Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Параметры элементов электрических сетей - файл 1.doc


Параметры элементов электрических сетей
скачать (1182.5 kb.)

Доступные файлы (1):

1.doc1183kb.01.12.2011 14:40скачать

содержание

1.doc

Вар. 4-3-7

Задание 1.

На рис. изображена принципиальная схема электропередачи, состоящей из линии и понижающего трехобмоточного трансформатора (автотрансформатора). По исходным данным (табл. 1, 2) вычертить:

а) принципиальную схему электропередачи, содержащую заданное количество линий и понижающих трансформаторов;

б) однолинейную схему замещения с учетом эквивалентирования линий и трансформаторов;

в) расчетную схему замещения.



Табл. 1

Номинальное напряжение, кВ

Марка провода АС

Шаг расщепления фазы

Среднегеометрическое расстояние между фазами, м

Коэффициент мощности

Длина линии, км

Наибольшая передаваемая мощность, МВт

110

150/24

-

4,8

0,84

60

20


Табл. 2.

Количество параллельных элементов

линий

трансформаторов

2

1


РЕШЕНИЕ

1) Принципиальная схема



2) однолинейная схема


3) расчетная схема


Задание 2.

По данным табл. 1 определить параметры схемы замещения линий электропередачи, учитывая количество цепей, указанное в табл. 2. Определить следующие погонные (на 1 км линии) и полные параметры ее схемы замещения:

  • активное сопротивление, Ом/км, Ом;

  • реактивное сопротивление Ом/км, Ом;

  • активную проводимость, См/км, См, вычисленную по потерям на корону, взятым из каталога

  • рабочую емкость Ф/км, Ф;

  • емкостную (реактивную) проводимость, См/км, См;

  • зарядную мощность, Мвар/км, Мвар.

Сопоставить найденные погонные параметры линии с каталожными данными. Определить отношение реактивного сопротивления линии к активному. Найденные полные параметры нанести на схему замещения линии электропередачи и расчетную схему замещения с учетом имеющихся параллельных цепей.


РЕШЕНИЕ

Активное сопротивление линии:



Погонное: r0 = 0,198 Ом/км (по справочнику).

Погонное реактивное сопротивление:



Реактивное сопротивление линии:



Погонная активная проводимость:



ΔРкор = 0,08кВт/км - по справочнику.

Активная проводимость линии:



Погонная рабочая емкость:



Рабочая емкость линии:



Погонная емкостная проводимость:



Емкостная проводимость линии:



Погонная зарядная мощность:



Зарядная мощность линии:



Зарядные мощности по концам схемы замещения ЛЭП:



Сопоставим найденные погонные параметры с каталогом:

Параметр

Вычисленный

Каталожный

х0, Ом/км

0,413

0,420

b0, См/км

2,75*10-6

2,707*10-6



Отношение реактивного сопротивления к активному составляет:

x/r = 24,78/11,88 = 2,086


Задание 3.

По заданной в табл. 1 наибольшей передаваемой мощности подобрать по справочным данным тип и мощность понижающих трансформаторов (автотрансформаторов). Если на подстанции предусмотрено два трансформатора (см. табл. 2), мощность каждого из них принять равной 60-70% наибольшей передаваемой мощности. Вычисление полной передаваемой мощности произвести при cosφ=0,9. Выписать паспортные данные выбранных трансформаторов.

РЕШЕНИЕ:

Полная передаваемая мощность линии составит:



Исходя из этого принимаем трехфазный трехобмоточный трансформатор ТДТН-25000/110. Данные трансформатора приведены ниже:

Sном, МВ*А

Каталожные данные

Расчетные данные

Uном, обмоток, кВ

uх, %

ΔРк, кВт

ΔРх, кВт

Iх, %

Rт, Ом

Хт, Ом

ΔQх, квар

ВН

СН

НН

ВН

СН

НН

ВН

СН

НН

В-С

В-Н

С-Н

25

115

34,5

6,6

10,5

17,5

6,5

140

31

0,7

1,5

1,5

1,5

56,9

0

35,7

175

Трансформатор имеет РПН ±9х1,78% в нейтрали ВН, а также ПБВ на стороне 34,5 ±(2х2,5%).
Задание 4.

По паспортным данным трансформаторов, выбранных в задаче 3, определить параметры схемы замещения и расчетной схемы замещения:

  • активные сопротивления обмоток, Ом;

  • реактивные сопротивления обмоток, Ом;

  • активные проводимости См;

  • реактивные проводимости, См;

  • реактивные мощности намагничивания, Мвар;

Найденные параметры нанести на схемы (с учетом имеющихся параллельных трансформаторов).
РЕШЕНИЕ:

Активные сопротивления обмоток:

Rт вн = Rт сн = Rт нн = 1,5 Ом.

Реактивные сопротивления обмоток:

Хт вн = 56,9 Ом;

Хт сн = 0 Ом;

Хт нн = 35,7 Ом.

Активная проводимость:

См

Реактивная проводимость:



Реактивная мощность намагничивания:



Sв = Sном*cosφ=25*0,85=21,25МВт Sн = Sс = Sв/2 = 10,63 МВт



Активная мощность холостого хода:



Задание 5.

Задан вариант линии электропередачи (табл. 3, 4) и годовые графики активной и полной нагрузки по продолжительности (табл. 5). Вычертить годовые графики активной и полной нагрузки по продолжительности и определить величину нагрузочных потерь электрической энергии следующими методами:

  • графического интегрирования (по заданному графику нагрузки);

  • среднеквадратичной мощности (тока);

  • времени наибольших потерь;

  • средних нагрузок.

Среднеквадратичную мощность и время наибольших потерь вычислить двумя способами:

  • на основе годового графика нагрузки по продолжительности;

  • приближенным способом через понятие времени использования наибольшей нагрузки на основе известной зависимости между временем потерь наибольшей и среднеквадратичной мощностей.

Вычислить различия в потерях энергии (в процентах) по различным методам, приняв за эталонный метод графического интегрирования. Результаты расчетов свести в табл. 6.
Табл. 3. Параметры линий электропередачи

Номинальное напряжение, кВ

Марка провода АС

Длина линии, км

Наибольшая передаваемая мощность, МВт

35

95/16

15

5


Табл. 4. Количественная характеристика элементов электропередачи

Количество цепей

2



Табл. 5. Характеристика годового графика нагрузки по продолжительности

Номера ступеней графика нагрузки

1

2

3

4

Величина нагрузки в долях от наибольшей передаваемой активной мощности

1,0

0,8

0,6

0,4

Длительность ступеней, ч

1000

2000

3000

2760

Коэффициент мощности

0,9

0,85

0,82

0,79


Табл. 6. Результаты расчетов потерь электроэнергии в линии

Метод

Потери энергии, МВт·ч

Потери энергии в процентах от передаваемой энергии

Погрешность расчета, %

Графического интегрирования

250,12

0,57

0

Среднеквадратичной мощности

способ 1

280,32

0,64

12,07

способ 2

168,4

0,38

32,7

Времени наибольших потерь

способ 1

250,1

0,57

0

способ 2

231,1

0,53

7,6

Средних нагрузок

261,1

0,60

4,4


РЕШЕНИЕ

По исходным данным строим ступенчатый график по продолжительности каждой нагрузки.



Потери мощности в линии для каждого i-го интервала составят:



Ом

Так как по заданию имеется 2 линии, включенных параллельно, получим:



МВт

МВт

МВт

МВт

Строим ступенчатый график потерь мощности.


Метод графического интегрирования:

Потери мощности составляют:



Передаваемая энергия 5МВт*8760ч = 43800 МВт*ч.

Метод среднеквадратичной мощности:

По расчету:





По графику:



Метод времени наибольших потерь:

По графику:





По расчету:







Метод средних нагрузок:



Кл = 1,0 для линий до 110кВ

Кк = 0,99









Задание 6.

1. Для заданного варианта трансформатора (трансформаторов) (табл. 7, 8) и годового графика нагрузки по продолжительности (табл. 5) определить годовые потери электроэнергии холостого хода и нагрузочные потери. Расчеты нагрузочных потерь энергии выполнить:

  • методом графического интегрирования (по заданному графику нагрузки);

  • методом времени наибольших потерь по заданному годовому графику нагрузки по продолжительности;

  • методом средних нагрузок.

2. Вычислить потери энергии холостого хода и нагрузочные в процентах от суммарных потерь; результаты расчетов свести в табл. 9.

Табл. 7

Тип трансформатора

Номинальная мощность, МВА

Наибольшая передаваемая мощность, МВт

ТМ-400/10

0,4

0,35


Табл. 8

Количество трансформаторов

3


Табл. 9. Результаты расчетов потерь электроэнергии в трансформаторах

Метод

Потери электроэнергии, МВтч

Потери электроэнергии в процентах от суммарных потерь




холостого хода

нагрузочные

суммарные

холостого хода

нагрузочные

Графического интегрирования

0,222

6,77

6,992

3,28

96,72

Времени наибольших потерь

0,222

6,8

7,022

3,16

96,84

Средних нагрузок

0,222

7,27

7,492

2,96

97,04


РЕШЕНИЕ

Нагрузочные потери мощности составляют:









Строим график потерь мощности:



Метод графического интегрирования:

Потери мощности составляют:



Метод времени наибольших потерь:

По графику:





Метод средних нагрузок:



Кл = 1,0 для линий до 110кВ

Кк = 0,99









Потери мощности в стали (холостого хода):

Учитывая, что по заданию установлено n=3 трансформатора, перед занесением данных в таблицу потери холостого хода умножаем на n, а нагрузочные потери умножаем на 1/n.
Задание 7.

От электрической станции отходит линия электропередачи номинального напряжения 220кВ длиной L км, выполненная проводом марки АС. Нагрузка в конце линии – Sк, напряжение в конце линии Uк.

Представить линию П-образной схемой замещения. Определить мощность в начале линии Sн, напряжение в начале линии Uн, потери активной и реактивной мощности в линии, зарядную мощность линии Qb, продольную и поперечную составляющие падения напряжения, модуль полного падения напряжения. Марку провода, числовые значения L, S и Uк принять из табл. 10, 11. Результаты расчетов занести в табл. 12. Построить в масштабе векторную диаграмму напряжений.

Табл. 10. Параметры линии электропередачи

Марка провода

Длина линии L, км

АС 2 х 300/39

130


Табл. 11. Параметры режима линии электропередачи

Нагрузка в конце линии Sк, МВ-А

Напряжение в конце линии Uк, кВ

270 + j50

330


РЕШЕНИЕ

П-образная схема замещения:


Примем среднегеометрическое расстояние между фазами 6,0м, фаза расщеплена на 2 провода, расстояние между проводами в фазе 0,5м.

Примем cosφ=0,9.

Эквивалентный радиус расщепленного провода:



Погонная емкостная проводимость:



Емкостная проводимость линии:



Погонная зарядная мощность:



Зарядная мощность линии:



Зарядные мощности по концам схемы замещения ЛЭП:



Активное сопротивление линии:



Погонное реактивное сопротивление:



Реактивное сопротивление линии:



о,

.

Потери мощности в линии.

Нагрузка в конце линии: Sк=270+j50МВА.

Полная мощность в конце линии:

.

Потери мощности в линии:

;

.

Определяем падение напряжения и потерю напряжения, напряжение в начале линии (точка А):

Потеря напряжения в линии:



Напряжение в точке А определим из условия:

.

Ток нагрузки:

;



Падение напряжения в линии:



Мощность источника в начале линии (точка А):

Полная мощность в начале линии:

.

Полная мощность источника в точке А:

.

Построение векторной диаграммы напряжений.

По оси действительных чисел в масштабе напряжения откладываем фазное напряжение в конце линии.



Под углом φ к вектору в масштабе тока откладываем вектор с учетом индуктивного характера нагрузки.



Находим и строим вектора зарядного тока в конце линии.



Строим вектор тока в продольной части линии по первому закону Кирхгофа:



К концу вектора пристраиваем треугольник падения напряжения от тока нагрузки.







По закону Ома строим вектор напряжения в начале линии.



Находим и строим вектор зарядного тока в начале линии.



По первому закону Кирхгофа строим вектор тока в начале линии.







^ Задание 10 (варианты 7-9).

Для линии электропередачи с параметрами из задачи №7 (см. табл. 10) определить мощность в начале линии Sн и напряжение в конце линии Uк, если известны нагрузка в конце линии Sк из табл. 11 и напряжение в начале линии Uн, полученное в задаче №7 (см. табл. 12). Результаты расчета занести в табл. 12.

Потери мощности в линии.

Нагрузка в конце линии: Sк=270+j50МВА.

Полная мощность в конце линии:

.

Потери мощности в линии:

;

.

Мощность источника в начале линии (точка А):

Полная мощность в начале линии:

.

Полная мощность источника в точке А:

.

Определяем падение напряжения и потерю напряжения, напряжение в конце линии (точка В):

Потеря напряжения в линии:



Напряжение в точке В определим из условия:

.
Табл. 12. Результаты решения задач №7, 10.

Номер задачи

Sн= Рн+jQн, МВА

Sк= Рк+jQк, МВА

Qb, Мвар

ΔР, МВт

ΔQ, Мвар

Uн, кВ

Uк, кВ

ΔU, кВ

δU, кВ

|ΔU|, кВ

7

279,78+j107,67

270+j50

25,17

9,78

57,67

330

339,47

9,47

3+j8,6

9,47

10

279,78+j107,67

270+j50










330,26

339,47

9,21









Скачать файл (1182.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации