каналы.
^

1.2. Особенности IP-телефонии


В отличие от аналоговой телефонии, IP-телефония создает "подключение по запросу" и не имеет зарезервированных линий связи, что уменьшает затраты на телефонные разговоры.

При обычном способе передачи речи (аналоговой телефонии) используется канал пропускной способностью 64 кбит/с независимо от того, разговаривает абонент или молчит во время соединения. В случае передачи речи по IP-сетям, за счет оцифровки и компрессии (сжатия), речь передается в виде цифровой информации, причем если абонент молчит или делает паузы в разговоре, цифровая информация в канал не передается и канал не заполняется. Это позволяет в одном канале 64 кбит/с передавать от 8 и более соединений одновременно, что в свою очередь обеспечивает снижение тарифов, и, соответственно, оплата уменьшается.

Во-вторых, IP-телефония привлекает дополнительными возможностями совмещенного доступа в Интернет. Голосовые данные, факсимильные сообщения передаются уже с используемым IP-набором протоколов Интернета. Таким образом, голосовая информация и обычные данные могут передаваться по одной и той же сети.


^

1.3. Принципы пакетной передачи


Для проведения сеанса связи мы набираем номер вызываемого абонента, после чего происходит соединение с сетевым шлюзом, как показано на рис. 1.2.




Рис. 1.2.  Соединение с сетевым шлюзом

Голосовое сообщение абонента А с помощью микрофона преобразуется в электрический аналоговый сигнал, который претерпевает ряд преобразований (кодируется). Внутри шлюза происходит оцифровка голосового сигнала, как условно показано на рис. 1.3.




Рис. 1.3.  Оцифровка голосового сигнала

После оцифровки цифровой сигнал, занимающий изначально, как и наша речь, канал в 64 кбит/с, сжимается в соответствии с выбранным кодеком (см. лекцию 3) и разбивается на пакеты сигналов в соответствии с выбранным типом кодирующего устройства (кодеком) (рис. 1.4 и 1.5.). В преобразовании участвуют как аппаратные, так и программные средства со стороны абонента А.




Рис. 1.4.  Сжатие канала




увеличить изображение
Рис. 1.5.  Разбиение на пакеты

Далее сжатые данные отправляются в сеть. На приемной стороне имеется аналогичный набор устройств абонента В (рис. 1.6), производящих преобразования в обратном порядке. Пакеты из сети поступают в телефонный шлюз, подключенный к телефонной линии. Все операции повторяются в обратном порядке, то есть осуществляется декодирование цифрового сигнала и преобразование его в аналоговую форму, которая приводит в действие звуковой динамик.




Рис. 1.6.  Соединение с приемной стороной

Показанные этапы преобразования сигналов и передачи происходят в малые доли секунды, практически в реальном масштабе времени, что позволяет обеспечить дуплексный (двухсторонний) разговор.

Отметим, что в сетях с маршрутизацией пакетов IP для передачи данных всегда предусматриваются механизмы повторной передачи пакетов в случае их потери. При передаче голосовой информации в реальном масштабе времени этот прием неприменим, т. к. речевая информация очень чувствительна к задержкам, но менее чувствительна к потерям, поэтому для передачи речи (как и видеоинформации) используется механизм негарантированной доставки информации RTP/UDP/IP. Рекомендации ITU-Т допускают задержки в одном направлении, не превышающие 150 мс.

Как уже было сказано, верхняя плоскость архитектуры VoIP управляет обслуживанием запросов связи, т. е. адресацией, куда вызов должен быть направлен, и способом, каким должно быть установлено соединение между абонентами. Инструмент такого управления - телефонные системы сигнализации.

^ Глава 3 Передача речи по IP-сетям
3.1 Особенности передачи речевой информации по IP - сетям

Если проблемы ограничения задержки и подавления эха в традиционной телефонии существовали всегда, а при переходе к IP-сетям лишь усугубились, то потери информации (пакетов) и стохастический характер задержки породили совершенно новые проблемы, решение которых сопряжено с большими трудностями. Этим объясняется тот факт, что понадобился длительный период развития сетевых технологий, прежде чем появились коммерческие приложения IP-телефонии, хотя, справедливости ради, нужно отметить, что трудно назвать другую телекоммуникационную технологию, которая смогла «повзрослеть» столь же быстро.
3.1.1 Задержки

При передаче речи по IP-сети возникают намного большие, чем в ТфОП, задержки, которые, к тому же, изменяются случайным образом. Этот факт представляет собой проблему и сам по себе, но кроме того, усложняет обсуждаемую далее в этой главе проблему эха. Задержка (или время запаздывания) определяется как промежуток времени, затрачиваемый на то, чтобы речевой сигнал прошел расстояние от говорящего до слушающего. Покажем, что и как оказывает влияние на количественные характеристики этого промежутка времени.
Влияние сети

Во-первых, неустойчиво и плохо предсказуемо время прохождения пакета через сеть. Если нагрузка сети относительно мала, маршрутизаторы и коммутаторы, безусловно, могут обрабатывать пакеты практически мгновенно, а линии связи бывают доступны почти всегда. Если загрузка сети относительно велика, пакеты могут довольно долго ожидать обслуживания в очередях. Чем больше маршрутизаторов, коммутаторов и линий в маршруте, по которому проходит пакет, тем больше время его запаздывания, и тем больше вариация этого времени, т.е. джиттер. В главе 10, посвященной качеству обслуживания (QoS), будет показано, каким образом и с использованием каких протоколов и алгоритмов следует строить сети, чтобы минимизировать задержки и их джиттер.
Влияние операционной системы

Большинство приложений IP-телефонии (особенно клиентских) представляет собой обычные программы, выполняемые в среде какой-либо операционной системы, такой как Windows или Linux. Эти программы обращаются к периферийным устройствам (платам обработки речевых сигналов, специализированным платам систем сигнализации) через интерфейс прикладных программ для взаимодействия с драйверами этих устройств, а доступ к IP-сети осуществляют через Socket-интерфейс.

Большинство операционных систем не может контролировать распределение времени центрального процессора между разными процессами с точностью, превышающей несколько десятков миллисекунд, и не может обрабатывать за такое же время более одного прерывания от внешних устройств. Это приводит к тому, что задержка в продвижении данных между сетевым интерфейсом и внешним устройством речевого вывода составляет, независимо от используемого алгоритма кодирования речи, величину такого же порядка, или даже больше.

Из сказанного следует, что выбор операционной системы является важным фактором, влияющим на общую величину задержки. Чтобы минимизировать влияние операционной системы, некоторые производители шлюзов и IP-телефонов используют так называемые ОС реального времени (VxWorks, pSOS, QNX Neutrino и т.д.), которые используют более сложные механизмы разделения времени процессора, действующие таким образом, чтобы обеспечивать значительно более быструю реакцию на прерывания и более эффективный обмен потоками данных между процессами.

Влияние джиггер-буфера

Проблема джиттера весьма существенна в пакетно-ориентированных сетях. Отправитель речевых пакетов передает их через фиксированные промежутки времени (например, через каждые 20 мс), но при прохождении через сеть задержки пакетов оказываются неодинаковыми, так что они прибывают в пункт назначения через разные промежутки времени. Это иллюстрирует рис. 3.1.


Рис. 3.1 Различие интервалов между моментами прибытия пакетов (джиттер)

Задержка прохождения пакетов по сети Т может быть представлена как сумма постоянной составляющей Т (время распространения плюс средняя длительность задержки в очередях) и переменной величины j, являющейся результатом джиттера: T=T±j.

Для того, чтобы компенсировать влияние джиттера, в терминалах используется т.н. джиттер-буфер. Этот буфер хранит в памяти прибывшие пакеты в течение времени, определяемого его емкостью (длиной). Пакеты, прибывающие слишком поздно, когда буфер заполнен, отбрасываются. Интервалы между пакетами восстанавливаются на основе значений временных меток RTP-пакетов. В функции джиттер-буфера обычно входит и восстановление исходной очередности следования пакетов, если при транспортировке по сети они оказались «перепутаны».
3.1.2 Эхо

Феномен эха вызывает затруднения при разговоре и у говорящего, и у слушающего. Говорящий слышит с определенной задержкой свой собственный голос. Если сигнал отражается дважды, то слушающий дважды слышит речь говорящего (второй раз - с ослаблением и задержкой).

Эхо может иметь электрическую и акустическую природу.

Отражения в дифсистеме являются неотъемлемым свойством ТфОП. Поэтому они проявляются при взаимодействии ТфОП и IP-сетей.

Если задержка распространения сигнала в сети невелика (что обычно и бывает в местных сетях), такой отраженный сигнал попросту незаметен и не вызывает неприятных ощущений. Если задержка достигает величины 15-20мс, возникает эффект «огромного пустого помещения». При дальнейшем увеличении задержки субъективная оценка качества разговора резко ухудшается, вплоть до полной невозможности продолжать беседу.

В рамках ТфОП проблема такого эха известна с тех самых пор, когда телефонная сеть стала настолько протяженной, что задержки распространения сигналов перестали быть неощутимыми. Были разработаны и методы борьбы с этим феноменом - от минимизации задержек путем соответствующего планирования сети до применения эхозаградителей и эхокомпенсаторов. Здержки, свойственные процессам передачи речи по IP-сетям, таковы, что не оставляют выбора и делают механизмы, ограничивающие эффект эха, обязательными в любом оборудовании IP-телефонии.

Акустическое эхо возникает при пользовании терминалами громкоговорящей связи, независимо оттого, какая технология используется в них для передачи информации. Акустическое эхо может обладать значительной длительностью, а особенно неприятным бывает изменение его характеристик при изменении, например, взаимного расположения терминала и говорящего, или даже других людей в помещении. Эти обстоятельства делают построение устройств эффективного подавления акустического эха очень непростой задачей.
^ 3.1.3 Устройства ограничения эффектов эха

Существуют два типа устройств, предназначенных для ограничения вредных эффектов эха: эхозаградители и эхокомпенсаторы.

Эхозаградители появились в начале 70-х годов. Принцип их работы прост и состоит в отключении канала передачи, когда в канале приема присутствует речевой сигнал. Такая техника широко используется в дешевых телефонных аппаратах с громкоговорящей связью (speakerphones), однако простота не обеспечивает нормального качества связи - перебить говорящего становится невозможно, т.е. связь, по сути, становится полудуплексной.

Эхокомпенсатор - это более сложное устройство, которое моделирует эхосигнал для последующего его вычитания из принимаемого сигнала (рис. 3.3). Эхо моделируется как взвешенная сумма задержанных копий входного сигнала или, иными словами, как свертка входного сигнала с оцененной импульсной характеристикой канала.
IP-телефония. Протокол Н323

. Во второй половине 90-х годов интенсивное развитие получили IP-сети и Интернет. Они превратились в экономичную среду передачи данных и стали практически повсеместными. Однако, в отличие от ISDN, IP-сети плохо приспособлены для передачи аудио- и видеоданных. Стремление использовать сложившуюся структуру IP-сетей привело к появлению в 1996 г. стандарта H.323, который содержит описания терминальных устройств, оборудования и сетевых служб, предназначенных для осуществления мультимедийной связи в сетях с коммутацией пакетов (например, Intranet или Интернет). Терминальные устройства и сетевое оборудование стандарта H.323 могут передавать данные, речь и видеоинформацию в масштабе реального времени. В рекомендации H.323 не определены: сетевой интерфейс, физическая среда передачи информации и транспортный протокол, используемый в сети. Сеть, через которую осуществляется связь между терминалами H.323, может представлять собой сегмент или множество сегментов со сложной топологией. Терминалы H.323 могут быть интегрированы в персональные компьютеры или реализованы как автономные устройства. Но поддержка речевого обмена - обязательная функция для любого устройства стандарта H.323.

Рекомендации H.323 предусматривают:
^
Управление полосой пропускания

Передача аудио- и видеоинформации весьма интенсивно нагружает каналы связи, и, если не следить за ростом этой нагрузки, работоспособность критически важных сетевых сервисов может быть нарушена. Поэтому рекомендации H.323 предусматривают управление полосой пропускания. Можно ограничить как число одновременных соединений, так и суммарную полосу пропускания для всех приложений H.323. Эти ограничения помогают сохранить необходимые ресурсы для работы других сетевых приложений. Каждый терминал H.323 может управлять своей полосой пропускания в конкретной сессии конференции.
^
Межсетевые конференции

Рекомендации H.323 предлагают средства соединения участников видеоконференции в разнородных сетях (например, IP и ISDN, IP и PSTN).
Платформенная независимость

H.323 "не привязан" к каким-либо технологическим решениям, связанным с оборудованием или программным обеспечением. Взаимодействующие между собой приложения могут создаваться на основе разных платформ, с разными операционными системами.
^
Поддержка многоточечных конференций

Рекомендации H.323 позволяют организовывать конференцию с тремя или более участниками. Многоточечные конференции могут проводиться как с использованием центрального контроллера - MCU (устройства многоточечной конференции), так и без него.
^
Поддержка многоадресной передачи

H.323 поддерживает многоадресную передачу в многоточечной конференции, если сеть поддерживает протокол управления групповой адресацией. При многоадресной передаче один пакет информации отправляется всем необходимым адресатам без лишнего дублирования. Многоадресная передача использует полосу пропускания гораздо более эффективно, поскольку всем адресатам - участникам списка рассылки отправляется ровно один поток.
  1   2   3   4   5



Скачать файл (2570 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации