Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по курсу Экономико-математические методы и модели - файл 1.doc


Лекции по курсу Экономико-математические методы и модели
скачать (1623 kb.)

Доступные файлы (1):

1.doc1623kb.26.11.2011 10:11скачать

содержание

1.doc

  1   2   3   4   5   6
ЛЕКЦИЯ 1. Основные понятия и определения курса «Экономико-математические методы и модели»

Что такое модель и для чего она нужна?

В общем виде модель можно определить как условный образ (упрощенное изображение) реального объекта (процесса), который создается для более глубокого изучения действительности. Метод исследования, базирующийся на разработке и использовании моделей, называется моделированием. Например, модель самолета продувают в аэродинамической трубе, вместо того, чтобы испытывать настоящий самолет - это дешевле. При теоретическом исследовании атомного ядра физики представляют его в виде капли жидкости, имеющей поверхностное натяжение, вязкость и т.п. Необходимость моделирования обусловлена сложностью, а порой и невозможностью прямого изучения реального объекта (процесса). Значительно доступнее создавать и изучать прообразы реальных объектов (процессов), т.е. модели. Можно сказать, что теоретическое знание о чем-либо, как правило, представляет собой совокупность различных моделей. Эти модели отражают существенные свойства реального объекта (процесса), хотя на самом деле действительность значительно содержательнее и богаче.

Подобие между моделируемым объектом и моделью может быть физическое, структурное, функциональное, динамическое, вероятностное и геометрическое. При физическом подобии объект и модель имеет одинаковую или сходную физическую природу. Структурное подобие предполагает наличие сходства между структурой объекта и структурой модели. При выполнении объектом и моделью под определенным воздействием сходных функций наблюдается функциональное подобие. При наблюдении за последовательно изменяющимися состояниями объекта и модели отмечается динамическое подобие. Вероятностное подобие отмечается при наличии сходства между процессами вероятностного характера в объекте и модели. Геометрическое подобие имеет место при сходстве пространственных характеристик объекта и модели.

На сегодняшний день общепризнанной единой классификации моделей не существует. Однако из множества моделей можно выделить словесные, графические, физические, экономико-математические и некоторые другие типы моделей.

Словесная или монографическая модель представляет собой словесное описание объекта, явления или процесса. Очень часто она выражается в виде определения, правила, теоремы , закона или их совокупности.

Графическая модель создается в виде рисунка, географической карты или чертежа. Например, зависимость между ценой и спросом может быть выражена в виде графика, на оси ординат, которого отложен спрос (D), а на оси абсцисс - цена (Р). Кривая нам наглядно иллюстрирует, что с ростом цены спрос падает, и наоборот. Конечно, данную зависимость можно выразить и словесно, но графически она намного нагляднее (рис. 1.1).

D

P

Рис. 1.1. Графическая модель, отображающая зависимость между спросом и ценой

Физические или вещественные модели создаются для конструирования пока еще несуществующих объектов. Создать модель самолета или ракеты для проверки ее аэродинамических свойств значительно проще и экономически целесообразнее, чем изучать эти свойства на реальных объектах.

Экономико-математические модели отражают наиболее существенные свойства реального объекта или процесса с помощью системы уравнений. Содержанием любой экономико-математической модели является выраженная в формально-математических соотношениях экономическая сущность условий задачи и поставленной цели. В модели экономическая величина представляется математическим соотношением, но не всегда математическое соотношение является экономическим. "Экономико-математическая модель представляет собой концентрированное выражение общих взаимосвязей и закономерностей экономического явления в математической форме." (академик В.С. Немчинов)

Единой классификации экономико-математических моделей также не существует, хотя можно выделить наиболее значимые их группы в зависимости от признака классификации.

По степени агрегирования объектов моделирования различают модели:

  • микроэкономические;

  • одно-, двухсекторные (одно-, двухпродуктовые);

  • многосекторные (многопродуктовые);

  • макроэкономические;

  • глобальные.

По учету фактора времени модели подразделяются на:

  • статические;

  • динамические.

В статических моделях экономическая система описана в статике, применительно к одному определенному моменту времени. Это как бы снимок, срез, фрагмент динамической системы в какой-то момент времени. Динамические модели описывают экономическую систему в развитии.

По цели создания и применения различают модели:

  • балансовые;

  • эконометрические;

  • оптимизационные;

  • сетевые;

  • систем массового обслуживания;

  • имитационные (экспертные).

В балансовых моделях отражается требование соответствия наличия ресурсов и их использования.

Параметры эконометрических моделей оцениваются с помощью методов математической статистики. Наиболее распространены эконометрические модели, представляющие собой системы регрессионных уравнений. В данных уравнениях отражается зависимость эндогенных (зависимых) переменных от экзогенных (независимых) переменных. Данная зависимость в основном выражается через тренд (длительную тенденцию) основных показателей моделируемой экономической системы. Эконометрические модели используются для анализа и прогнозирования конкретных экономических процессов с использованием реальной статистической информации.

^ Оптимизационные модели позволяют найти из множества возможных (альтернативных) вариантов наилучший вариант производства, распределения или потребления. Ограниченные ресурсы при этом будут использованы наилучшим образом для достижения поставленной цели.

^ Сетевые модели наиболее широко используются в управлении проектами. Сетевая модель отображает комплекс работ (операций) и событий и их взаимосвязь во времени. Обычно сетевая модель предназначена для выполнения работ в такой последовательности, чтобы сроки выполнения проекта были минимальными. В этом случае ставится задача нахождения критического пути. Однако существуют и такие сетевые модели, которые ориентированы не на критерий времени, а, например, на минимизацию стоимости работ.

^ Модели систем массового обслуживания создаются для минимизации затрат времени на ожидание в очереди и времени простоев каналов обслуживания.

Имитационная модель наряду с машинными решениями содержит блоки, где решения принимаются человеком (экспертом). Вместо непосредственного участия человека в принятии решений может выступать база знаний. В этом случае ЭВМ, специализированное программное обеспечение, база данных и база знаний образуют экспертную систему. Экспертная система предназначена для решения одной или ряда задач методом имитации действий человека, эксперта в данной области.

^ По учету фактора неопределенности модели подразделяются на:

  • детерминированные (с однозначно определенными результатами);

  • стохастические (с различными, вероятностными результатами).

По типу математического аппарата различают модели:

  • линейного и нелинейного программирования;

  • корреляционно-регрессионные;

  • матричные;

  • сетевые;

  • теории игр;

  • теории массового обслуживания и т.д.


Как построить модель?

Чтобы воспользоваться математической моделью для конкретной производственно-экономической ситуации, следует применить информационную технологию. Информационная технология позволяет безошибочно выделить из множества реальных производственно-экономических ситуаций именно ту, которая полностью соответствует конкретным обстоятельствам. Эта технология состоит из следующих восьми этапов.

Этап 1. ВЫБОР ОБЪЕКТА МОДЕЛИРОВАНИЯ (например: склад готовой продукции; организация выпуска новой продукции или системы транспортных перевозок и т.п.).

Этап 2. АНАЛИЗ ПРОБЛЕМНОЙ СИТУАЦИИ, сложившейся в рассматриваемом объекте моделирования. Например, для нормального функционирования склада готовой продукции необходимо увязать скорость потребления продукции со временем поставки и размерами складских площадей, оборотными средствами, которые всегда оказываются ограниченными.

Этап 3. ТИП И ЧИСЛО НЕНАБЛЮДАЕМЫХ ПАРАМЕТРОВ (отыскиваемых значений ЦФ и основных переменных X j), определение которых позволит выбрать обоснованное управление конкретного экономического объекта.

Этап 4. ТИП И ЧИСЛО НАБЛЮДАЕМЫХ ПАРАМЕТРОВ (задаваемых значений правых частей ограничений b[i], коэффициентов затрат a[ij] , граничных условий для отыскиваемых переменных.

Этап 5. УСЛОВИЕ АДЕКВАТНОСТИ, то есть уверенность в том, что математическая модель экономического объекта полностью (или в главных чертах) характеризует его действительное оптимальное функционирование. Обычно адекватность ставится в зависимость от численного значения критерия оптимальности (или нескольких таких критериев при многокритериальной оптимизации).

Этап 6. ИСПОЛЬЗУЕМЫЙ МАТЕМАТИЧЕСКИЙ АППАРАТ, соответствующий конкретному математическому описанию производственно-экономической ситуации. (Например, аналитические связи между основными параметрами движения запасов).

Этап 7. АНАЛИЗ РЕЗУЛЬТАТОВ МОДЕЛИРОВАНИЯ экономического объекта: оптимальных значений основных переменных и целевой функции. Эти значения составляют основу экономического анализа конкретного объекта, за которым следуют выводы.

Этап 8. ПРИНЯТИЕ РЕШЕНИЯ. По результатам оптимальных значений и сделанных на этапе 7 выводов принимается решение по управлению экономическим объектом.
Заключение

Моделирование - циклический процесс. Это означает, что за первым восьмиэтапным циклом может последовать второй, третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

По мере развития и усложнения экономико-математического моделирования его отдельные этапы обособляются в специализированные области исследований, усиливаются различия между теоретико-аналитическими и прикладными моделями, происходит дифференциация моделей по уровням абстракции и идеализации.

^ Теория математического анализа моделей экономики развилась в особую ветвь современной математики - математическую экономику. Модели, изучаемые в рамках математической экономики, теряют непосредственную связь с экономической реальностью; они имеют дело с исключительно идеализированными экономическими объектами и ситуациями. При построении таких моделей главным принципом является не столько приближение к реальности, сколько получение возможно большего числа аналитических результатов посредством математических доказательств. Ценность этих моделей для экономической теории и практики состоит в том, что они служат теоретической базой для моделей прикладного типа.

Довольно самостоятельными областями исследований становятся подготовка и обработка экономической информации и разработка математического обеспечения экономических задач (создание баз данных и банков информации, программ автоматизированного построения моделей и программного сервиса для экономистов-пользователей). На этапе практического использования моделей ведущую роль должны играть специалисты в соответствующей области экономического анализа, планирования, управления. Главным участком работы экономистов-математиков остается постановка и формализация экономических задач и синтез процесса экономико-математического моделирования.

Программа курса охватывает комплекс моделей, иллюстрирующих функционирование экономики как на микро- так и на макроуровне.


Компоненты функционально полного комплекса ЭММ

1. МФЗ - модели формирования запасов

2. МИЗ - модели использования запасов

^ 3. МПП - модели поведения потребителя

4. МФ - модели фирмы (производителя)

5. МЧР - модели частного экономического равновесия

6. МОР - модели общего экономического равновесия


Лекция 2. Основы математического моделирования взаимосвязи экономических переменных

При анализе экономических явлений на основе экономико-математических методов особое место занимают модели, выявляющие количественные связи между изучаемыми показателями и влияющими на них факторами. Научной дисциплиной, предмет которой составляет изучение этой количественной стороны экономических явлений и процессов средствами математического и статистического анализа, является эконометрика, в которой результаты теоретического анализа экономики синтезируются с выводами математики и статистики.

Объектом изучения эконометрики, как самостоятельного раздела математической экономики, являются экономико-математические модели, которые строятся с учетом случайных факторов. Такие модели называются эконометрическими моделями. Исследование эконометрических моделей проводится на основе статистических данных об изучаемом объекте и с помощью методов математической статистики.

Основными задачами эконометрики являются: получение наилучших оценок параметров экономико-математических моделей, конструируемых в прикладных целях; проверка теоретико-экономических положений и выводов на фактическом (эмпирическом) материале; создание универсальных и специальных методов для обнаружения статистических закономерностей в экономике.

Для установления статистической зависимости (уравнения регрессии) между изучаемым экономическим показателем (объясняемой переменной) и влияющими на нее факторами (объясняющими переменными) проводится регрессионный анализ. Задачами регрессионного анализа являются установление формы зависимости между переменными, оценка функции регрессии, оценка неизвестных значений (прогноз значений) зависимой переменной.

Для выявления тесноты связи между экономическими величинами в уравнении регрессии проводится корреляционный анализ. В ходе корреляционного анализа изучается сила влияния различных причин (последствия линейной регрессии и влияние неучтенных в модели факторов) вариации объясняемой переменной.

^ Функциональная, статистическая и кореляционная зависимости

В естественных науках часто речь идет о функциональной зависимости (связи), когда каждому значению одной переменной соответствует вполне определенное значение другой (например, скорость свободного падения в вакууме в зависимости от времени Пример функциональной зависимости в экономике - выпуск продукции и ее потребление в условиях дефицита.).

В экономике в большинстве случаев между переменными величинами существуют зависимости, когда каждому значению одной переменной соответствует не какое-то определенное, а множество значений (определенное распределение) другой переменной. Такая зависимость получила название статистической. Например, объем продаж товара не определяется жестко его ценой. На него могут влиять такие случайные факторы, как погода, сезон, эффект ажиотажного спроса, массовая невыплата или выплата зарплаты. Среди этих случайных факторов имеются общие для обоих параметров (т.е. воздействующие и на X и на Y), что и приводит к статистической зависимости. Еще один пример: пусть при цене на лимоны в 7 руб. семья со средним достатком покупает в месяц от 10 до 15 лимонов, при цене в 13 руб. - от 5 до 10 шт., а при цене в 25 руб. - 1-3 шт. Т.е. изменение цены X изменяет возможное количество покупаемых цитрусовых Y.

Частным случаем статистической зависимости является зависимость в которой каждому возможному значению одной величины сопоставляется какая-либо числовая характеристика соответствующего распределения другой.

Статистическую зависимость называют корреляционной, если при изменении одной из величин изменяется среднее значение (математическое ожидание) другой. Например, с одинаковых по площади участков земли при равных количествах внесенных удобрений X снимают различный урожай Y, т.е. Y не является функцией от X. Это объясняется влиянием случайных факторов (осадки, температура воздуха, плодородие почвы и др.). Но как показывает опыт, средний урожай является функцией от количества удобрений, т.е. Y связан с X корреляционной зависимостью.

Корреляционная зависимость может быть представлена в виде:

(1)

В регрессионном анализе рассматриваются односторонняя зависимость случайной переменной Y от одной (или нескольких) неслучайной независимой переменной X. Такая зависимость может возникнуть, например, в случае, когда при каждом фиксированном значении X соответствующие значения Y подвержены случайному разбросу за счет действия ряда неконтролируемых факторов. Такая зависимость Y от X называется регрессионной и ее также можно представить в виде (1). При этом зависимую переменную Y называют также функцией отклика, объясняемой, выходной, результирующей, эндогенной переменной, результативным признаком, а независимую переменную X – объясняющей, входной, предсказывающей, предикторной, экзогенной переменной, фактором, регрессором, факторным признаком.

Уравнение (1) называется модельным уравнением регрессии (или просто уравнением регрессии), а функция (x) – модельной функцией регрессии (или просто функцией регрессии), а ее график – линией регрессии.

Для точного описания уравнения регрессии необходимо знать условный закон распределения зависимой переменной Y при условии, что переменная X примет значение x, т.е. X=x. На практике такую информацию получить, как правило, не удается, так как обычно исследователь располагает лишь выборкой пар значений (xi, yi) ограниченного объема n. В этом случае речь может идти об оценке (приближенном выражении, аппроксимации) по выборке функции регрессии. Такой оценкой является выборочная линия (кривая) регрессии:

(2)

Уравнение (2) называется выборочным уравнением регрессии.

Практически, речь идет о том, чтобы, анализируя множество точек на графике (т.е. множество статистических данных), найти линию, по возможности, точно отражающую заключенную в этом множестве закономерность (тренд, тенденцию) - линию регрессии.

По числу факторов различают одно-, двух- и многофакторные уравнения регрессии.

По характеру связи однофакторные уравнения регрессии подразделяются на:

а) линейные:
,

где ^ X - экзогенная (независимая) переменная;

Y - эндогенная (зависимая, результативная) переменная;

a, b - параметры.

б) степенные:



в) показательные:



г) прочие.

Определение параметров линейного однофакторного уравнения регрессии

Пусть

x, х, . . . ,хn- совокупность значений независимого, факторного признака;

y, y. . . ,yn - совокупность соответствующих значений зависимого, результативного признака;

n - количество наблюдений.

Для нахождения уравнения регрессии вычисляются следующие величины:

  1. Средние значения

для экзогенной переменной.
для эндогенной переменной.

2. Отклонения от средних величин;

, .

  1. Величины дисперсии и среднего квадратичного отклонения

, .



Величины дисперсии и среднего квадратичного отклонения характеризуют разброс наблюдаемых значений вокруг среднего значения. Чем больше дисперсия, тем больше разброс.

  1. Вычисление корреляционного момента (коэффициента ковариации):



Корреляционный момент отражает характер взаимосвязи между x и y. Если , то взаимосвязь прямая. Если , то взаимосвязь обратная.

  1. Коэффициент корреляции вычисляется по формуле:


.

Доказано, что коэффициент корреляции находится в интервале от минус единицы до плюс единицы (). Коэффициент корреляции в квадрате () называется коэффициентом детерминации.

Если , то вычисления продолжаются.

  1. Вычисления параметров регрессионного уравнения.

Коэффициент b находится по формуле:



После чего можно легко найти параметр a:



Коэффициенты a и b находятся методом наименьших квадратов, основная идея которого состоит в том, что за меру суммарной погрешности принимается сумма квадратов разности (остатков) между фактическими значениями результативного признака и его расчетными значениями , полученными при помощи уравнения регрессии

.

При этом величины остатков находятся по формуле:

, где

фактическое значение y; расчетное значение y.

Пример. Пусть у нас имеются статистические данные о доходах (^ X) и спросе (Y). Необходимо найти корреляционную зависимость между ними и определить параметры уравнения регрессии.


ГОД

n

ДОХОД

X

СПРОС

Y

1

10

6

2

12

8

3

14

8

4

16

10,3

5

18

10,5

6

20

13


Предположим, что между нашими величинами существует линейная зависимость.

Тогда расчеты лучше всего выполнить в Excel, используя статистические функции;

СРЗНАЧ - для вычисления средних значений;

ДИСП - для нахождения дисперсии;

СТАНДОТКЛОН - для определения среднего квадратичного отклонения;

КОРЕЛЛ - для вычисления коэффициента корреляции.

Корреляционный момент можно вычислить, найдя отклонения от средних значений для ряда X и ряда Y , затем при помощи функции СУММПРОИЗВ определить сумму их произведений, которую необходимо разделить на n-1.

Результаты вычислений можно свести в таблицу.

^ Параметры линейного однофакторного

уравнения регрессии

Показатели

X

Y

Среднее значение

15

9,3

Дисперсия

14

6,08

Среднее квадр. отклонение

3,7417

2,4658

Корреляционный момент

8,96




Коэффициент корреляции

0,9712




Параметры

b=0,64

a=0,3

В итоге наше уравнение будет иметь вид:

y = 0.3 + 0.64x

Используя это уравнение, можно найти расчетные значения Y и построить график (рис. 1).



Рис. 1. Фактические и расчетные значения
Ломаная линия на графике отражает фактические значения Y, а прямая линия построена с помощью уравнения регрессии и отражает тенденцию изменения спроса в зависимости от дохода.
^ Оценка адекватности линейного однофакторного уравнения

Анализ качества полученной регрессионной модели начинается с анализа случайных отклонений. Свойства коэффициентов регрессии существенным образом зависят от свойств случайной составляющей. Для того чтобы регрессионный анализ, основанный на обычном методе наименьших квадратов, давал наилучшие из всех возможных результаты, случайные отклонения должны удовлетворять условиям, известным как условия Гаусса—Маркова. Не будет преувеличением сказать, что именно понимание важности этих условий отличает компетентного исследователя, использующего регрессионный анализ, от некомпетентного. Если эти условия не выполнены, исследователь должен это сознавать. Если корректирующие действия возможны, то аналитик должен быть в состоянии их выполнить. Если ситуацию исправить невозможно, исследователь должен быть способен оценить, насколько серьезно это может повлиять на результаты.

Рассмотрим теперь эти условия одно за другим, объясняя кратко, почему они имеют важное значение.
Предположения о случайном отклонении

Условия Гаусса – Маркова.

1. Математическое ожидание случайного отклонения ui равно нулю для всех наблюдений



Данное условие означает, что случайное отклонение ui в среднем не оказывает влияния на зависимую переменную. В каждом конкретном наблюдении случайное отклонение может быть либо положительным, либо отрицательным, но оно не должно иметь систематического смещения.

Фактически если уравнение регрессии включает постоянный член, то обычно бывает разумно предположить, что это условие выполняется автоматически, так как роль константы состоит в определении любой систематической тенденции в у, которую не учитывают объясняющие переменные, включенные в уравнение регрессии.

2. Дисперсия случайных отклонений постоянна для любых наблюдений.



Данное условие подразумевает, что несмотря на то, что при каждом конкретном наблюдении случайное отклонение может быть либо большим, либо меньшим, не должно быть какой-то причины, вызывающей большую ошибку (отклонение).

Выполнимость данной предпосылки называется гомоскедастичностью (постоянством дисперсии отклонений). Невыполнимость данной предпосылки называется гетероскедастичностью (непостоянством дисперсий отклонений).

Величина , конечно, неизвестна. Одна из задач регрессионного анализа состоит в оценке стандартного отклонения случайного члена.

3. Случайные отклонения ui и uj являются независимыми друг от друга для ij.



Выполнимость данной предпосылки означает отсутствие систематической связи между любыми случайными отклонениями. Т.е. величина и определенный знак любого случайного отклонения не должны быть причинами величины и знака любого другого отклонения.

Если данное условие выполняется, то говорят об отсутствии автокорреляции.

4. Объясняющие переменные не являются стохастическими.



Случайное отклонение должно быть независимо от объясняющих переменных. Значение любой независимой переменной в каждом наблюдении должно считаться экзогенным, полностью определяемым внешними причинами, не учитываемыми в уравнении регрессии.

^ Предположение о нормальности

Наряду с условиями Гаусса—Маркова обычно также предполагается нормальность распределения случайного отклонения. Дело в том, что если случайное отклонение и нормально распределено, то так же будут распределены и коэффициенты регрессии. Предположение о нормальности основывается на центральной предельной теореме. В сущности, теорема утверждает, что если случайная величина является общим результатом взаимодействия большого числа других случайных величин, ни одна из которых не является доминирующей, то она будет иметь приблизительно нормальное распределение, даже если отдельные составляющие не имеют нормального распределения.

^ Теорема Гаусса-Маркова. Если предпосылки 1 – 4 выполнены, то оценки, полученные по МНК, обладают следующими свойствами:

  1. Оценки являются несмещенными, т.е. отсутствует систематическая ошибка в определении положения линии регрессии. M(b0)=0, M(b1)=1. Это вытекает из того, что M(i)=0.

  2. Оценки состоятельны, так как дисперсия оценок параметров при возрастании числа n наблюдений стремится к нулю: . Другими словами, при увеличении объема выборки надежность оценок увеличивается (b0 наверняка близко к 0, b1 - близко к 1).

  3. Оценки эффективны, т.е. они имеют наименьшую дисперсию по сравнению с любыми другими оценками данных параметров, линейными относительно величин yi.


В англоязычной литературе такие оценки называются BLUE (Best Linear Unbiased Estimators) – наилучшие линейные несмещенные оценки.

Однако встает вопрос, насколько значимы параметры a и b? Какова величина погрешности?

^ Оценка величины погрешности линейного однофакторного уравнения.

В силу случайного отбора элементов в выборку случайными являются также оценки коэффициентов a и b уравнения регрессии.

  1. В качестве меры суммарной погрешности выбрана величина:

. Для нашего примера S = 0.432

Поскольку (среднее значение остатков) равно нулю, то суммарная погрешность равна остаточной дисперсии:

  1. Остаточная дисперсия находится по формуле:



Для нашего примера. Можно показать, что



Если то

то

Таким образом,

Легко заметить, что если

, то



Это соотношение показывает, что в экономических приложениях допустимая суммарная погрешность может составить не более 20% от дисперсии результативного признака .

  1. Стандартная ошибка уравнения находится по формуле:

, где

- остаточная дисперсия. В нашем случае .

  1. Относительная погрешность уравнения регрессии вычисляется как:



где стандартная ошибка;

- среднее значение результативного признака.

В нашем случае = 7.07%.

Если величина мала и отсутствует автокорреляция остатков, то прогнозные качества оцененного регрессионного уравнения высоки.

  1. Стандартная ошибка коэффициента b вычисляется по формуле:



В нашем случае она равна .

Для вычисления стандартной ошибки коэффициента a используется формула:



В нашем примере .

Стандартные ошибки коэффициентов используются для оценивания параметров уравнения регрессии.

Коэффициенты считаются значимыми, если



В нашем примере

Коэффициент а не значим, т.к. указанное отношение больше 0.5, а относительная погрешность уравнения регрессии слишком высока - 26.7%.

Стандартные ошибки коэффициентов используются также для оценки статистической значимости коэффициентов при помощи t - критерия Стьюдента. Значения t - критерия Стьюдента содержатся в справочниках по математической статистике. В таблице 2.1 приводятся его некоторые значения.

Далее находятся максимальные и минимальные значения параметров () по формулам:



Т а б л и ц а 1

^ Некоторые значения t - критерия Стьюдента

Степени свободы

Уровень доверия (с)

(n-2)

0,90

0,95

1

6,31

12,71

2

2,92

4,30

3

2,35

3,18

4

2,13

2,78

5

2,02

2,57

Для нашего примера находим





Если интервал () достаточно мал и не содержит ноль, то коэффициент b является статистически значимым на с - процентном доверительном уровне.

Аналогично находятся максимальные и минимальные значения параметра а. Для нашего примера



Коэффициент а не является статистически значимым, т.к. интервал () велик и содержит ноль.

Вывод: полученные результаты не являются значимыми и не могут быть использованы для прогнозных расчетов. Ситуацию можно поправить следующими способами:

а) увеличить число n;

б) увеличить количество факторов;

в) изменить форму уравнения.

^ Проблема автокорреляции остатков. Критерий Дарбина-Уотсона

Часто для нахождения уравнений регрессии используются динамические ряды, т.е. последовательность экономических показателей за ряд лет (кварталов, месяцев), следующих друг за другом.

В этом случае имеется некоторая зависимость последующего значения показателя, от его предыдущего значения, которое называется автокорреляцией. В некоторых случаях зависимость такого рода является весьма сильной и влияет на точность коэффициента регрессии.

Пусть уравнение регрессии построено и имеет вид:



- погрешность уравнения регрессии в год t.

Явление автокорреляции остатков состоит в том, что в любой год t остаток не является случайной величиной, а зависит от величины остатка предыдущего года . В результате при использовании уравнения регрессии могут быть большие ошибки.

Для определения наличия или отсутствия автокорреляции применяется критерий Дарбина-Уотсона:



Возможные значения критерия DW находятся в интервале от 0 до 4. Если автокорреляция остатков отсутствует, то DW2.

Построение уравнения степенной регрессии

Уравнение степенной агрессии имеет вид:

, где

a, b - параметры, которые определяются по данным таблицы наблюдений.

Таблица наблюдений составлена и имеет вид:

x

x1

x2

...

xn

y

y1

y2

...

yn

Прологарифмируем исходное уравнение и в результате получим:

ln y = ln a + bln x .

Обозначим ln y через , ln a как , а ln x как .

В результате подстановки получим:



Данное уравнение есть ничто иное, как уравнение линейной регрессии, параметры которого мы умеем находить.

Для этого прологарифмируем исходные данные:

ln x

ln x1

ln x2

...

ln xn

ln y

ln y1

ln y2

...

ln yn

Далее необходимо выполнить известные нам вычислительные процедуры по нахождению коэффициентов a и b, используя прологарифмированные исходные данные. В результате получим значение коэффициента b и . Параметр a можно найти по формуле:

.

В этих же целях можно воспользоваться функцией EXP в Excel.

^ Двухфакторные и многофакторные уравнения регрессии

Линейное двухфакторное уравнение регрессии имеет вид:

,

где - параметры; - экзогенные переменные; y - эндогенная переменная.

Идентификацию этого уравнения лучше всего производить с использованием функции Excel ЛИНЕЙН.

Степенное двухфакторное уравнение регрессии имеет вид:



где - параметры; - экзогенные переменные; Y - эндогенная переменная.

Для нахождения параметров этого уравнения его необходимо прологарифмировать. В результате получим:



Идентификацию этого уравнения также лучше всего производить с использованием функции Excel ЛИНЕЙН. Следует помнить, что мы получим не параметр a, а его логарифм, которое следует преобразовать в натуральное число.

Линейное многофакторное уравнения регрессии имеет вид:



где n- параметры; n - экзогенные переменные; y - эндогенная переменная.

Идентификацию этого уравнения также лучше всего производить с использованием функции Excel ЛИНЕЙН.
  1   2   3   4   5   6



Скачать файл (1623 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации