Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Контрольная работа - Концепция современного естествознания - файл 1.doc


Контрольная работа - Концепция современного естествознания
скачать (94.5 kb.)

Доступные файлы (1):

1.doc95kb.03.12.2011 12:42скачать

содержание

1.doc

Содержание


  1. Концепция коэволюции.

  2. Общенаучное значение понятия энтропии.

  3. Укажите три основные научные программы античности:

  1. теологизм

  2. математическая программа Пифагора – Платона

  3. программа Аристотеля

  4. гелиоцентризм Коперника

  5. атомизм Левкиппа – Демокрита

Список используемой литературы.
 1. Концепция коэволюции.

Концепция коэволюции возникла в результате критики теории дарвинизма. У истоков ее стоял русский ученый революционер Кропоткин, в основе его взглядов лежали представления о том, что взаимопомощь является более важным фактором эволюции, чем борьба (у Дарвина - ведущее место отводилось борьбе). Концепция номогенеза утверждала, что изменения происходят, не беспорядочно и случайно, а по законам форм, в то время как у Дарвина они идут во всех направлениях и случайно. Возникшая концепция коэволюции под влиянием экологических исследований смогла объяснить возникновение полов и другие феномены, такие как эволюция в системе «хищник-жертва», постоянное

совершенствование обоих компонентов в ней, эволюция в системе «паразит-хозяин». Коэволюция сравнима с гонкой вооружений, в результате которой экосистемы приобретают большее разнообразие (совершенствуется волк? совершенствуется заяц). Или пример со жгутиковыми, в кишечнике термитов. Они выделяют ферменты, без которых термиты не смогли бы переваривать древесину и расщеплять ее до сахаров. А термит делится с паразитом питательными веществами. Коэволюция объясняет и факты альтруизма у животных: заботу о детенышах, повиновение вожакам и взаимопомощь в трудных

ситуациях. Естественный отбор здесь играет в отличие от Дарвинского скорее не роль «автора», а роль « редактора». Концепция Геи - Земли возникла в 2 последних десятилетия на основе учения о биосфере, экологии и концепции коэволюции. Авторами ее являются английский химик Джеймс Лавлок и американский микробиолог Линн Маргулис. Их теория строится на том, что атмосфера Земли, имеет химическую неравновесность, которая рассматривается как признак жизни.

Согласно Гея - гипотезе сохранение длительной химической неравновесности атмосферы обусловлено совокупностью жизненных процессов на Земле, иными словами действует механизм обратной связи. Суть гея - гипотезы: Земля - саморегулирующаяся система, созданная окружающей Средой, способной сохранять химический

состав атмосферы и тем самым поддерживать благоприятное для жизни постоянство климата. Эволюция биосферы рассматривается как процесс, выходящий за рамки полного понимания, контроля и даже участия человека.

Жизнь на земле - сеть взаимосвязанных связей, позволяющих планете

действовать как саморегулирующаяся и самопроизводящая система.

Первой работой, в которой была осознана универсальность идей коэволюции, стала книга С.Н.Родина «Идеи коэволюции», (Новосибирск, 1991 г.) В ней автор доказал, что коэволюционные процессы имеют место на всех уровнях природы и жизнедеятельности, что механизмы развития носят не столько эволюционный, сколько коэволюционный характер и предполагают сопряженную, взаимообогащающую адаптацию.

С позиций данного подхода следует считать, что современные зрелые организации являются продуктом коэволюции, результатом взаимосопряженной селекции видовых свойств и качеств, объективного действия универсальных коэволюционных закономерностей, сопряженного естественного развития организаций и общества.
Когда организационный эволюционизм (эволюционная теория организационных изменений) ставит в контекст исследования коэволюцию, то организация предстаёт как многокомпонентное образование, объединённое процессом коэволюции человека, природы и общества, как смешение различных смыслов, контекстов, подходов (коэволюцию идей).
   Коэволюционная познавательная модель, формирующаяся в настоящее время, имеет первостепенное значение для осмысления взаимообусловленного сопряжённого и гармоничного развития организации, человека, природы и общества, различных организаций между собой. Она служит стимулирующим мотивом расширения исследовательского поля становящихся организаций, выступает как один из основополагающих взаимодополнительных принципов познания жизни организаций, возможностей и перспектив их сохранения и саморазвития. Благодаря этой модели мы выходим на надорганизационный уровень изучения феномена организационной динамики, получаем определённый импульс формирования новой парадигмы, связанной с изменением места и роли организации в цивилизации.
Сегодня познавательная ценность коэволюционного подхода в нашей сфере исследований не вызывает сомнения, он позволяет по-новому взглянуть на явления и процессы жизни организаций.
Концепция коэволюции хорошо совмещается с концепцией самоорганизации и синергетики в проблеме описания возникновения порядка из хаоса, как согласованного совместного протекания развития некой целостности, в обосновании и объяснении условий перехода от беспорядка к порядку и наоборот.

Новейшая позиция в теории организационных изменений состоит, таким образом, в рассмотрении организаций как следствие коэволюции; познание условий и механизмов коэволюции поможет конкретизировать проблему объяснения («вытянуть смысл») согласованного существования и развития организаций с окружающей средой.
«Эволюция в действии», описанная на языке коэволюционной концепции, позволяет факторы организационной динамики самой различной природы рассматривать как сопряжённые, «парные» и «многомерные». Здесь факторам отводится роль равнозначных (по отношению друг к другу), они трактуются не только сопряжёнными и согласованными, но и взаимно обуславливающими процесс развития мира организаций.
Отправной «точкой роста» в коэволюционных концепциях выступает убеждённость, что организационная жизнь (потенциал, процессы, ценности, интеллект) развивается вместе с другими аспектами жизни человечества. Подтверждение этому мы обнаруживаем в трудах М. Рьюза, У. Ламсадена, Э. Уилсона, К. Поппера, Р.С. Карпинской, С.Н. Родина.

Важная методологическая роль коэволюции видится нам в том, что она ставит под сомнение идею «центризмов»: что поставить в центр методологического обоснования (системоцентризм, биоцентризм, синергию, антропоцентризм), какие факторы являются решающими (материальные ресурсы, процессы, ценности, компетенции, знания). Коэволюционная концепция переформирует теоретическое пространство организационной динамики на основе равноправия и сопряжённости всех атрибутов жизни организаций и их эволюции.

^ 2. Общенаучное значение понятия энтропии.

Чтобы каким-либо образом описать упорядоченность любой системы, физикам необходимо было ввести величину, функцию состояния системы, которая бы описывала ее упорядоченность, степень и параметры порядка, самоорганизованность системы.

От греческого entropia -- поворот, превращение. Понятие энтропии впервые было введено в термодинамике для определения меры необратимого рассеяния энергии. Энтропия широко применяется и в других областях науки: в статистической физике как мера вероятности осуществления, какого - либо макроскопического состояния; в теории информации - мера неопределенности какого-либо опыта (испытания), который может иметь разные исходы. Все эти трактовки энтропии имеют глубокую внутреннюю связь.

Энтропия — это функция состояния, то есть любому состоянию можно сопоставить вполне определенное (с точность до константы -- эта неопределенность убирается по договоренности, что при абсолютном нуле энтропия тоже равна нулю) значение энтропии.

Для обратимых (равновесных) процессов выполняется следующее математическое равенство (следствие так называемого равенства Клаузиуса)
[pic](Q - подведенная теплота,T - температура, A и B - состояния, SA и SB - энтропия, соответствующая этим состояниям (здесь рассматривается процесс перехода из состояния А в состояние В)
Для необратимых процессов выполняется неравенство, вытекающее из так называемого неравенства Клаузиуса
Поэтому энтропия адиабатически изолированной (нет подвода или отвода тепла) системы при необратимых процессах может только возрастать.
Используя понятие энтропии Клаузиус (1876) дал наиболее общую формулировку
2-го начала термодинамики: при реальных (необратимых) адиабатических процессах энтропия возрастает, достигая максимального значения в состоянии равновесия (2-ое начало термодинамики не является абсолютным, оно нарушается при флуктуациях).
Значит функция состояния, дифференциалом которой является (Q/T, называется энтропией и обозначается обычно S.
[pic].
Отметим, что справедливость этого выражения для полного дифференциала энтропии доказана выше лишь для обратимых процессов идеального газа.
Так же энтропия S определятся логарифмом числа микросостояний, посредством которых реализуется рассматриваемое макросостояние, т.е.
[pic], (формула Больцмана) где k – постоянная Больцмана, Г - число микросостояний.
Энтропия системы в каком-либо обратимом процессе изменяется под влиянием внешних условий, воздействующих на систему. Механизм воздействия внешних условий на энтропию состоит в следующем. Внешние условия определяют микросостояния, доступные системе, и их число. В пределах доступных для нее микросостояний система достигает равновесного состояния, а энтропия – соответствующего значения. В результате значение энтропии следует за изменением внешних условий, достигая максимального значения, совместимого с внешними условиями.
Чем более сильно упорядочена система, тем меньше число микросостояний, которыми осуществляется макросостояние.
Допустим, например, что все атомы закреплены в определенных местах. Тогда существует только одно микросостояние, а соответствующая ему энтропия равна нулю. Чем больше число микросостояний, тем больше разупорядочена система.
Поэтому можно сказать, что энтропия является мерой упорядоченности системы.
В состоянии равновесия энтропия достигает своего максимального значения, поскольку равновесие есть наиболее вероятное состояние, совместимое с фиксированными условиями и, следовательно, является макросостоянием, осуществляемым посредством максимального числа микросостояний. Очевидно, что система, предоставленная самой себе, движется в направлении равновесного состояния, т.е. энтропия должна возрастать в предоставленной самой себе системе.
Энтропия определяется логарифмом числа микросостояний, посредством которых реализуется макросостояние. В состоянии равновесия энтропия достигает максимального значения, поскольку в равновесном состоянии термодинамическая вероятность максимальна. Отсюда следует, что энтропия изолированной предоставленной самой себе системы должна возрастать до тех пор, пока не достигнет максимального значения, совместимого с условиями.
Следует заметить, что при адиабатическом обратимом процессе энтропия не изменяется, так как при адиабатическом расширении газа за счет увеличения объема энтропия увеличивается, однако за счет уменьшения температуры, которое при этом происходит, она уменьшается и эти две тенденции полностью компенсируют друг друга.
Неубывание энтропии в изолированной системе обусловливается, в конечном счете равновероятностью всех ее микроскопических состояний, приводящей систему в наиболее вероятное макросостояние.
В процессах изолированной системы энтропия не убывает, в то время как в процессах неизолированных систем энтропия может и возрастать, и убывать, и оставаться неизменной в зависимости от характера процесса.
Так же отметим изменение энтропии в необратимых процессах. Вычисление основывается на том, что энтропия является функцией состояния. Если система перешла из одного состояния в другое посредством необратимого процесса, то логично мысленно перевести систему из первого состояния во второе с помощью некоторого обратимого процесса и рассчитать происходящее при этом изменение энтропии. Оно равно изменению энтропии при необратимом процессе.
Рассмотрим роль энтропии в производстве работы: принцип Кельвина запрещает циклический процесс, результатом которого было бы превращение нацело некоторого количества теплоты в работу в результате контакта с одним тепловым резервуаром. Формула для к.п.д. цикла Карно показывает, что взятое от нагревателя количество теплоты лишь частично может быть превращено в работу, причем часть теплоты, превращаемая в работу, тем больше, чем меньше температура холодильника. Физической причиной этого являются требования второго начала термодинамики. Поскольку энтропия при любых процессах в замкнутых системах не убывает, некоторое количество теплоты не может нацело превратиться в работу потому, что это означало бы исчезновение соответствующей энтропии, что противоречит второму началу термодинамики.
При совершении работы в холодильник должна быть передана, по крайней мере такая же энтропия, какая была взята от нагревателя. Максимальный к.п.д. достигается в обратимой машине, поскольку в этом случае холодильнику передается минимально возможная энтропия.

Теперь рассмотрим другое приложение понятия энтропия:
Давно было замечено, что в одну и ту же реку дважды войти нельзя. Мир вокруг нас меняется, наше общество меняется, и мы сами, члены общества, только стареем. Изменения необратимы.
Энтропия первоначально была введена для объяснения закономерностей работы тепловой машины. В узком смысле энтропия характеризует равновесное состояние замкнутой системы из большого числа частиц.
В обычном понимании равновесие в системе означает просто хаос. Для человека максимум энтропии - это разрушение. Любое разрушение увеличивает энтропию.
Энтропия замкнутой системы необратима. Но в природе полностью замкнутых систем не существует. А для открытых неравновесных систем точного определения энтропии пока не известно. Измерить энтропию нельзя. Из строгих физических законов она не выводится. Энтропия вводится в термодинамике для характеристики необратимости протекающих в газах процессов.
Многие ученые не считают феноменологические законы термодинамики законами природы, а рассматривают их как частный случай при работе с газом с помощью тепловой машины. Поэтому не рекомендуются расширенная трактовка энтропии в физике.
С другой стороны необратимость протекающих физических процессов и самой нашей жизни – это факт. С этой позиции вполне оправдано использование понятия энтропии в нефизических дисциплинах для характеристики состояния системы.
Все природные системы, включая человеческий организм и человеческие сообщества, не являются замкнутыми. Открытость системы позволяет локальным образом уменьшать энтропию за счет обмена энергией с окружающей средой, что приводит к упорядочению и усложнению структуры системы.
Человеческие сообщества в любом виде, от племен и групп до народов и социальных обществ, также являются системами. Каждое человеческое сообщество имеет свои законы и структуру взаимодействий. Будем говорить об обществе в целом, ограничивая его рамками государств.
Любое общество как система старается сохранить себя в окружающем мире. Для этого существуют государственные, общественные, социальные и другие институты. Применение энтропии для характеристики общества позволяет установить некоторые приблизительные рамки, в пределах которых общество может успешно развиваться или, наоборот, деградировать.
В настоящее время существует множество параметров, характеризующих то или иное общество. Но большинство из этих параметров, в конечном счете, сводится к двум видам: параметры, характеризующие открытое демократическое общество, и параметры, описывающие тоталитарные системы.
Почему западные государства достигли такого впечатляющего прогресса в экономике и государственном устройстве и существенно опережают в своем развитии другие общественные системы? Западное общество характеризуется большей степенью открытости. Более открытая система, с одной стороны, впускает в себя больше энергии из внешнего мира и дает больше степеней свободы своим элементам, с другой стороны – позволяет увеличить отток
«недоброкачественной» энергии. Таким образом, энтропия системы уменьшается.
При этом усложняется структура системы, что в западном обществе мы и наблюдаем.
В более замкнутой общественной системе имеют место обратные процессы.
Энтропия увеличивается. Структура общества упрощается. Ярким примером такой системы служит Северная Корея. Структура общества упростилась до трех основных элементов – партийная элита, армия и все остальные.
Таким образом, можно сделать вывод, что для успешного развития общества необходимо соблюдение некоторых условий. Главным из таких условий является степень свободы элементов общества, т.е. людей. Степень свободы человека можно определять в терминах прав человека, политических свобод, экономических возможностей. Суть от этого не меняется. Человек должен иметь право на свободу выбора целей и путей их достижения.
Если право выбора человека слишком ограничивается, то в обществе начинаются застойные процессы, и оно постепенно приходит в упадок. Как пример можно привести Советский Союз. Выбор человека ограничивался идеологическими установками и партийной принадлежностью. Добиться успеха, сделать карьеру вне партии было сложно. В конце концов, осталась одна возможность продвижения: школа, институт комсомол, партия. Партийная принадлежность была необходима для достижения успеха в любой сфере деятельности.
Такой вариант общественных отношений, в конечном счете, привел к упрощению структуры общества и последующему упадку. Открытость общества не является панацеей от всех бед, но создает предпосылки для дальнейшего прогресса.
Демократия - не лучшая система управления. Но, по - видимому, это одна из необходимых степеней свободы. При детальном исследовании можно вычислить необходимое для развития количество степеней свободы личности. Перебор также не желателен. В этом случае отдельные части общества получают слишком большую независимость, что может привести к распаду целого на отдельные независимые составляющие.
Поэтому на Западе наблюдается такое огромное количество норм и правил, регулирующих все сферы жизни человека. Большое количество норм и законов необходимо для регулирования сложной структуры общества и сохранения его целостности.
Не следует также путать экономическую и военную мощь государства с общественными институтами. Замкнутые общества могут иметь оболочку в виде мощных и сильных государств. Советский Союз тому пример. Государство является вторичным по отношению к обществу. Государства могут исчезать, но люди на территории остаются, и, следовательно, остается общество, которое в отсутствии государства может получить новый импульс к развитию. Если же распадается общество, то государство исчезает навсегда. В России государственное устройство неоднократно менялось, но общество, видоизменяясь, не распадалось.
При использовании понятия энтропии нельзя обойтись без закона сохранения. К сожалению, он гласит, что если энтропия где-то убывает, то где-то она прибывает. Прогресс человечества в целом, и общественных институтов - в частности, приводит к уменьшению энтропии системы. Значит, энтропия окружающей человека среды увеличивается. Это приводит к гибели природы и экологическим катастрофам.
На земле кроме человека есть и другая жизнь. Реакция живой природы на разрушающие действия человеческой системы может быть многообразной: от новых болезней и эпидемий до мутантов и планетарных катастроф.

Теперь можно разобрать энтропию в информационном аспекте.
При подходе к сложным системам используются законы статистической физики.
В этой области физики предпринимается, в частности, попытка вывести феноменологические макроскопические законы термодинамики из микроскопической теории. Такой микроскопической теорией может быть ньютоновская механика отдельных частиц газа или квантовая механика.
Используя соответствующие статистические средние, мы получаем возможность вывести макроскопические величины из микроскопических законов. Центральным понятием и в этом случае является энтропия S. Согласно Больцману, она связана с числом W различных микроскопических состояний, порождающих одно и то же макроскопическое состояние системы соотношением
[pic]
Решающее значение имеет так и не получивший убедительного ответа вопрос о том, почему макроскопические явления необратимы, хотя все фундаментальные законы обратимы. Например, если у нас есть сосуд с молекулами газа и мы откроем клапан, чтобы газ мог попасть во второй сосуд, то оба сосуда окажутся заполнены газом более или менее равномерно. Однако обратный процесс в природе никогда не наблюдается: никому не доводилось видеть, чтобы второй сосуд самопроизвольно опустел и все молекулы собрались в первом сосуде.
Несмотря на трудности, связанные со строгим обоснованием необратимости, статистическая физика позволяет нам объяснить ряд явлений неравновесной термодинамики, такие, как релаксационные процессы, теплопроводность, диффузия молекул и т.д.
Использование слова "информация" приводит ко многим недоразумениям. Это связано с тем, что оно имеет много различных значений. В обыденном языке это слово используется в смысле "сообщение" или "сведения". Письмо, телевизионная передача или телефонный разговор несут информацию. Начнем с понятия Шенноновской информации, согласно которому информация оценивается независимо от ее смысла. Средняя информация, приходящаяся например, на одну букву в книге определяется выражением
[pic], где pj – относительная частота j-ой буквы.
Шеннон использовал такое определение информации при изучении пропускной способности канала связи — способности передавать информацию даже при наличии помех. Шенноновская информация никак не связана со смыслом передаваемого сигнала. В его концепцию информации не входят такие аспекты, как осмысленность или бессмысленность, полезность или бесполезность и т.д.
Шенноновская информация относится к замкнутым системам. Имеется ограниченный резервуар сигналов, число которых равно Z.
Одна из наиболее поразительных особенностей любой биологической системы — необычайная высокая степень координации между ее отдельными частями. В клетке одновременно и согласованно могут происходить тысячи метаболических процессов. У животных от нескольких миллионов до нескольких миллиардов нейронов и мышечных клеток своим согласованным действием обеспечивает координированные движения, сердцебиение, дыхание и кровообращение.
Распознавание образов — процесс в высшей степени кооперативный, равно как и речь и мышление у людей. Совершенно очевидно, что все эти высоко координированные, когерентные процессы становятся возможными только путем обмена информацией, которая должна быть произведена, передана, принята, обработана, преобразована в новые формы информации и должна участвовать в обмене информацией между различными частями системы и вместе с тем между различными иерархическими уровнями. Так мы приходим к непреложному выводу о том, что информация является решающим элементом существования самой жизни.
Понятие информации весьма тонкое. Как мы видим, она может так же обретать роль своего рода среды, существование которой поддерживается отдельными частями системы — среды, из которой эти части получают конкретную информацию относительно того, как им функционировать когерентно, кооперативно. И на этом уровне в дело вступает семантика.
Второе начало термодинамики говорит нам, что в замкнутых системах структуры распадаются и системы становятся всё более однородными – по крайней мере на макроскопическом уровне. На микроуровне может царить полный хаос. Именно по этим причинам информация не может порождаться системами в состоянии теплового равновесия; в замкнутых системах в конце концов устанавливается тепловое равновесие. Но система, находящаяся в состоянии теплового равновесия, не может и хранить информацию. Рассмотрим пример — книгу. На первый взгляд может показаться, что она находится в тепловом равновесии — ведь мы даже можем измерить ее температуру. Однако полного теплового равновесия книга достигнет лишь после того, как типографская краска продиффундирует и, расплываясь по каждой странице все больше и больше, распространится по ней, — но тогда текст исчезнет.
Таким образом, мы видим многоликость понятия "информация". Будущее этого понятия разовьется именно в разделе самоорганизации сложных систем, так как синергетическое направление в наше время — одно из самых перспективных и малоисследованных.
^ 3. Укажите три основные научные программы античности:

  1. теологизм

  2. математическая программа Пифагора – Платона

  3. программа Аристотеля

  4. гелиоцентризм Коперника

  5. атомизм Левкиппа – Демокрита


Ответ:

  1. Математическая программа Пифагора – Платона - Первой научной программой стала математическая программа, представленная Пифагором и позднее развитая Платоном. В ее основе, как и в основе других античных программ, лежит представление о том, что Космос - это упорядоченное выражение целого ряда первоначальных сущностей, которые можно постигать по-разному.

  2. ^ Программа Аристотеля - Второй научной программой античности, оказавшей громадное влияние на все последующее развитие науки, стал атомизм. Он стал итогом развития греческой философской традиции, синтезом целого ряда ее тенденций и идейных установок. Основателями его стали Левкипп и Демокрит.

  3. ^ Программа Аристотеля - Программа Аристотеля стала третьей научной программой античности. Она возникла на переломе эпох. С одной стороны, она еще близка к античной классике с ее стремлением к целостному философскому осмыслению действительности. С другой, в ней отчетливо проявляются эллинистические тенденции к выделению отдельных направлений исследования в относительно самостоятельные науки, со своими предметом и методом.

Список используемой литературы.

  1. Готт В. С. Философские вопросы современной физики. - М.: Высшая школа, 1988.

  2. Клейн М. В поисках истины.- М.: Мир, 1987.

  3. Философские проблемы естествознания / Под ред. С.Т.Мелюхина,- М.: Высшая школа, 1985.

  4. Степин В. С. Философская антропология и философия науки. - М.: Высшая школа, 1992.

  5. Карпенков С.Х. Концепции современного естествознания. М.: Культура и спорт, 1997.

  6. Концепции современного естествознания. / С.И. Самыгин, М.И.Баскаков, В.О. Голубинцев и др., Ростов-на-Дону: Феникс, 1997.

  7. Дорфман Я. Г. Всемирная история физики с начала 19 века до середины 20 века. - М.: Наука, 1979.

  8. Инфельд Л., Эйнштейн А. Эволюция физики.- М.: Наука, 1965.

  9. Карапетьянц М.Х., Дракин С.И. Строение вещества.- М.: Высшая школа, 1970.

  10. Эткинс П. Порядок и беспорядок в природе.- М.: Мир, 1987.

  11. Волькенштейн М. В. Биофизика. - М.: Наука, 1988.



Скачать файл (94.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации