Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции - Математические модели естествознания - файл LEKCY7.DOC


Лекции - Математические модели естествознания
скачать (423.6 kb.)

Доступные файлы (16):

LEKCY10.DOC195kb.27.05.1997 03:57скачать
LEKCY1~1.DOC431kb.27.05.1997 04:11скачать
LEKCY11.DOC391kb.27.05.1997 04:03скачать
LEKCY12.DOC67kb.27.05.1997 04:07скачать
LEKCY14.DOC147kb.27.05.1997 01:42скачать
LEKCY1.DOC319kb.27.05.1997 03:11скачать
LEKCY2.DOC170kb.27.05.1997 03:19скачать
LEKCY3.DOC191kb.27.05.1997 03:23скачать
LEKCY4.DOC279kb.27.05.1997 03:28скачать
LEKCY5.DOC123kb.27.05.1997 03:30скачать
LEKCY6.DOC209kb.27.05.1997 03:34скачать
LEKCY7.DOC258kb.27.05.1997 03:39скачать
LEKCY8~1.DOC407kb.27.05.1997 03:45скачать
LEKCY9.DOC262kb.27.05.1997 03:49скачать
LEKCY.DOC260kb.27.05.1997 02:55скачать
M_M.DOC13kb.27.05.1997 04:15скачать

LEKCY7.DOC



- -



Взаимодействие отбора и мутаций

В природе одбор и мутации протекают одновременно. Имеет смысл изучить их совместное действие. Рассмотрим однолокусную популяцию с аллелями и . Предположим, что мутации происходят в гаметах (в половых клетках родительских организмов). Темп мутирования за одно поколение аллеля в аллель обозначим через . Считаем, что . Пусть и -частоты аллелей и в -ом поколении в момент появления его на свет. Относительные приспособленности генотипов , и обоэначим как , и соответственно. В соответствии с (16) и (17) (уравнение для отбора в менделевской популяции) эволюция для частоты аллеля задается одномерным отображением:

, (24)

где

.

В правой части (24) слагаемое - уменьшение частоты аллеля за счет мутирования в аллель . Очевидно, для частоты аллеля имеем .

Выше было показано, что для всех . Поскольку параметр , правая часть отображения (24) является также монотонно растущей функцией для . На основе этого факта выше было доказано, что все траектории одномерного отображения стремятся к состояниям равновесия.

Рассмотрим некоторые частные случаи. Пусть отбор действует против особей рецессивного гомозиготного генотипа . Будем считать, что относительные приспособленности генотипов и равны между собой и выше относительной приспособленности генотипа . Положим: и . Отображение (24) приобретает вид:

. (25)

Его неподвижные точки суть и . Второе состояние равновесия существует только в случае . Для малой окрестности нуля имеем:



Поскольку на интервале нет состояний равновесия, то для всех . В результате, траектории с начальным условием стремятся к состоянию равновесия , т.е. при . Далее, . Следовательно, для всех . Траектории с начальным условием также стремятся к этому состоянию равновесия, которое оказывается глобально устойчивым. Напомним, что устойчивое состояние равновесия, для которого частоты обоих аллелей ненулевые, называется балансированным полиморфизмом. Выше было показано, что для случая, когда отбор действует против рецессивных гамет и отсутствуют мутации, полиморфизм невозможен (рецессивный аллель вытесняется из популяции). Если рецессивный аллели летальны , то значения равновесных частот суть и . При достаточно типичном темпе мутирования получаем равновесную частоту рецессивного летального аллеля . Это достаточно высокая вероятность возникновения генетического заболевания ( в среднем три особи на тысячу).

Если (отбор против рецессивных гомозигот менее интенсивен нежели мутации), то состояние равновесия отсутствует и отображение (25) имеет единственную неподвижную точку , к которой, естественно, сходятся все траектории. Таким образом, несмотря на лучшую приспособленность обладателей аллеля , засчет мутаций происходит вытеснение этого аллеля.

Рассмотрим теперь случай, когда гомозиготный геннотип имеет самую высокую относительную приспособленность. Пусть , , где . Преобразуем правую часть уравнение эволюции (24). Последовательно получаем :



Далее,



Тем самым, отображение (24) приобретает вид:

.

Одна из неподвижных точек отображения, очевидно, . Две другие определяются из уравнения:

.

Получаем:

, .

Оба корня существуют поскольку .Здесь . Поскольку для , то знак разности определяется знаком квадратного трехчлена . Если , то . Если же , то . Наконец, для . (См. Рисунок.)Тем самым, при начальной точке траектории при . Состояние полиморфизма , устойчиво (полиморфизм балансирован). Соответственно, состояние равновесия неустойчиво. Если начальная точка, то соответствующая траектория стремится к нулю. Однако, нужно заметить, что здесь мы выходим за рамки применимости модели. При больших концентрациях аллеля нужно учитывать мутации от аллелей к аллелям .




Скачать файл (423.6 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации