Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лабораторные работы по дисциплине Инструментальные твёрдые сплавы - файл 1.doc


Лабораторные работы по дисциплине Инструментальные твёрдые сплавы
скачать (9466 kb.)

Доступные файлы (1):

1.doc9466kb.30.11.2011 08:24скачать

содержание

1.doc

1   2   3   4   5   6


Если после измерения 625 частиц число их в контрольном клас­се меньше, чем требуется по таблице, то следует на дополнитель­но выбранных полях зрения или на дополнительных площадях препарата провести дальнейшее измерение частиц с размерами только контрольного класса с тем, чтобы получить необходимое ко­личество частиц.
6.2.4. ^ ОБРАБОТКА РЕЗУЛЬТАТОВ
Количественное распределение частиц по размерам получают относя количество измеренных частиц i-тогo класса к общему количеству измеренных частиц.

Общее количество измеренных частиц при использовании одного увеличения равно сумме всех измеренных частиц.

Общее количество измеренных частиц при использовании двух или трех увеличений равно расчетному количеству частиц (п. 3.8). Каждое произведение количества измеренных частиц i-гo класса на поправочный коэффициент принимают за количество частиц i-гo класса.

Средний размер частиц класса равен среднеарифметичес­кому значению верхнего и нижнего пределов класса.

Объемное (массовое) распределение частиц по размерам получают, возводя в третью степень средний размер частиц клас­са и умножая результат на количество частиц в этом классе, отно­ся полученное произведение к сумме произведений для всех клас­сов (см. табл. 1 приложения).

Объемная доля отдельного класса равна его массовой доле, ес­ли частицы порошка имеют одинаковую плотность.

При измерении крупных частиц на дополнительных по­лях зрения в соответствии с п. 3.9 результаты анализа пересчиты­вают. Для этого количество частиц мелких классов умножают на поправочный коэффициент, равный отношению числа полей зре­ния, на которых были измерены частицы контрольного класса, к числу полей, на которых были измерены частицы других классов (см. табл. 2—5 приложения).

Погрешность измерения возникает из-за конечного количества измеренных частиц. Приведенные в дальнейшем формулы для вычисления этой погрешности справедливы при условии стати­стически случайной ориентации частиц в препарате.

Погрешность измерения не должна превышать 2% как в случае определения количественного, так и объемного (массового) рас­пределения частиц по размерам.

В случае количественного распределения частиц по размерам погрешность измерения SP1. вычисляют по формуле

SP1 = w Р1

а в случае объемного распределения погрешность измерения (Sq1 ) вычисляют по формуле

q1( 1 - ) 

Sq1 = --------

100
где P1 — количественная доля частиц i-ro класса;

q1 — объемная (массовая) доля частиц i-ro класса, %;

n1 — количество измеренных частиц i-ro класса.

Погрешность измерения количественного распределения при подсчете 625 частиц всегда менее 2%.

В случае определения масс объемного (массового) распределе­ния частиц по размерам следует для каждого класса величин час­тиц вычислить погрешность измерения по формуле, независимо от количества просчитанных частиц.

Результаты испытаний оформляют в виде протокола, кото­рый должен содержать следующие данные:

- наименование порошка;

- результаты испытаний с указанием, в каких процентах они вы­ражены;

- указания, были ли в порошке частицы менее 1 мкм.
Пример расчёта гранулометрического состава шихты проведённый при трёх увеличениях микроскопа показан в таблице 11. Измерения производились по микрофотографиям.

По результатам расчёта сроится гистограмма гранулометрического состава или кривая распределения.
^ 6.2.5. ТРЕБОВАНИЯ К ОТЧЕТУ
Отчет должен содержать краткое описание физических и технологических характеристик порошковых материалов, порядок выполнения работы и протокол испытаний.

Объем отчета 2-4 стр.

Отчет подписывается студентом.
6.2.6. ЛИТЕРАТУРА.
1. Кипарисов С.С., Либенсон Г.А. Порошковая металлургия. Учебник. М., Металлургия, 1980, с 188-189.

2. Порошки металлические. Микроскопический метод определения размеров частиц. ГОСТ 23402.
^ 6.2.7. КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Каковы преимущества и недостатки микроскопического метода определения размеров частиц ?

2. Какие свойства порошков определяет гранулометрический состав порошка ?

3. Какие свойства спеченных изделий определяет гранулометрический состав порошка ?


Увели-чение

Класс измеряемых частиц

Количество частиц, измеренных на отдельных полях

Расчётное количество частиц на отдельных полях

Суммар-ное количес-тво частиц при данном увеличе-нии

Средний размер частиц класса,

мкм

Количест-венная доля частиц класса,

%

Суммар-ный

процент классов,

%

мкм

В делениях линейки,

мм


1400

1,0-1,4

1,5-2,0

0,0,0

0,0,0

0

686

1,2

0

0

1,7

3,6

3,6

1.4-2.0

2,0-3,0

4,5,7

3,6,4

29( )2=158

2,4

9,3

12,9

2,0-2,8

3,0-4,0

10,13,8

11,15,17

74( )2=402

3,4

14,8

27,7

4,8

25,1

52,8

2,8-4,0

4,0-5,5

12,23,22

23,10,28

118( )2=642

6,8

18,1

70,9

9,65

15,2

86,1

4,0-5,6

5,5-8,0

40,30,35

27,37,31

200( )2=1088

5,6-8,0

8,0-11,5

28,30,18

22,31,15

144( )2=783

8,0-11,3

11,5-16,0

16,18,26

19,25,17

121( )2=658


600

11,3-16,0

7,0-9,5

56,50,45

42,53,44

290

590

13,65

6,7

92,8

19,2

4,8

97,7

16,0-22,4

9,5-13,5

29,40,30

25,44,46

214

27,2

2,0

99,7

22,4-32,0

13,5-19,0

16,19,11

12,15,13

86

125

32.0-45,0

4,0-5,5

27.25.20

21.30.31

154( )2  7

186

38,5

0,2

99,9

54,0

0,1

100,0

45,0-63,0

5,5-8,0

4,6,7

5,7,3

32( )2  2
Таблица 11

Пример расчёта гранулометрического состава шихты и оформления таблицы наблюдений

( измерения выполнены на фотоснимках, линейкой измерена максимальная хорда частиц

параллельная одной из сторон снимка)
^ ЛАБОРАТОРНАЯ РАБОТА № 31
6.3. Наблюдение формы частиц.
6.3.1. АППАРАТУРА И МАТЕРИАЛЫ
1. Микроскоп ..............................………………………………………………………....

2. Окуляр-микрометр .........................…………………………………………………….

3. Стеклянная плитка

4. Стеклянная палочка

5. Стеклянная пипетка

6. Предметное стекло

7. Покровное стекло

8. Шпатель

9. Фильтровальная бумага

10. Глицерин

11. Шихта (порошок),г. ........................ 10
^ 6.3.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
Из пробы порошка готовят препарат - монослой частиц на подложке, полученный диспергированием порошка в дисперсионной жидкости.

Для этого пробу порошка массой 2-7 г тщательно перемешивают шпателем на стеклянной плитке, рассыпают полосой длиной 80-100 мм и разделяют ее на 7 или 8 приблизительно равных частей. Четные части отбрасывают, а нечетные смешивают и повторно соокращают таким же образом.

Операцию повторяют до получения пробы массой 0,5-1 г. Затем переносят на кончике стеклянной палочки небольшое количество порошка на предметное стекло, добавляют 1-2 капли глицерина, равномерно распределяют смесь стеклянной палочкой по стеклу, накладывают покровное стекло и осторожно давят на него во избежание выхода больших частиц за пределы стекла. Избыток жидкости удаляют фильтровальной бумагой. Проверяют препарат. Препарат не должен содержать конгломератов и скоплений частиц. Распределение частиц должно быть равномерным по всему полю зрения. Количество частиц в поле зрения должно быть таким, чтобы по всей линейке шкалы окуляра находилось 10-20 зерен крупнее одного деления.

Если количество зерен превышает указанное количество, то следует приготовить новый препарат.

Объектом наблюдения являются проекции частиц, ограниченные кругом - только те из них, которые находятся внутри поля зрения.

Измеряют максимальный lmax и минимальный размер частиц lmin, а затем рассчитывают фактор формы равный отношению .
^ 6.3.3. ТРЕБОВАНИЯ К ОТЧЕТУ
Отчет должен содержать краткое описание физических и технологических характеристик порошковых материалов, порядок выполнения работы и протокол испытаний.

Объем отчета 2-4 стр.

Отчет подписывается студентом.

6.3.4. ЛИТЕРАТУРА.
1. Кипарисов С.С., Либенсон Г.А. Порошковая металлургия. Учебник. М., Металлургия, 1980, с 182.

2. Порошки металлические. Метод определения формы частиц. ГОСТ 25849.
^ 6.3.5. КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Каковы преимущества и недостатки микроскопического метода определения формы частиц ?

2. Какие свойства порошков определяет форма его частиц ?

3. Какие свойства спеченных изделий определяет исходная форма частиц порошка ?
^ 6.3.6. ПРОТОКОЛ ИЗМЕРЕНИЙ.
Условное обозначение или марка порошка .....................

Результаты расчетов факторов формы



№ измерения

Размеры частиц, мкм

Фактор формы

lmax

lmin


Рис.110. Шапка таблицы наблюдений.

Словесное описание формы частиц составляют, пользуясь приложением.
^ ЛАБОРАТОРНАЯ РАБОТА № 32
6.4. Наблюдение микроструктуры твердых сплавов разных марок.
Группа сплавов ВК. В структуре твердых сплавов группы ВК 80-90% занимают зерна карбида вольфрама - это характерные угловатые кристаллы, треугольной, квадратной и четырехугольной формы. Размеры зерен колеблются от 0,5 до 10 мкм, в отдельных специальных случаях - до 30 мкм в сплавах с увеличенным размером карбидных зерен.

При травлении щелочным раствором железосинеродистого калия (красная кровяная соль) зерна карбида вольфрама не окрашиваются и выглядят под микроскопом блестящими белыми частицами с голубоватым оттенком.

Типичные структуры твердых сплавов группы ВК с различным содержанием кобальта, величиной частиц и их формой показаны на рисунке 111.

Обычно зерна карбида вольфрама равномерно распределены по сечению материала. Однако встречается и карбидная неоднородность, при которой крупные зерна объединяются в скопления. Карбидная неоднородность ухудшает изнашиваемость твердых сплавов - вместо равномерного износа по всей контактирующей поверхности трущихся пар, наблюдается износ в виде вырыва блоков, что приводит к неравномерному и ускоренному изнашиванию. Этот вид искажения микроструктуры крайне нежелателен для прецизионного и особенно - мелкоразмерного инструмента.

^ Группа сплавов ТК. Почти весь объем структуры титановольфрамкобальтовых твердых сплавов занимает карбидная фаза, которая у большинства марок состоит из зерен карбида вольфрама и сложного карбида титана. Содержание сложного карбида, зерна которого на снимках вы-

глядят более темными, зависит от марки сплава. В сплаве Т5К10, например, на долю сложного карбида титана приходится 15-20%, в сплавах Т15К6 и Т15К8 - 4-50% и в сплаве Т30К4 - 90-







Рис.111. Структура сплавов ВК. Слева направо: ВК8ВК, ВК8, ВК10М.

95% вссего объема структуры. Остальная часть карбидной фазы этих сплавов - зерна карбида вольфрама.

Типичные структуры твердых сплавов группы ТК показаны на рисунке 112.







Рис.112. Структура сплавов ТК. Карбидная фаза. Слева направо: Т5К10, Т15К6, Т30К4.
Группа сплавов ТН и КХН. В безвольфрамовых и маловольфрамовых твердых сплавах этой группы используют карбид титана, карбид хрома, карбид ванадия, нитрид титана, карбонитрид титана, зерна которых в процессе спекания не претерпевают изменений ни по химическому составу, ни по величине или форме, поскольку процесс спекания маловольфрамовых и безвольфрамовых сплавов в корне отличается от спекания сплавов групп ВК и ТК.





При травлении зерна карбида титана окрашиваются в темный цвет, в то время как связка остается светлой.

Рис.113. Структура сплавов ТН-20 (слева) и КХН (справа). Карбидная фаза.

^ 6.4.1. АППАРАТУРА И МАТЕРИАЛЫ
1. Металлографический микроскоп (увеличение 1000-1400)……………….............. ММУ3

2. Травленый микрошлиф различных марок твёрдых сплавов групп ВК, ТК, ТТК и др.

^ 6.4.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.
Студент получает подготовленный микрошлиф, устанавливает его на столик микроскопа и, наблюдая картинку через окуляр-микрометр, производит определение параметров структуры наблюдаемого образца. Микроструктура зарисовывается и описывается.
^ 6.4.3. ТРЕБОВАНИЯ К ОТЧЕТУ
В отчете должны быть описаны виды структурных составляющих сплава и их значение при эксплуатации материала.

Отчет должен содержать зарисованную микроструктуру.

Отчет содержит 2-3 стр.

Отчет подписывается студентом.
6.4.4. ЛИТЕРАТУРА.
1. Сплавы твердые спеченные. Методы определения пористости и микроструктуры. ГОСТ 9391.

2. Методика структурного металлографического анализа твердых сплавов. М., Машгиз, 1962 г.
^ 6.4.5. КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Что позволяет определить наблюдение микроструктуры ?

2. Опишите методику наблюдения микроструктуры.

3. Какие технологические параметры могут оказать влияние на микроструктуру изделия ?

^ ЛАБОРАТОРНАЯ РАБОТА № 33

6.5. Определение основных характеристик зёрен карбида вольфрама в спечённом твёрдом сплаве.
6.5.1. АППАРАТУРА И МАТЕРИАЛЫ
1. Металлографический микроскоп ....……………………………………………….........

2. Окуляр-микрометр ......………………………………………………………….................

3. Специальный образец (травленый микрошлиф)
^ 6.5.2. ИССЛЕДОВАНИЕ МИКРОСТРУКТУРЫ
Металлографическое исследование спеченных материалов заключается в идентификации и определении количества, формы и распределения твердых фаз и полостей (пор). Наблюдению пористости посвящена работа 26.

Пространственное расположение фаз сказывается на порошковых материалах значительно сильнее, чем на большинстве литых. Наряду с чисто качественной оценкой структуры нужно определить количество, форму и распределение отдельных фаз.

Непосредственный подсчет, классификация и измерения геометрических элементов микроструктуры позволяют получить представление о пространственном строении материала.

Существует три способа анализа: точечный, линейный и планиметрический. В первом случае выборку проводят системой точек, во втором - случайной прямой, в третьем -случайной плоскостью.(рис. 114)




Рис.114. Методы количественного анализа структуры, заштрихованы сечения

исследуемых фаз. Т - узлы сети, l - секущие, L - измерительная линия,

Ph - пересечения секущей с границей фаз.
В таблице представлены характеристики структуры, которые можно определить названными тремя способами измерений.

Из данных таблицы видно, что наиболее универсальным и полным по числу доступных характеристик является линейный анализ.

Линейный анализ позволяет описать пространственное расположение элементов структуры при помощи различных параметров:

а) объемной доли определенного элемента, например объема фазы
 li

f = ───── ,

L
получаемой путем суммирования длин отрезков секущих, проходящих через зерна фазы 1i, и длины L самой линии измерения (рис.114)

Таблица 12

Характеристика методов стереологического анализа структур


Метод анализа

Измеряемые величины

Фиксируемые пространственные параметры

Точечный

Число точек определяемой фазы, отнесенное к общему числу

точек в измеряемой системе

Npkt.

Объемная доля f.

Линейный

Длины отрезков измерительной

линии, пересекающие фазу Li ,

Число секущих Ni.

Число точек пересечения с границами зерен Zk с границами фаз Zph.

Число отрезков секущей в функции их длины.

Объемная доля f.

Удельная поверхность S.

То же, для границ зерен Sk.

То же, для меж фазных границ Sk. Степень контакта С.

Средний диаметр распределения зерен по величине.

Планиметрический

Площадь А определяемой фазы.

Число сечений измеряемой пло-

щади Na.

Число плоских сечений как функция их среднего диаметра.



Объемная доля f.

Удельная поверхность S однозначно определяемой формы.

Средний диаметр этой же формы.

Распределение размеров зерен по вели-

чине однозначно определяемой формы.


б) удельной поверхности элемента структуры, которую рассчитывают по числу отрезков случайных секущих Ni, проходящих через элемент структуры и их полной длины.

Ni

S = ────────

 li
Получив таким путем поверхность, отнесенную к единице объема соответствующего элемента структуры определяют дисперсность этой фазы.





Рис.115. Зерна сплава при наблюдении в окуляр-микрометре (схема).

в) В многофазных структурах можно определить поверхность раздела фаз, отнесенную к единице объема образца, поделив чиcло пересеченных измерительной линией границ раздела фаз ZPh к длине этой линии:

2 Zph

Sph = ───────

L
Аналогично определяют их удельную поверхность по числу Zk, пересеченных границ зерен:

4 Zk

Sk = ──────

L

Эту границу следует рассматривать как двойную поверхность , принадлежащую двум прилежащим зернам.

г) Измерение величин Zk и ZPh дает еще одну количественную информацию, имеющую значение для порошковых материалов - это степень контакта (смежность), характеризующую отношение поверхности границ зерен ко всей поверхности фазы S:

Sk   2 Zk

С = ─── = ────────

S 2Zk + ZPh
Эта величина - правильная дробь. У многофазных тел она определяет объемную долю данной фазы.

д) Механические свойства многофазных материалов могут быть определены по среднему межфазному расстоянию в матрице:

L -   Li

p = 2  ───────

ZPh
Линейный анализ можно проводить с помощью линейки на микроснимке или, наблюдая микроструктуру непосредственно.(Рис.115) В настоящее время аналитические микроскопы оснащаются компьютерными системами анализа микроструктур, самостоятельно выполняющими необходимые расчеты параметров фаз.
^ 6.5.3. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.
Студент получает подготовленный микрошлиф, устанавливает его на столик микроскопа и, наблюдая картинку через окуляр-микрометр, производит определение суммарной длины секущих и число пересечений линии в окуляр микрометре с зернами выделенной фазы. Зарисовывает микроструктуру и рассчитывает параметры сплава по приведенным выше формулам.
^ 6.5.4. ТРЕБОВАНИЯ К ОТЧЕТУ
В отчете должен быть описан принцип линейного анализа микроструктуры. Отчет должен содержать зарисованную микроструктуру и таблицу наблюдений с рассчитанными параметрами структуры.

Отчет содержит 2-3 стр.

Отчет подписывается студентом.
6.5.5. ЛИТЕРАТУРА.
1. Сплавы твердые спеченные. Методы определения пористости и микроструктуры. ГОСТ 9391.
^ 6.5.6. КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Что позволяет определить наблюдение микроструктуры ?

2. Опишите методику наблюдения микроструктуры.

3. Какие технологические параметры могут оказать влияние на

микроструктуру изделия ?
^ 6.5.7. ПРОТОКОЛ ИЗМЕРЕНИЙ.
Таблица измерений показана на рисунке 116.(см. ниже)

№№

Ni

Zk

ZPh

f

S

SPh

Si

C

P


^ ЛАБОРАТОРНАЯ РАБОТА № 34

6.6. Наблюдение основных структурных составляющих: пор, карбида вольфрама, связки, -фазы.

Металлографическое исследование спеченных твердых сплавов заключается в идентификации и определении количества, формы и распределения твердых фаз и полостей (пор).

Пространственное расположение фаз оказывает сильное влияние на прочность, твердость и износостойкость твердых сплавов. Наряду с чисто качественной оценкой структуры нужно определить количество, форму и распределение отдельных фаз.

Металлографический анализ партий твердого сплава проводят для каждой из выпускаемых партий. В соответствии с ГОСТ 9391 предусмотрено определение следующих фаз и структурных составляющих:

- величина зерна -фазы, то есть зерна карбида вольфрама,

- величина зерна сложного карбида титана, или TiCW-фазы,

- характер распределения связки, или - -фазы,

- присутствие и характер распределения -фазы - двойного карбида вольфрама и кобальта,

- включение свободного углерода (в виде графита),

- степень пористости, характер и величина пор.
^ КАРБИДНАЯ ФАЗА СТРУКТУРЫ ТВЕРДЫХ СПЛАВОВ
Группа сплавов ВК. В структуре твердых сплавов группы ВК 80-90% занимают зерна карбида вольфрама - это характерные угловатые кристаллы, треугольной, квадратной и четырехугольной формы. Размеры зерен колеблются от 0,5 до 10 мкм, в отдельных специальных случаях - до 30 мкм в сплавах с увеличенным размером карбидных зерен.

При травлении щелочным раствором железосинеродистого калия (красная кровяная соль) зерна карбида вольфрама не окрашиваются и выглядят под микроскопом блестящими белыми частицами с голубоватым оттенком.

Типичные структуры твердых сплавов группы ВК с различным содержанием кобальта, величиной частиц и их формой показаны на рисунке 117 (ГОСТ 9391).




Рис.117. Сплав ВК8 с различной величиной зерна.
Обычно зерна карбида вольфрама равномерно распределены по сечению материала. Однако встречается и карбидная неоднородность, при которой крупные зерна объединяются в скопления (рис 118). Карбидная неоднородность ухудшает изнашиваемость твердых сплавов - вместо равномерного износа по всей контактирующей поверхности трущихся пар, наблюдается износ в виде вырыва блоков, что приводит к неравномерному и ускоренному изнашиванию. Этот вид искажения микроструктуры крайне нежелателен для прецизионного и особенно - мелкоразмерного инструмента.

^ Группа сплавов ТК. Почти весь объем структуры титановольфрамкобальтовых твердых сплавов занимает карбидная фаза, которая у большинства марок состоит из зерен карбида вольфрама и сложного карбида титана. Содержание сложного карбида, зерна которого на снимках выглядят более темными, зависит от марки сплава. В сплаве Т5К10, например, на долю сложного






Рис.118.Структура сплавов ВК. Карбидная фаза. А - нормальное распределение, Б - скопление крупных частиц. 1000х

А Б
карбида титана приходится 15-20%, в сплавах Т15К6 и Т15К8 - 4-50% и в сплаве Т30К4 - 90-95% всего объема структуры. Остальная часть карбидной фазы этих сплавов - зерна карбида вольфрама.

Типичные структуры твердых сплавов группы ТК с различной величиной зерна карбидной фазы ТК ( фаза) показаны на рисунке 119 (ГОСТ 9391).




Рис.119. Структура сплавов ТК. Титановольфрамовая карбидная фаза с различной величиной зерна (сплав Т15К6). 1500Х.
Группа сплавов ТН. В безвольфрамовых и маловольфрамовых твердых сплавах этой группы используют карбид титана, зерна которого в процессе спекания не претерпевают изменений ни по химическому составу, ни по величине или форме.

При травлении зерна карбида титана окрашиваются в темный цвет, в то время как связка остается светлой.

   СЛОЖНЫЙ КАРБИД ТИТАНА
Сложный карбид титана является твердым раствором карбида вольфрама в карбиде титана.

Формирование зерна сложного карбида титана происходит при высокой температуре спекания. В начальный период спекания растворение карбида вольфрама происходит только в поверхностном слое частиц карбида титана и образуется двухфазное зерно, сердцевина которого - это первичный кристаллик карбида титана, окруженный оболочкой из твердого раствора карбида вольфрама в карбиде титана.

С увеличением продолжительности спекания толщина оболочки увеличивается и в конечном итоге кристалл карбида титана полностью исчезает. При полном насыщении зерна карбида






А Б
Рис.120. Структура сложного карбида. А - вольфрам-титановый, Б - титан-

молибден-рениевый. 1500х

титана карбидом вольфрама образуется однородное по химическому составу зерно сложного карбида титана - которое и является конечной целью процесса спекания сплавов ТК, так как режущие свойства пластинок из однородных зерен сложного карбида титана значительно выше, чем у пластинок, содержащих в своей структуре двухфазные зерна.

Зерна сложного карбида титана имеют округлую, приближающуюся к сферической, форму и обособлены друг от друга.

При травлении зерно сложного карбида титана окрашивается в светлокоричневый цвет, а если получены двухфазные зерна, то центр зерна получается светлым.
^ ЦЕМЕНТИРУЮЩАЯ СВЯЗКА
В качестве материала связки в твердых сплавах использую кобальт, никель, железо и различные сплавы и композиции на основе никеля, железа, меди и т.п.

При травлении шлифа "на связку", она выступает в виде тонких прожилок и точек вокруг зерен основы: в сплавах ВК, ТК, ТТК - темного цвета, в сплавах ТН, КНТ, КХН - темного.

Дефект структуры цементирующей связки - неравномерность распределения по сечению. Наилучшим является равномерное распределение связки в виде тонких прожилок, окружающих зерна основы, толщиной не более 1 мкм.

Наиболее частые случаи распределения связки показаны на рисунке 121.
^ ГРАФИТНЫЕ ВКЛЮЧЕНИЯ
Твердосплавные пластинки спекаются в науглероживающих условиях: углерод присутствует в атмосфере печи, в засыпке, при разложении пластификатора. При спекании с избыточным содержанием углерода в сплаве появляется свободный углерод в виде графита.







Рис.121.Характер распределения связки.

А - равномерное, Б - включение кобальта. 1000х (ГОСТ 9391)



А Б
Включения графита выявляются на нетравленных шлифах в виде черных чешуек, распределенных либо равномерно по всему сечению шлифа, либо в виде отдельных групп.

Оптимальным является равномерное распределение, наихудшим - скопление включений графита вытянутых по сечению шлифа, как это показано на рисунке 122.

Графитовые включения, при заметном их количестве, существенно снижают механическую прочность изделий.




Рис.122. Графитовые включения. А - 0,2%, Б - 2,7%, В - 3,5%.
  ОБЕЗУГЛЕРОЖИВАНИЕ ИЛИ ОБРАЗОВАНИЕ -ФАЗЫ
При спекании с недостаточным содержанием углерода происходит обезуглероживание, которое выражается в образовании двойного карбида вольфрама и кобальта, содержание углерода в котором почти в два раза меньше, чем в монокарбиде вольфрама.

Однозначного мнения о влиянии тэта-фазы на эксплуатационные свойства твердых сплавов нет, но в зависимости от формы и распределения тета-фазы существенно меняются прочность и твердость сплава.

Стандартом различают форму включений тета-фазы: в виде "озерков", "кружев", мелких включений и распределение их: по переферии, в центре, по всей площади, в виде отдельных скоплений (см. рис.123.). После травления на тета-фазу участки, содержащие тета-фазу, имеют коричнево-красноватый оттенок.







Рис.123. Обезуглероженные участки и формы -фазы. А - озерковая, Б - кружевная.

А Б

 

ПОРИСТОСТЬ
Все твердые сплавы имеют пористость. Равномерная пористость, если поры не превышают размеров мелких зёрен сплава не влияет на свойства изделий, повышенная - снижает ее.

Стандартом предусмотрена система оценки пористости в баллах, по которой величина пористости разделяется на две основные группы: до 50 мкм, свыше 50 мкм. (Приложение 2)

Дополнительно оценивается количество пор и их распределение по площади шлифа.





Пористость наблюдают на нетравленных шлифах и ее трудно отличить от графитовых включений. Поскольку влияние включений и пористости на прочность материала одинаков, стандартом разрешено определять суммарное количество этих видов дефектов, изменяющих свойства пластинок в одном направлении.

Рис.124. Пористость твердых сплавов. А - 0,2%, Б - 2,5%.

^ 6.6.1. АППАРАТУРА И МАТЕРИАЛЫ
1. Металлографический микроскоп ........……………………………………………....

2. Окуляр-микрометр ..............……………………………………………………..........

3. Специальный образец (травленый микрошлиф)
^ 6.6.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.
Студент получает подготовленный микрошлиф, устанавливает его на столик микроскопа и, наблюдая картинку через окуляр-микрометр, производит определение параметров структуры наблюдаемого образца. Микроструктура зарисовывается и описывается.
^ 6.6.3. ТРЕБОВАНИЯ К ОТЧЕТУ
В отчете должны быть описаны виды структурных составляющих сплава и их значение при эксплуатации материала.

Отчет должен содержать зарисованную микроструктуру.

Отчет содержит 2-3 стр.

Отчет подписывается студентом.
6.6.4. ЛИТЕРАТУРА.
1. Сплавы твердые спеченные. Методы определения пористости и микроструктуры. ГОСТ 9391.

2. Методика структурного металлографического анализа твердых сплавов. М., Машгиз, 1962 г.
^ 6.6.5. КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Что позволяет определить наблюдение микроструктуры ?

2. Опишите методику наблюдения микроструктуры.

3. Какие технологические параметры могут оказать влияние на микроструктуру изделия ?
^ ЛАБОРАТОРНАЯ РАБОТА № 35
6.7. Определение параметров и вида -фазы под микроскопом.
При спекании с недостаточным содержанием углерода происходит обезуглероживание, которое выражается в образовании двойного карбида вольфрама и кобальта, содержание углерода в котором почти в два раза меньше, чем в монокарбиде вольфрама.

Однозначного мнения о влиянии -фазы на эксплуатационные свойства твердых сплавов нет, но в зависимости от формы и распределения -фазы существенно меняются прочность и твердость сплава.

Стандартом различают форму включений -фазы: в виде "озерков", "кружев", мелких включений и распределение их: по переферии, в центре, по всей площади, в виде отдельных скоплений (см. рис.125.).






Рис.125. Обезуглероженные участки и формы -фазы. А - озерковая, Б - кружевная.

(ГОСТ 9391)


А Б


^ 6.7.1. АППАРАТУРА И МАТЕРИАЛЫ
1. Металлографический микроскоп ………………………………………………...........

2. Окуляр-микрометр .....………………………………………………………..................

3. Специальный образец (травленый микрошлиф)
^ 6.7.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.
Студент получает подготовленный микрошлиф, устанавливает его на столик микроскопа и, наблюдая картинку через окуляр-микрометр, производит определение параметров тэта-фазы. Форма тэта-фазы зарисовывается и описывается.
^ 6.7.3. ТРЕБОВАНИЯ К ОТЧЕТУ
В отчете должны быть описаны вид и форма тэта-фазы и её значение при эксплуатации материала.

Отчет должен содержать зарисованную микроструктуру.

Отчет содержит 2-3 стр.

Отчет подписывается студентом.
6.7.4. ЛИТЕРАТУРА.
1. Сплавы твердые спеченные. Методы определения пористости и микроструктуры. ГОСТ 9391.

2. Методика структурного металлографического анализа твердых сплавов. М., Машгиз, 1962 г.
^ 6.7.5. КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Что позволяет определить наблюдение микроструктуры ?

2. Опишите методику наблюдения микроструктуры.

3. Какие технологические параметры могут оказать влияние на микроструктуру изделия ?
^ ЛАБОРАТОРНАЯ РАБОТА №36

6.8. Определение пористости и графитовых включений спечёных образцов под микроскопом.

 

ГРАФИТНЫЕ ВКЛЮЧЕНИЯ
Твердосплавные пластинки спекаются в науглероживающих условиях: углерод присутствует в атмосфере печи, в засыпке, при разложении пластификатора. При спекании с избыточным содержанием углерода в сплаве появляется свободный углерод в виде графита.

Включения графита выявляются на нетравленных шлифах в виде черных чешуек, распределенных либо равномерно по всему сечению шлифа, либо в виде отдельных групп и оцениваются путём сравнения с эталонными фотографиями, показанными в Приложении 3.

Оптимальным является равномерное распределение, наихудшим - скопление включений графита вытянутых по сечению шлифа, как это показано на рисунке 126-в.



Графитовые включения, при заметном их количестве, существенно снижают механическую прочность изделий.

Рис.126. Графитовые включения. А - 0,2%, Б - 2,7%, В - 3,5%.

 

ПОРИСТОСТЬ
Все твердые сплавы имеют пористость. Небольшая пристость не влияет на свойства изделий, повышенная - снижает ее.

Стандартом предусмотрена система оценки пористости в баллах, по которой величина пористости разделяется на две основные группы:

- до 50 мкм,

- свыше 50 мкм.

Дополнительно оценивается количество пор и их распределение по площади шлифа, как это показано в Приложении 2 и 3.

Пористость наблюдают на нетравленных шлифах и ее трудно отличить от графитовых включений. Поскольку влияние включений графита и пористости на прочность материала одинаково, стандартом разрешено определять суммарное количество этих видов дефектов, изменяющих свойства пластинок в одном направлении.






Рис.127. Пористость твердых сплавов. А - 0,2%, Б - 2,5%.

^ 6.8.1. АППАРАТУРА И МАТЕРИАЛЫ
1. Металлографический микроскоп ......………………………………………………......

2. Окуляр-микрометр ............………………………………………………………...........

3. Специальный образец (травленый микрошлиф)
^ 6.8.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.
Студент получает подготовленный микрошлиф, устанавливает его на столик микроскопа и, наблюдая картинку через окуляр-микрометр, производит определение параметров графитовых включений и пористости в наблюдаемом образце. Микроструктура зарисовывается и описывается. По таблицам стандарта ГОСТ 9391 (Приложение 3 и 4) определяется балл структурной составляющей.
^ 6.8.3. ТРЕБОВАНИЯ К ОТЧЕТУ
В отчете должны быть описаны виды графитовых включений и пористости и их балльность.

Отчет должен содержать зарисованную микроструктуру.

Отчет содержит 2-3 стр.

Отчет подписывается студентом.
6.8.4. ЛИТЕРАТУРА.
1. Сплавы твердые спеченные. Методы определения пористости и микроструктуры. ГОСТ 9391.

2. Методика структурного металлографического анализа твердых сплавов. М., Машгиз, 1962 г.
^ 6.8.5. КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Что позволяет определить наблюдение микроструктуры ?

2. Опишите методику наблюдения микроструктуры.

3. Какие технологические параметры могут оказать влияние на микроструктуру изделия ?
^ ЛАБОРАТОРНАЯ РАБОТА № 37
6.9. Определение среднего размера зёрен карбида вольфрама под микроскопом.
В настоящее время существуют достаточно разработанные методы количественной оценки непосредственно элементов струк­туры.

Количественная размерная оценка структуры имеет ряд бес­спорных преимуществ, из которых главное — возможность постро­ения графиков зависимости служебных свойств изделий от их
структуры, а также возможность эффективного использования лабораторных наблюдений для улучшения технологического процесса производства.

Наиболее точным из количественных методов оценки является планиметрический, по которому состав структуры сплава опреде­ляется путем измерения площадей, занимаемых структурными составляющими на общей площади шлифа. Однако этот метод слишком трудоемок и поэтому не может быть рекомендован для заводской практики исследования структуры.

В основу рассматриваемой здесь методики исследования структуры положен линейный метод количественного анали­за, математически базирующийся на геометрическом принципе
Кавальери, из которого следует, что отношение линейных отрезков двух геометрических фигур будет равно отношению их площадей и отношению их объемов в условиях параллельно секущих плоско­стей:

= =

В применении к элементам структуры это означает, что можно ограничиться измерением относительной длины отрезков, прихо­дящихся на долю отдельных структурных составляющих, и тем самым определить процентное содержание этих составляющих в объеме сплава.

Если пересечь видимую в микроскоп структуру (или ее фото­графию) прямой линией, то контуры зерен отдельных фаз струк­туры рассекут ее на ряд отрезков. На каждую структурную фазу придется определенная (суммарная) длина линейных отрезков, пропорциональная содержанию фазы в объеме сплава. При работе с микроскопами в качестве секущей линии может быть использована линейка-окуляр микроскопа (подсчет производится вдоль обреза линейки).

Процентное содержание искомой фазы определяется отноше­нием числа делений, отсекаемых этой фазой на линейке окуляр-микрометра, к числу делений всей линейки окуляра. Подсчет мо­жет проводиться также и в миллиметрах или микронах с учетом цены деления окуляр-микрометра.

Для того чтобы получить достоверные результаты, нельзя огра­ничиваться однократным измерением. Считают, что для практических целей достаточно надежные результаты дает из­мерение 200—250 частиц.

Это правило было проверено при определении процентного содержания крупных зерен карбида вольфрама в структуре сплава. Измерения проводились на различных количествах полей зрения (от 1 до 20) одного и того же шлифа.

Результаты последующего и предыдущего опытов сравнива­лись и на основании этого устанавливалась степень расхождения и ошибка в процентах:


Число замеренных полей

1

3

5

7

10

15

20

Погрешность (±)

-

3,1

2,3

2

1,5

1,48

1,46


Средний диаметр замеренных зерен составлял 5 мкм. При изме­рении на пяти полях длина секущей была в 100, а при измерении на десяти полях в 200 раз больше среднего диаметра измеряемых зерен.

Техника линейного метода определения среднего размера зерна иллюстрируется приводимым ниже примером.

Пример. Определим средний размер зерен карбида воль­фрама в структуре сплава группы ВК.

Линейка окуляр-микрометра накладывается на изображение структуры в поле зрения микроскопа. (Полученное изображение структуры схематически показано на рисунке фиг. 128. Зерна кар­бида вольфрама схематически изображены в виде многоугольни­ков.) Секущая линия окулярмикрометра пересекает крупные и мелкие зерна структуры сплава. На всем протяжении неподвижной линейки замеряется величина каждого крупного зерна в делениях окуляра. В нашем примере на одно поле зрения приходятся зерна следующих размеров: 7, 7, 7, 10, 4, 5, 7, 2 делений окуляра. Затем поле зрения переносят на другие участки шлифа и вновь замеряют размеры зерен, каждый раз фиксируя резуль­таты в протоколе записи первичных данных. Зерна карбида вольфрама замеряются по наибольшей грани при увеличении микроскопа не менее Х1000.





Фиг. 128. Зерна сплава при наблюдении в окуляр-микрометре (схема).
После измерения зерен на пяти или десяти полях шлифа подсчитывается общее число делений, пересекающих зёрна. Полученное значение делится на число измеренных зёрен.

^ 6.9.1. АППАРАТУРА И МАТЕРИАЛЫ
1. Металлографический микроскоп ..... ........ ММУ3

2. Окуляр-микрометр ........ ................. ОМО

3. Специальный образец (травленый микрошлиф)
^ 6.9.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.
Студент получает подготовленный микрошлиф, устанавливает его на столик микроскопа и, наблюдая картинку через окуляр-микрометр, производит определение параметров структуры наблюдаемого образца. Микроструктура зарисовывается и описывается. Определяется средний размер зерна.
Таблица наблюдений содержит результаты измерений и имеет вид, показанный на рисунке 129


№№

Количество зёрен в 1 мкм

Количество зёрен в 2 мкм

Количество зёрен в 3 мкм

Количество зёрен в 4 мкм

Количество зёрен в 5 мкм

Количество зёрен в 6 мкм


^ 6.9.3. ТРЕБОВАНИЯ К ОТЧЕТУ
В отчете должны быть описаны виды структурных составляющих сплава и их значение при эксплуатации материала.

Отчет должен содержать зарисованную микроструктуру и таблицу наблюдений.

Отчет содержит 2-3 стр.

Отчет подписывается студентом.
6.9.4. ЛИТЕРАТУРА.
1. Сплавы твердые спеченные. Методы определения пористости и микроструктуры. ГОСТ 9391.

2. Методика структурного металлографического анализа твердых сплавов. М., Машгиз, 1962 г.
^ 6.9.5. КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Что позволяет определить наблюдение микроструктуры ?

2. Опишите методику наблюдения микроструктуры.

3. Какие технологические параметры могут оказать влияние на микроструктуру изделия ?
Лабораторная работа № 38
^ 6.10. Определение гранулометрического состава спечённого изделия под микроскопом

В настоящее время существуют достаточно разработанные методы количественной оценки непосредственно элементов струк­туры.

Количественная размерная оценка структуры имеет ряд бес­спорных преимуществ, из которых главное — возможность постро­ения графиков зависимости служебных свойств изделий от их
структуры, а также возможность эффективного использования лабораторных наблюдений для улучшения технологического процесса производства.

Наиболее точным из количественных методов оценки является планиметрический, по которому состав структуры сплава опреде­ляется путем измерения площадей, занимаемых структурными составляющими на общей площади шлифа. Однако этот метод слишком трудоемок и поэтому не может быть рекомендован для заводской практики исследования структуры.

В основу рассматриваемой здесь методики исследования структуры положен линейный метод количественного анали­за, математически базирующийся на геометрическом принципе
Кавальери, из которого следует, что отношение линейных отрезков двух геометрических фигур будет равно отношению их площадей и отношению их объемов в условиях параллельно секущих плоско­стей:

= =

В применении к элементам структуры это означает, что можно ограничиться измерением относительной длины отрезков, прихо­дящихся на долю отдельных структурных составляющих, и тем самым определить процентное содержание этих составляющих в объеме сплава.

Если пересечь видимую в микроскоп структуру (или ее фото­графию) прямой линией, то контуры зерен отдельных фаз струк­туры рассекут ее на ряд отрезков. На каждую структурную фазу придется определенная (суммарная) длина линейных отрезков, пропорциональная содержанию фазы в объеме сплава. При работе с микроскопами в качестве секущей линии может быть использована линейка-окуляр микроскопа (подсчет производится вдоль обреза линейки).

Процентное содержание искомой фазы определяется отноше­нием числа делений, отсекаемых этой фазой на линейке окуляр-микрометра, к числу делений всей линейки окуляра. Подсчет мо­жет проводиться также и в миллиметрах или микронах с учетом цены деления окуляр-микрометра.

Для того чтобы получить достоверные результаты, нельзя огра­ничиваться однократным измерением. Считают, что для практических целей достаточно надежные результаты дает из­мерение 200—250 частиц.

Это правило было проверено при определении процентного содержания крупных зерен карбида вольфрама в структуре сплава. Измерения проводились на различных количествах полей зрения (от 1 до 20) одного и того же шлифа.

Результаты последующего и предыдущего опытов сравнива­лись и на основании этого устанавливалась степень расхождения и ошибка в процентах:


Число замеренных полей

1

3

5

7

10

15

20

Погрешность (±)

-

3,1

2,3

2

1,5

1,48

1,46


Средний диаметр замеренных зерен составлял 5 мкм. При изме­рении на пяти полях длина секущей была в 100, а при измерении на десяти полях в 200 раз больше среднего диаметра измеряемых зерен. Основные структурные характеристики следует замерять не менее, чем на десяти полях. Опытный металлограф может полу­чить такие же результаты при измерении на пяти полях, производя замеры на участках структуры, наиболее типичных для данного шлифа.

Техника линейного метода анализа структуры иллюстрируется приводимым ниже примером.

Пример. Определим количество крупных зерен карбида воль­фрама в структуре сплава группы ВК.

Линейка окуляр-микрометра накладывается на изображение структуры в поле зрения микроскопа. (Полученное изображение структуры схематически показано на рисунке фиг. 130. Зерна кар­бида вольфрама схематически изображены в виде многоугольни­ков.) Секущая линия окулярмикрометра пересекает крупные и мелкие зерна структуры сплава. На всем протяжении неподвижной линейки замеряется величина каждого крупного зерна в делениях окуляра. В нашем примере на одно поле зрения приходятся зерна следующих размеров: 4, 10, 16, 5, 8, 10, 10 делений окуляра.

З

атем поле зрения переносят на другие участки шлифа и вновь замеряют размеры зерен, каждый раз фиксируя резуль­таты в протоколе записи первичных данных (табл. 3). Зерна карбида вольфрама замеряются по наибольшей грани при увеличении микроскопа не менее Х1000.


Фиг. 130. Зерна сплава при наблюдении в окуляр-микрометре (схема).
После измерения зерен на пяти или десяти полях шлифа подсчитывается общее число делений, пересекающих зёрна выбранного класса. Шкала имеет 100 делений и, следовательно, общая длина секущей на пяти полях зрения равна 500 делениям. Из них на зерна определённых размеров прихо­дится:

Ni = Li n

Принимая общую длину секущей за 100%, определяют про­центное содержание зерен карбида вольфрама данного класса :

500 делений ....... 100%

Ni делений ....... х%
Во взятом примере структурная характеристика выражена в виде процентного содержания мелких зерен, но, зная цену деления окуляра и размер каждого зерна в делениях, можно найти размер зерна в микронах и процентное содержание каждой группы зерен по фракциям.

С помощью линейного метода определяются и другие количе­ственные характеристики структуры твердых сплавов: содержание фазы карбида вольфрама, количество зерен кольце­вой формы в титановых твердых сплавах, степень пористости и карбидной неоднородности и содержание -фазы.
^ 6.10.1. АППАРАТУРА И МАТЕРИАЛЫ
1. Металлографический микроскоп .....……………………………………………....... ММУ3

2. Окуляр-микрометр ................……………………………………………………........ ОМО

3. Специальный образец (травленый микрошлиф)
^ 6.10.2. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ.
Студент получает подготовленный микрошлиф, устанавливает его на столик микроскопа и, наблюдая картинку через окуляр-микрометр, производит определение параметров структуры наблюдаемого образца. Микроструктура зарисовывается и описывается. Определяется средний размер зерна.

Таблица наблюдений содержит результаты измерений и имеет вид, показанный на рисунке 131


№№

Количество зёрен в 1 мкм

Количество зёрен в 2 мкм

Количество зёрен в 3 мкм

Количество зёрен в 4 мкм

Количество зёрен в 5 мкм

Количество зёрен в 6 мкм


Кривая распределения количества зёрен по фракциям.





Рис.132. Примерный вид кривой

распределения, полученной при

выполнении лабораторной ра-

боты.
^ 6.10.3. ТРЕБОВАНИЯ К ОТЧЕТУ
В отчете должны быть описаны виды структурных составляющих сплава и их значение при эксплуатации материала.

Отчет должен содержать зарисованную микроструктуру и таблицу наблюдений.

Отчет содержит 2-3 стр.

Отчет подписывается студентом.
6.10.4. ЛИТЕРАТУРА.
1. Сплавы твердые спеченные. Методы определения пористости и микроструктуры. ГОСТ 9391.

2. Методика структурного металлографического анализа твердых сплавов. М., Машгиз, 1962 г.
^ 6.10.5. КОНТРОЛЬНЫЕ ВОПРОСЫ.
1. Что позволяет определить наблюдение микроструктуры ?

2. Опишите методику наблюдения микроструктуры.

3. Какие технологические параметры могут оказать влияние на микроструктуру изделия ?
^ 7. ОФОРМЛЕНИЕ ЛАБОРАТОРНЫХ РАБОТ

Лабораторные работы оформляются в соответствии с требованиями ГОСТ 2.104, ГОСТ 2.105, ГОСТ 2.106, ГОСТ 2.108 на оформление текстовых документов.

Для отчета по проведенным лабораторным работам используют листы писчей бумаги формата А4, сшитые (скрепленные) вместе в виде тетради (допускается применение скоросшивателей, скрепление спиралями и т.д.) с плотной обложкой из чертежной бумаги. На обложке выполняется титульная надпись по образцу.  На второй странице помещают содержание отчета в виде перечня выполненных работ с указанием страниц.

Отчет по каждой лабораторной работе должен содержать краткое описание сути работы (теоретическая часть), порядок ее выполнения и таблицу наблюдений с необходимыми пояснениями, эскизами и графиками. В отчёте записываются ответы на контрольные вопросы по выполненной работе.

 



Департамент образования города Москва

^ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ №8

Отчет по лабораторной работе №__

учебного курса

ИНСТРУМЕНТАЛЬНЫЕ ТВЁРДЫЕ СПЛАВЫ

Студент ──────────────── ───────────────────

(Подпись) (Фамилия и инициалы)
Преподаватель──────────── ───────────────────

(Подпись) (Фамилия и инициалы)

МОСКВА 200 __ г.






Рис.133. Оформление титульного листа




Рис.134. Оформление текста и

размеры рамки.


Каждая лабораторная работа подписывается студентом отдельно.

Защита (сдача) лабораторных работ может производиться по мере их выполнения или всех вместе по выбору студента и по согласованию с преподавателем.

Оценка работы (зачет - незачет) проставляется в зависимости от качества оформления работы и от знания студентом сути выполненной работы, а также от качества изложения пройденного материала.



Автор, чл. Корр. РАМТН

канд.техн.наук Борисенко Н.И.
ПРИЛОЖЕНИЕ 1
Типовые формы частиц

 





Сферическая Округлая Угловатая

( lmax/lmin ( lmax/lmin lmax/lmin от 2,0 до 5,0

от 1,0 до 1,2) от 1,2 до 2,0) а) с наличием б) с наличием

криволинейных острых углов и

поверхностей плоских граней
 


Стержневая Игольчатая Пластинчатая или чешуйчатая

(lmax/lmin (lmax/lmin 7) сферической, 8) брызгооб-

от 5,0 до 25,0) свыше 25,0) разной или угловатой формы




Дендритная Частицы с внутренними пустотами

а) губчатая б) пористая с в) полая с нали-

со сквозными закры- чием единичных

тыми порами пустот с площадью

более 25% площади

проекции частицы

ПРИЛОЖЕНИЕ 2

Шкала оценки карбидной неоднородности (по Методике ВНИИИнструмента)















Балл 0

Балл 1

Балл 2

Балл 3

Балл 4

Балл 5

Структура сплава ВК8 (Х1000) Схема микроструктуры

ПРИЛОЖЕНИЕ 3

Шкала для оценки видимой пористости по ГОСТ 9391




ПРИЛОЖЕНИЕ 4

Шкала для оценки включений структурно-свободного углерода по ГОСТ 9391



1   2   3   4   5   6



Скачать файл (9466 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации