Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Контрольная по биологии с основами экологии - файл 1.doc


Контрольная по биологии с основами экологии
скачать (158 kb.)

Доступные файлы (1):

1.doc158kb.04.12.2011 11:27скачать

содержание

1.doc



МИНИСТЕРСТВО СЕЛЬСКОГО ХОЗЯЙСТВА РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ИЖЕВСКАЯ ГОСУДАРСТВЕННАЯ

СЕЛЬСКОХОЗЯЙСТВЕННАЯ АКАДЕМИЯ»
ФАКУЛЬТЕТ НЕПРЕРЫВНОГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
Контрольная работа по «Биологии с основами экологии»
Проверил:

Выполнил:

Специальность: ЭАСХ

Курс: 1

Группа:

Шифр:


Ижевск 2011
Содержание


1. Цитоплазма клетки, ее составные части и функции. 2

2. Обмен веществ и энергия в организме человека. 6

3. Экологические последствия эксплуатации двигателей внутреннего сгорания (ДВС). 12

4. Методы исключения человека из участия в производственных технологиях, опасных для состояния здоровья. 20

5. Какое наказание последует при нарушении правил: охраны окружающей среды при производстве работ обращения экологически опасных веществ. 23

Литература: 25

^

1. Цитоплазма клетки, ее составные части и функции.



Цитоплазма – полужидкая слизистая бесцветная масса, содержащая 75-85% воды, 10-12% белков и аминокислот, 4-6% углеводов, 2-3% жиров и липидов, 1% неорганических и других веществ. Цитоплазматическое содержимое клетки способно двигаться, что способствует оптимальному размещению органоидов, лучшему протеканию биохимических реакций, выделению продуктов обмена и т.д. Слой цитоплазмы формирует разные образования: реснички, жгутики, поверхностные выросты.

Цитоплазма пронизана сложной сетчатой системой, связанной с наружной плазматической мембраной и состоящей из сообщающихся между собой канальцев, пузырьков, уплощённых мешочков. Такая сетчатая система названа вакуолярной системой.

Цитоплазма содержит ряд мельчайших структур клетки – органоидов (эндоплазматическая сеть; рибосомы; комплекс Гольджи; лизосомы; клеточный центр; энергетические органоиды), которые выполняют различные функции. Органоиды обеспечивают жизнедеятельность клетки.

Эндоплазматическая сеть (ЭПС).

Название этого органоида отражает место расположения его в центральной части цитоплазмы (греч. «эндон» - внутри). ЭПС представляет собой очень разветвлённую систему канальцев, трубочек, пузырьков, цистерн разной величины и формы, отграниченных мембранами от цитоплазмы клетки.

ЭПС бывает двух видов: гранулярная, состоящая из канальцев и цистерн, поверхность которых усеяна зёрнышками (гранулами) и агранулярная, т.е. гладкая (без гран). Граны в эндоплазматической сети ни что иное, как рибосомы. Интересно, что в клетках зародышей животных наблюдается в основном гранулярная ЭПС, а у взрослых форм – агранулярная. Зная, что рибосомы в цитоплазме служат местом синтеза белка, можно предположить, что гранулярная ЭПС преобладает в клетках, активно синтезирующих белок. Считают, что агранулярная сеть в большей степени предоставлена в тех клетках, где идёт активный синтез липидов (жиров и жироподобных веществ).

Оба вида эндоплазматической сети не только участвуют в синтезе органических веществ, но и накапливают и транспортируют их к местам назначения, регулируют обмен веществ между клеткой и окружающей её средой.

Рибосомы.

Рибосомы – не мембранные клеточные органоиды, состоящие из рибонуклеиновой кислоты и белка. Их внутреннее строение во многом ещё остаётся загадкой. В электронном микроскопе они имеют вид округлых или грибовидных гранул.

Каждая рибосомы разделена желобком на большую и маленькую части (субъединицы). Часто несколько рибосом объединяются нитью специальной рибонуклеиновой кислоты (РНК), называемой информационной (и-РНК). Рибосомы осуществляют уникальную функцию синтеза белковых молекул из аминокислот.

Комплекс Гольджи.

Продукты биосинтеза поступают в просветы полостей и канальцев ЭПС,

где они концентрируются в специальный аппарат – комплекс Гольджи, расположенный вблизи ядра. Комплекс Гольджи участвует в транспорте продуктов биосинтеза к поверхности клетки и в выведении их из клетки, в формировании лизосом и т.д.

Комплекс Гольджи был открыт итальянским цитологом Камилио Гольджи (1844 – 1926) и в 1898 году был назван «комплексом (аппаратом) Гольджи». Белки, выработанные в рибосомах, поступают в комплекс Гольджи, а когда они требуются другому органоиду, то часть комплекса Гольджи отделяется, и белок доставляется в требуемое место.

Лизосомы.

Лизосомы (от греч. «лизео» – растворяю и «сома» - тело) - это

органоиды клетки овальной формы, окружённые однослойной мембраной. В них находится набор ферментов, которые разрушают белки, углеводы, липиды. В случае повреждения лизосомной мембраны ферменты начинают расщеплять и разрушать внутреннее содержимое клетки, и она погибает.

Клеточный центр.

Клеточный центр можно наблюдать в клетках, способных делиться. Он состоит из двух палочковидных телец – центриолей. Находясь около ядра и комплекса Гольджи, клеточный центр участвует в процессе деления клетки, в образовании веретена деления.

Энергетические органоиды.

Митохондрии (греч. «митос» - нить, «хондрион» - гранула) называют энергетическими станциями клетки. Такое название обуславливается тем, что именно в митохондриях происходит извлечение энергии, заключённой в питательных веществах. Форма митохондрий изменчива, но чаще всего они имеют вид нитей или гранул. Размеры и число их также непостоянны и зависят от функциональной активности клетки.

Митохондрии состоят из двух мембран: наружной и внутренней. Внутренняя мембрана образует выросты, называемые кристами, которые сплошь устланы ферментами. Наличие крист увеличивает общую поверхность митохондрий, что важно для активной деятельности ферментов.

В митохонлриях обнаружены свои специфические ДНК и рибосомы. В связи с этим они самостоятельно размножаются при делении клетки.

Хлоропласты – по форме напоминают диск или шар с двойной оболочкой – наружной и внутренней. Внутри хлоропласта также имеются ДНК, рибосомы и особые мембранные структуры – граны, связанные между собой и внутренней мембраной хлоропласта. В мембранах гран и находится хлорофилл. Благодаря хлорофиллу в хлоропластах происходит превращение энергии солнечного света в химическую энергию АТФ (аденозинтрифосфат). Энергия АТФ используется в хлоропластах для синтеза углеводов из углекислого газа и воды.

Клеточные включения.

К клеточным включениям относятся: углеводы, жиры и белки.

Углеводы.

Углеводы состоят из углерода, водорода и кислорода. К углеводам относятся глюкоза, гликоген (животный крахмал). Многие углеводы хорошо растворимы в воде и являются основными источниками энергии для осуществления всех жизненных процессов. При распаде одного грамма углеводов освобождается 17,2 кДж энергии.

Жиры.

Жиры образованы теми же химическими элементами, что и углеводы. Жиры нерастворимы в воде. Они входят в состав клеточных мембран. Жиры также служат запасным источником энергии в организме. При полном расщеплении одного грамма жира освобождается 39, 1 кДж энергии.

Белки.

Белки являются основными веществами клетки. Белки состоят из углерода, водорода, кислорода, азота, серы. Часто в состав белка входит фосфор. Белки служат главным строительным материалом. Они участвуют в формировании мембран клетки, ядра, цитоплазмы, органоидов. Многие белки выполняют роль ферментов (ускорителей течения химических реакций). В одной клетке насчитывается до 1000 разных белков. При распаде белков в организме освобождается примерно такое же количество энергии, как и при расщеплении углеводов.

Все эти вещества накапливаются в цитоплазме клетки в виде капель и зёрен различной величины и формы. Они периодически синтезируются в клетке и используются в процессе обмена веществ.
^

2. Обмен веществ и энергия в организме человека.



Обмен веществ и энергии - это совокупность процессов превращения веществ и энергии, происходящих в живых организмах и обмен веществами и энергией между организмом и окружающей средой. Обмен веществ и энергией представляет собой основу жизнедеятельности и принадлежит к числу важнейших признаков живой материи, отличающих живое от неживого. В процессе обмена, поступившие в организм вещества, путём химических изменений превращаются в собственные вещества тканей или в конечные продукты которые выводятся из организма. При этих химических превращениях освобождается и поглощается энергия.

Обмен веществ или метаболизм представляет собой высокоинтегрированый и целенаправленный процесс, в котором участвует много ферментативных систем и который обеспечен сложнейшей регуляцией на разных уровнях.

У всех организмов (и у человека то же) клеточный метаболизм выполняет 4 основные специфические функции:

1. Извлечение энергии из окружающей среды и преобразование её в энергию высокоэргических соединений в количестве достаточном для обеспечения всех энергетических потребностей клетки и целого организма.

2. Образование из экзогенных веществ (или получение в готовом виде) промежуточных соединений являющихся предшественниками макромолекулярных компонентов в клетке.

3. Синтез белков, нуклеиновых кислот, углеводов, липидов и других клеточных компонентов из этих предшественников.

4. Синтез и разрушение специальных биомолекул - образование и распад, которых связан с выполнением различных специфических функций данной клетки.

С точки зрения термодинамики живые организмы представляют собой открытые системы, поскольку они обмениваются с окружающей средой, как энергией, так и веществом, и при этом преобразуют и то и другое. При наблюдении в течение определённого отрезка времени в химическом составе организма определённых изменений не происходит. Но это не значит что химические вещества, составляющие организм не подвергаются ни каким изменениям. Напротив они постоянно и достаточно интенсивно обновляются. Это потому что скорость переноса веществ и энергии из среды в организм точно уравновешивается скоростью переноса из организма в среду.

Влияние различных условий на обмен веществ.

Интенсивность обмена веществ оценивают по общему расходу энергии, и она может меняться в зависимости от многих условий и в первую очередь от физической работы. Однако и в состоянии полного покоя обмен веществ и энергии не прекращается, и для обеспечения непрерывного функционирования внутренних органов, поддержания тонуса мышц и прочее расходуется некоторое количество энергии.

У молодых мужчин основной обмен веществ составляет 1300 – 1600 килокалорий в сутки. У женщин величина основного обмена на 6 – 8 % ниже, чем у мужчин. С возрастом (начиная с 5 лет) величина основного обмена веществ неуклонно снижается. С повышением температуры тела на 1 градус величина основного обмена веществ возрастает на 13%. Возрастание интенсивности обмена веществ наблюдается так же при снижении температуры окружающей среды ниже зоны комфорта. Это адаптационный процесс, связанный с необходимостью поддерживать постоянную температуру тела.

Главное влияние на величину обмена веществ и энергии оказывает физическая работа. Обмен при интенсивной физической нагрузки по расходу энергии может в 10 раз превышать основной обмен, а в очень короткие периоды (например, плавание на короткие дистанции) даже в 100 раз.

Промежуточный обмен веществ.

Совокупность химических превращений веществ, которые происходят в организме начиная с момента поступления переваренных пищевых веществ в кровь и до момента выделения конечных продуктов обмена из организма – называют промежуточным метаболизмом (обменом веществ). Промежуточный метаболизм может быть разделён на два процесса: катаболизм (диссимиляция) и анаболизм (ассимиляция). Катаболизм – это ферментативное расщепление сравнительно крупных органических молекул осуществляемое у высших организмов, как правило, окислительным путём. Катаболизм сопровождается освобождением энергии, заключенной в сложных структурах крупных органических молекул и запасанием её в форме фосфатных связей АТФ. Анаболизм – это ферментативный синтез из более простых соединений крупномолекулярных клеточных компонентов, таких как полисахариды, нуклеиновые кислоты, белки, липиды, а также некоторых их предшественников. Анаболические процессы протекают с потреблением энергии. Катаболизм и анаболизм происходят в клетках одновременно и неразрывно связаны друг с другом. По существу их следует рассматривать не как два отдельных процесса, а как две стороны одного общего процесса – метаболизма, в котором превращение веществ теснейшим образом переплетены с превращением энергии.

Более подробное рассмотрение метаболических путей показывает, что расщепление основных пищевых веществ в клетке представляет собой ряд последовательных ферментативных реакций, составляющие три главные стадии катаболизма. На первой стадии крупные органические молекулы распадаются на составляющие их специфические структурные блоки. Так полисахариды распадаются до гексоз или пентоз, белки – до аминокислот, нуклеиновые кислоты – до нуклеотидов, липиды – до жирных кислот, глицерина и других веществ. Все эти реакции протекают в основном гидролитическим путём и количество энергии освобождающейся на этой стадии очень невелико – менее 1 %. На второй стадии катаболизма образуются ещё более простые молекулы, причём число их типов существенно уменьшается. Очень важно, что на второй стадии образуются продукты, которые являются общими для обмена разных веществ. Эти продукты представляют собой ключевые соединения являющимися как бы ключевыми станциями, соединяющими разные пути метаболизма. Продукты, образовавшиеся на второй стадии катаболизма, вступают в третью стадию катаболизма, которая известна под названием терминального окисления. В ходе этой стадии все продукты, в конечном счете, окисляются до оксида углерода и воды. Практически вся энергия освобождается на второй и третьей стадии катаболизма.

Процесс анаболизма тоже проходит три стадии. Исходными веществами для него служат те же продукты, которые подвергаются превращениям на третьей стадии катаболизма. То есть третья стадия катаболизма является в тоже время первой исходной стадией анаболизма. Реакции, протекающие на этой стадии, выполняют как бы двойную функцию. С одной стороны они участвуют в завершающих этапах катаболизма, а с другой – служат и для анаболических процессов, поставляя, вещества-предшественники для последующих стадий анаболизма. На этой стадии, например, начинается синтез белка.

Катаболические и анаболические реакции происходят одновременно, но в разных частях клетки. Например, окисление жирных кислот осуществляется с помощью набора ферментов локализованных в митохондриях, тогда как синтез жирных кислот катализирует другая система ферментов, локализующая в цитозоле. Именно благодаря разной локализации катаболические и анаболические процессы в клетке могут протекать одновременно.
Регуляция обмена веществ и энергии

Клеточный метаболизм характеризуется высокой устойчивостью и в тоже время значительной изменчивостью. Оба эти свойства обеспечивают постоянное приспособление клеток и организмов к меняющимся условиям окружающей и внутренней среды. Так скорость катаболизма в клетке определяется потребность клетки в энергии в каждый данный момент. Точно так же скорость биосинтеза клеточных компонентов определяется нуждами данного момента. Клетка, например, синтезирует аминокислоты именно с той скоростью, которая достаточно, для того чтобы обеспечить возможность образования минимального количества необходимого ей белка. Такая экономичность и гибкость метаболизма возможно лишь при наличии достаточно тонких и чутких механизмов его регулирования. Регуляция обмена веществ осуществляется на разных уровнях постепенно возрастающей сложности.

Простейший тип регуляции затрагивает все основные параметры, влияющие на скорость ферментативных реакций. Например, преобладание кислотной или щелочной среды в тканях (рН-среда). Накопление кислотных продуктов реакции может сдвинуть рН-среду за пределы оптимального состояния для данного фермента и таким образом затормозить процесс.

Следующий уровень регуляции сложных метаболических процессов касается концентрации необходимых веществ в клетке. Если концентрация, какого ни будь необходимого вещества, в клетке на достаточном уровне то синтез этого вещества прекращается до того момента, когда концентрация снизится ниже определённого уровня. Таким образом, поддерживается определённый химический состав клетки.

Третий уровень регуляции - это генетический контроль, определяющий скорость синтеза ферментов, которая может сильно варьироваться. Регуляция на уровне генов может привести к увеличению или уменьшению концентрации тех или иных ферментов, к изменению типов ферментов, может происходить индукция или репрессия одновременно целой группы ферментов. Генетическая регуляция отличается высокой специфичностью, экономичностью и обеспечивает широкие возможности для контроля обмена веществ. Однако в подавляющем большинстве активация генов, процесс медленный. Обычно время, необходимое, для того чтобы индуктор или репрессор мог заметно повлиять на концентрацию ферментов, измеряется часами. Поэтому данная форма регуляции непригодна для срочных случаев.

У высших животных и у человека существует ещё два уровня, два механизма регуляции обмена веществ и энергии, которые отличаются тем, что связывают между собой метаболизм, совершающийся в разных органах и тканях, и таким образом направляют и приспосабливают его для выполнения функций, присущих не отдельным клеткам, а всему организму в целом. Таким механизмом, прежде всего, является эндокринная система. Гормоны вырабатываются эндокринными железами служат для стимуляции или подавления определённых метаболических процессов в других тканях или органах. Например, когда поджелудочная железа начинает вырабатывать меньше инсулина, в клетки поступает меньше глюкозы, а это в свою очередь ведёт к изменению ряда процессов участвующих в обмене веществ.

Самым высшим уровнем регуляции, наиболее совершенной её формой, является нервная регуляция. Нервная система, в частности её центральные отделы, выполняют в организме высшие интегративные функции. Получая сигналы из окружающей среды, и от внутренних органов центральная нервная система преобразует их и направляет импульсы к тем органам изменения скорости обмена веществ, в которых необходимо в данный момент для выполнения определённой функции. Чаще всего свою регулирующую роль нервная система осуществляет через эндокринные железы, усиливая или подавляя поступление гормонов в кровь. Хорошо известно влияние эмоций на метаболизм, например предстартовое повышение показателей обмена веществ и энергии у спортсменов. Во всех случаях регулирующим действием нервной системы на обмен веществ и энергии весьма целесообразно и всегда направленно на наиболее эффективное приспособление организма к изменяющимся условиям.
Из вышеизложенного можно сделать вывод - чтобы поддерживать нормальный обмен веществ и энергии в организме, необходим комплекс мероприятий:

1. Полноценный ежедневный отдых;

2. Умеренная физическая нагрузка;

3. Сбалансированное питание;

4. Мероприятия по очистке организма.
^

3. Экологические последствия эксплуатации двигателей внутреннего сгорания (ДВС).



Вследствие загрязнения среды обитания вредными вещест­вами отработавших газов двигателей внутреннего сгорания зоной экологического бедствия для населения становятся целые регионы, в особенности крупные города. Проблема даль­нейшего снижения вредных выбросов двигателей все более обостряется ввиду непрерывного увеличения парка эксплуатируемых авто­транспортных средств, уплотнения автотранспортных по­токов, нестабильности показателей самих мероприятий по сниже­нию вредных веществ в процессе эксплуатации. В денежном исчислении вели­чина ежегодного экологического ущерба (загрязнение атмосферы, шум, воздействие на климат) от функционирования автотранспортного комплекса Россий­ской Федерации достигает 2-3 % валового национального продук­та при общих экологических потерях 10 % и затратах на природоохранные мероприятия не более 1 %. Основная доля ущерба от автотранспорта (78 %) связана с загрязнением атмо­сферного воздуха выбросами вредных веществ (что во многом объясняется низким качеством отечественных топлив в сравнении с европейскими стандартами), 16 % ущерба приходится на последствия шумового воздействия транспорта на население.

Общее количество загрязняющих ве­ществ, поступивших в атмосферный воздух на территории Рос­сийской Федерации от выхлопов газа автомобильного транспорта, в 2000 г. состави­ло 11 824,2 тыс. т.

Принцип работы автомобильных двигателей основан на пре­вращении химической энергии жидких и газообразных топлив нефтяного происхождения в тепловую, а затем – в механическую энергию. Жидкие топлива в основном состоят из углеводородов, газообразные, наряду с углеводородами, содержат негорючие га­зы, такие как азот и углекислый газ. При сгорании топлива в ци­линдрах двигателей образуются нетоксичные (водяной пар, угле­кислый газ) и токсичные вещества. Последние являются продук­тами сгорания или побочных реакций, протекающих при высоких температурах. К ним относятся окись углерода СО, углеводороды CmHn, окислы азота (NO и NO2) обычно обозначаемые NOX. Кроме перечисленных веществ вредное воздействие на организм челове­ка оказывают выделяемые при работе двигателей соединения свинца, канцерогенные вещества, сажа и альдеги­ды.

Содержание основных токсичных веществ в отработавших газах бензиновых двигателей

^ Токсичные вещества

Содержание

Окись углерода %

до 10,0

Углеводороды, %

до 3,0

Окислы азота %

до 0,5

Альдегиды %

0,03

Сажа г/м3

до 0,04

Бенз(а)пирен мкг / м

до 20

Двуокись серы %

0,008


Основным токсичным компонентом отработавших газов, выделяющихся при работе бензиновых двигателей, является окись углерода. Она образуется при неполном окислении углеро­да топлива из-за недостатка кислорода во всем объеме цилиндра двигателя или в отдельных его частях.

Основным источником токсичных веществ, выделяющихся при работе дизелей, являются отработавшие газы. Картерные газы дизеля содержат значительно меньшее количество углеводородов по сравнению с бензиновым двигателем в связи с тем, что в дизе­ле сжимается чистый воздух, а прорвавшиеся в процессе расши­рения газы содержат небольшое количество углеводородных со­единений, являющихся источником загрязнений атмосферы.

Содержание токсичных компонентов в отрабо­тавших газах дизеля

^ Токсичные вещества

Содержание

Окись углерода %

0,2

Углеводороды, %

0,01

Окислы азота %

0,25

Альдегиды %

0,002

Сажа г/м3

0,01 - 1,1

Бенз(а)пирен мкг / м

до 10

Двуокись серы %

0,03


Загрязнение воздуха автомобильным транспортом происходит в результате сжигания топлива. Химический состав выбросов зависит от вида и качества топлива, технологии произ­водства, способа сжигания в двигателе и его технического со­стояния.

Наиболее неблагоприятными режимами работы являются малые скорости и «холостой ход» двигателя, когда в атмосферу выбрасываются загрязняющие вещества в количествах, значи­тельно превышающих выброс на нагрузочных режимах. Техниче­ское состояние двигателя непосредственно влияет на экологиче­ские показатели выбросов. Отработавшие газы бензинового дви­гателя с неправильно отрегулированными зажиганием и карбюра­тором содержат оксид углерода в количестве, превышающем норму в 2-3 раза.

Отработавшие газы двигателя внутреннего сгорания содержат около 200 компонентов. Период их существования длится от нескольких минут до 4-5 лет. По химическому составу и свойствам, а также характеру воздей­ствия на организм человека их объединяют в группы.

^ Первая группа. В нее входят нетоксичные вещества: азот, ки­слород, водород, водяной пар, углекислый газ и другие естест­венные компоненты атмосферного воздуха. В этой группе заслуживает внимания углекислый газ (СО2), содержание которого в отработавших газах в настоящее время не нормируется, однако вопрос об этом ставится в связи с особой ролью СО2 в «парниковом эффекте».

^ Вторая группа. К этой группе относят только одно вещество – оксид углерода, или угарный газ (СО). Продукт неполного сго­рания нефтяных видов топлива, он не имеет цвета и запаха, легче воздуха. В кислороде и на воздухе оксид углерода горит голубо­ватым пламенем, выделяя много теплоты и превращаясь в углекислый газ. Оксид углерода обладает выраженным отравляющим действием. Оно обусловлено его способностью вступать в реак­цию с гемоглобином крови, приводя к образованию карбоксигемоглобина, который не связывает кислород. Вследствие этого нарушается газообмен в организме, появляется кислородное голо­дание и нарушается функционирование всех систем организма. Отравлению угарным газом часто подвержены водители авто­транспортных средств при ночевках в кабине с работающим дви­гателем или при прогреве двигателя в закрытом гараже.

^ Третья группа. В ее составе оксиды азота, главным образом, NO – оксид азота и NO2 – диоксид азота. Это газы, образующиеся в камере сгорания двигателя при температуре 2800°С и давлении око­ло 1 МПа. Оксид азота – бесцветный газ, не взаимодействует с водой и мало растворим в ней, не вступает в реакции с раствора­ми кислот и щелочей. Легко окисляется кислородом воздуха и образует диоксид азота. При обычных атмосферных условиях NO полностью превращается в NO2 – газ бурого цвета с характерным запахом. Он тяжелее воздуха, поэтому собирается в углублениях, канавах и представляет большую опасность при техническом об­служивании транспортных средств.

^ Четвертая группа. В эту наиболее многочисленную по со­ставу группу входят различные углеводороды, то есть соединения типа СХНУ – этан, метан, бензол, ацетилен и др. токсичные веще­ства. В отработавших газах содержатся углеводороды различных гомологических рядов: парафиновые (алканы), нафтеновые (цикланы) и ароматические (бензольные), всего около 160 компонен­тов. Они образуются в результате неполного сгорания топлива в двигателе.

Несгоревшие углеводороды являются одной из причин появ­ления белого или голубого дыма. Это происходит при запаздыва­нии воспламенения рабочей смеси в двигателе или при понижен­ных температурах в камере сгорания.

Углеводороды под действием ультрафиолетового излучения Солнца вступают в реакцию с оксидами азота, в результате обра­зуются новые токсичные продукты – фотооксиданты, являющие­ся основой «смога» (от англ, smoke – дым и fog – туман).

Главным токсичным компонентом смога является озон. К фотооксидантам также относятся угарный газ, соединения азота, перекиси и др. Фотооксиданты биологически активны, оказывают вредное воздействие на живые организмы, ведут к росту легоч­ных и бронхиальных заболеваний людей, разрушают резиновые изделия, ускоряют коррозию металлов, ухудшают условия видимости.

Пятая группа. Ее составляют альдегиды – органические соединения,

О

содержащие альдегидную группу С , связанную с углеводородным

Н

радикалом (СН3, С6Н5 или др.).

В отработавших газах присутствуют в основном формальде­гид, акролеин и уксусный альдегид. Наибольшее количество аль­дегидов образуется на режимах холостого хода и малых нагрузок, когда температуры сгорания в двигателе невысокие.

Формальдегид НСНО – бесцветный газ с неприятным запа­хом, тяжелее воздуха, легко растворимый в воде. Он раздражает слизистые оболочки человека, дыхательные пути, поражает цен­тральную нервную систему. Обусловливает запах отработавших газов, особенно у дизелей.

Акролеин СН2=СН-СН=О, или альдегид акриловой кислоты, – бесцветный ядовитый газ с запахом подгоревших жиров. Ока­зывает воздействие на слизистые оболочки.

Уксусный альдегид СН3СНО – газ с резким запахом и ток­сичным действием на человеческий организм.

^ Шестая группа. В нее входят взвешенные твердые вещества (сажа и другие дисперсные частицы (продукты износа двигателей, аэрозоли, масла, нагар и др.)), которые состоят из мелкодисперс­ных частиц (диаметром менее 1 мкм), способные находиться во взвешенном состоянии в течение суток. Они состоят из разных материалов, включая неорганическую золу, кислые сульфаты или нитраты, дым, содержащий полициклические ароматические уг­леводороды, тонкодисперсную пыль, остатки свинца и асбеста.

Проблема загрязнения воздуха городов мира взвешенными частицами диаметром менее 10 мкм, называемые обычно РМ-10, признана одной из важнейших.

В России внимание этой проблеме начинает уделяться толь­ко сейчас. На сети мониторинга загрязнения атмосферы в России измеряются концентрации лишь суммы взвешенных веществ. Для развития сети станций, измеряющих концентрации мелкодис­персных взвешенных частиц диаметром менее 10 мкм недоста­точно финансовых ресурсов.

Полициклические ароматические углеводороды от­носятся к большому числу органических соединений, химическая структура которых состоит из двух и более бензольных колец. Наиболее широко известное соединение – бенз(а)пирен.

Сажа – частицы твердого углерода черного цвета, образую­щиеся при неполном сгорании и термическом разложении угле­водородов топлива. Она не представляет непосредственной опас­ности для здоровья человека, но может раздражать дыхательные пути. Создавая дымный шлейф за транспортным средством, сажа ухудшает видимость на дорогах. Наибольший вред сажи проявля­ется в адсорбировании на ее поверхности бенз(а)пирена, который в этом случае оказывает более сильное негативное воздействие на организм человека, чем в чистом виде. Поэтому уменьшение ее выбросов – весьма актуальная задача, от решения которой зависят как экологические показатели воздушного бассейна, так и разви­тие дизельного транспорта в целом. В настоящее время для очи­стки отработавших газов дизелей от сажевых (твердых) частиц во многих странах находят применение сажевые фильтры.

Диаметр первичных сажевых частиц составляет 0,02-0,17 мкм. В отработавших газах сажа находится в виде образований неправильной формы размером 0,3-100 мкм. Наибольшее количество частиц сажи имеет размеры до 0,5 мкм.

^ Седьмая группа. Представляет собой сернистые соединения – такие неорганические газы, как сернистый ангидрид, сероводо­род, которые появляются в составе отработавших газов двигате­лей, если используется топливо с повышенным содержанием се­ры. Значительно больше серы присутствует в дизельных топливах по сравнению с другими видами топлив, используемых на транс­порте.

Для отечественных месторождений нефти (особенно в вос­точных районах) характерен высокий процент присутствия серы и сернистых соединений. Поэтому и получаемое из нее дизельное топливо по устаревшим технологиям отличается более тяжелым фракционным составом и вместе с тем хуже очищено от серни­стых и парафиновых соединений. Согласно европейским стандар­там, введенным в действие в 1996 г., содержание серы в дизель­ном топливе не должно превышать 0,005 г/л, а по российскому стандарту – 1,7 г/л. Наличие серы усиливает токсичность отрабо­тавших газов дизелей и является причиной появления в них вред­ных сернистых соединений. Сернистые соединения обладают резким запахом, тяжелее воздуха, растворяются в воде. Они ока­зывают раздражающее действие на слизистые оболочки горла, носа, глаз человека, могут привести к нарушению углеводного и белкового обмена и угнетению окислительных процессов, при высокой концентрации (свыше 0,01 %) – к отравлению организма.

^ Восьмая группа. Компоненты этой группы – свинец и его со­единения – встречаются в отработавших газах карбюраторных автомобилей только при использовании этилированного бензина, имеющего в своем составе присадку, повышающую октановое число. Оно определяет способность двигателя работать без дето­нации. Чем выше октановое число, тем более стоек бензин против детонации. Детонационное сгорание рабочей смеси протекает со сверхзвуковой скоростью, что в 100 раз быстрее нормального. Работа двигателя с детонацией опасна тем, что двигатель пере­гревается, мощность его падает, а срок службы резко сокращает­ся. Увеличение октанового числа бензина способствует сниже­нию возможности наступления детонации. В качестве присадки, повышающей октановое число, используют антидетонатор – эти­ловую жидкость Р-9. Бензин с добавлением этиловой жидкости становится этилированным. В состав этиловой жидкости входят собственно антидетонатор – тетраэтилсвинец РЬ(С2Н5)4, выноситель – бромистый этил (ВгС2Н5) и амонохлорнафталин, наполни­тель – бензин Б-70, антиокислитель – параоксидифениламин и краситель. При сгорании этилированного бензина выноситель способствует удалению свинца и его оксидов из камеры сгорания, превращая их в парообразное состояние. Они вместе с отрабо­тавшими газами выбрасываются в окружающее пространство и оседают вблизи дорог.

В придорожном пространстве примерно 50 % выбросов свинца в виде микрочастиц сразу распределяются на прилегаю­щей поверхности. Остальное количество в течение нескольких часов находится в воздухе в виде аэрозолей, а затем также осаж­дается на землю вблизи дорог. Накопление свинца в придорожной полосе приводит к загрязнению экосистем и делает близлежащие почвы непригодными к сельскохозяйственному использованию.

Негативное воздействие на экосистемы оказывают не только рассмотренные компоненты отработавших газов двигателей, вы­деленные в восемь групп, но и сами углеводородные топлива, масла и смазки. Обладая большой способностью к испарению, особенно при повышении температуры, пары топлив и масел рас­пространяются в воздухе и отрицательно влияют на атмосферный воздух.

^

4. Методы исключения человека из участия в производственных технологиях, опасных для состояния здоровья.



Безопасность производственных процессов достигается упреждением опасной аварийной ситуации и в течение всего времени их функционирования должна быть обеспечена:

  • применением технологических процессов (видов работ), а также приемов, режимов работы в порядке обслуживания производственного оборудования;

  • использованием производственных помещений, удовлетворяющих соответствующим требованиям и комфортности работающих;

  • оборудованием производственных площадок (для процессов, выполняемых вне производственных помещений);

  • обустройством территории производственных предприятий;

  • использованием исходных материалов, заготовок, полуфабрикатов, комплектующих изделий (узлов, элементов) и т.п., не оказывающих опасного и вредного воздействия на работающих. При невозможности выполнения этого требования должны быть приняты меры, обеспечивающие безопасность производственного процесса и защиту обслуживающего персонала;

  • применением производственного оборудования, не являющегося источником травматизма и профессиональных заболеваний;

  • применением надежно действующих и регулярно проверяемых контрольно-измерительных приборов, устройств противоаварийной защиты, средств получения, переработки и передачи информации;

  • применением электронно-вычислительной техники и микропроцессоров для управления производственными процессами и системами противоаварийной защиты;

  • применением быстродействующей отсекающей арматуры и средств локализации опасных и вредных производственных факторов;

  • рациональным размещением производственного оборудования и организацией рабочих мест;

  • распределением функций между человеком и машиной (оборудованием) в целях ограничения физических и нервно-психических (особенно при контроле) перегрузок;

  • применением безопасных способов хранения и транспортирования исходных материалов, заготовок, полуфабрикатов, готовой продукции и отходов производства;

  • профессиональным отбором, обучением работающих, проверкой их знаний и навыков безопасности труда в соответствии с требованиями ГОСТ 12.0.004-90;

  • применением средств защиты работающих, соответствующих соответствующих характеру проявления возможных опасных и вредных производственных факторов;

  • осуществлением технических и организационных мер по предотвращению пожара и (или) взрыва и противопожарной защите по ГОСТ 12.1.004-85 и ГОСТ 12.1.010-76;

  • обозначением опасных зон производства работ;

  • включением требований безопасности в нормативно-техническую, проектно-конструкторскую и технологическую документацию, соблюдением этих требований, а также требований соответствующих правил безопасности в нормативно-техническую, проектно-конструкторскую и технологическую документацию, соблюдением этих требований, а также требований соответствующих правил безопасности и других документов по охране труда;

  • использование методов и средств контроля измеряемых параметров опасных и вредных производственных факторов;

  • соблюдением установленного порядка и организованности на каждом рабочем месте, высокой производственной, технологической и трудовой дисциплины.

Производственные процессы должны быть пожаро- и взрывобезопасными в соответствии с требованиями ГОСТ 12.1.004-85, ГОСТ 12.1.010-76 и ОНТП 24-86.

Производственные процессы не должны сопровождаться загрязнением окружающей среды (воздуха, почвы, водоемов) и распространением вредных факторов выше предельно допустимых норм, установленных соответствующими стандартами и другими нормативными документами.

Требования безопасности к конкретным производственным процессам разрабатывают на основе законодательства о труде, санитарного законодательства, норм и правил, утвержденных Минздравом СССР и настоящего стандарта с учетом анализа данных производственного травматизма и профессиональной заболеваемости, а также прогнозирования возможности предупреждения возникновения опасных и вредных производственных факторов во вновь разрабатываемых или модернизируемых процессах, в том числе предусматривающих использование промышленных роботов, гибких производственных систем, роторных линий и т.п.

Требования безопасности должны устанавливаться:

  • в стандартах ССБТ, нормах технологического проектирования (НТП), в текстовой части технологических карт по ГОСТ 3.1120-83, правилах техники безопасности, инструкциях, памятках и других документах требований безопасности к технологическим процессам;

  • в стандартах любых видов на конкретные производственные процессы или на совокупность процессов, обладающих общностью этих требований.


^

5. Какое наказание последует при нарушении правил: охраны окружающей среды при производстве работ обращения экологически опасных веществ.



Статья 246. Нарушение правил охраны окружающей среды при производстве работ
Нарушение правил охраны окружающей среды при проектировании, размещении, строительстве, вводе в эксплуатацию и эксплуатации промышленных, сельскохозяйственных, научных и иных объектов лицами, ответственными за соблюдение этих правил, если это повлекло существенное изменение радиоактивного фона, причинение вреда здоровью человека, массовую гибель животных либо иные тяжкие последствия, -

наказывается штрафом в размере до ста двадцати тысяч рублей или в размере заработной платы или иного дохода осужденного за период до одного года, либо обязательными работами на срок от ста двадцати до двухсот сорока часов, либо исправительными работами на срок от одного года до двух лет, либо лишением свободы на срок до пяти лет с лишением права занимать определенные должности или заниматься определенной деятельностью на срок до трех лет или без такового.
Статья 247. Нарушение правил обращения экологически опасных веществ и отходов
1. Производство запрещенных видов опасных отходов, транспортировка, хранение, захоронение, использование или иное обращение радиоактивных, бактериологических, химических веществ и отходов с нарушением установленных правил, если эти деяния создали угрозу причинения существенного вреда здоровью человека или окружающей среде, -

наказываются штрафом в размере до двухсот тысяч рублей или в размере заработной платы или иного дохода осужденного за период до восемнадцати месяцев, либо ограничением свободы на срок до двух лет, либо лишением свободы на тот же срок.

2. Те же деяния, повлекшие загрязнение, отравление или заражение окружающей среды, причинение вреда здоровью человека либо массовую гибель животных, а равно совершенные в зоне экологического бедствия или в зоне чрезвычайной экологической ситуации, -

наказываются штрафом в размере от ста тысяч до трехсот тысяч рублей или в размере заработной платы или иного дохода осужденного за период от одного года до двух лет либо лишением свободы на срок до пяти лет.

3. Деяния, предусмотренные частями первой или второй настоящей статьи, повлекшие по неосторожности смерть человека либо массовое заболевание людей, -

наказываются лишением свободы на срок от трех до восьми лет.

Литература:





  1. ГОСТ 12.3.002-75 (2000) ССБТ. Процессы производственные. Общие требования безопасности

  2. Казанцева Л.К., Тагаева Т.О. Современная экологическая ситуация в России // ЭКО. – 2005. – № 9. – С.30 – 45. – Таблицы.

  3. Коробкин В.И Экология. – М., 2006. – 465с.

  4. Родзевич Н.Н. Экологическая глобализация // География в школе. – 2005. – № 4. – С.8 – 15.

  5. Тупикин Е.И. Общая биология с основами экологии и природоохранной деятельности – 4-е изд., испр. и доп. – М.: Издательский центр "Академия", 2004. – 384 с.

  6. Уголовный кодекс РФ от 13.06.1996 № 63-ФЗ.

  7. Шишков Ю. Хрупкая экосистема Земли и безответственное человечество // Наука и жизнь. – 2004. – № 12. – С.2 – 11.

  8. http://www.ref.by

  9. http://www.zdorow.dn.ua



Скачать файл (158 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации