Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по моделированию систем - файл 6_Системы массового обслуживания.doc


Загрузка...
Лекции по моделированию систем
скачать (1799.4 kb.)

Доступные файлы (18):

10_Псевдослучайные числа, процедуры их получения.doc127kb.31.03.2005 20:30скачать
11_Моделирование случайных воздействий.doc302kb.21.04.2005 22:59скачать
12_Приближенные способы преобразования.doc279kb.22.04.2005 01:52скачать
13_Имитационное моделирование.doc505kb.28.04.2005 15:43скачать
14_Характеристики мод-х систем и типовые схемы.doc1157kb.04.05.2005 23:18скачать
15_Планирование экспериментов.doc236kb.12.05.2005 16:07скачать
1_введение.doc207kb.07.01.2005 19:19скачать
1_общ_вопр_мод.DOC105kb.26.01.2005 11:17скачать
2_матем_мет_мод.doc89kb.22.02.2005 11:16скачать
3_Сетевые модели.doc21kb.08.02.2005 18:48скачать
6_Системы массового обслуживания.doc234kb.02.03.2005 23:51скачать
7_Сетевые модели Сети Петри.doc264kb.11.03.2005 10:17скачать
8_Обощенные модели А-схемы.doc206kb.18.03.2005 01:16скачать
9_Концептуальные, алгоритмические, статические модели.doc90kb.25.03.2005 13:09скачать
P-схемы.doc137kb.24.02.2005 22:48скачать
Модели данных.doc26kb.08.02.2005 14:10скачать
Непрерывно детерминированные модели.doc58kb.22.02.2005 17:07скачать
Сетевые модели.doc379kb.08.02.2005 18:42скачать

6_Системы массового обслуживания.doc

Реклама MarketGid:
Загрузка...
Лекция № 6

Основы теории массового обслуживания

 

Теория массового обслуживания составляет один из разделов теории вероятностей. В этой теории рассматриваются вероятностные задачи и математические модели (до этого нами рассматривались детерминированные математические модели). Напомним, что:

Детерминированная математическая модель отражает поведение объекта (системы, процесса) с позиций полной определенности в настоящем и будущем.

Вероятностная математическая модель учитывает влияние случайных факторов на поведение объекта (системы, процесса) и, следовательно, оценивает будущее с позиций вероятности тех или иных событий.

Т.е. здесь как, например, в теории игр задачи рассматриваются в условиях неопределенности.

Рассмотрим сначала некоторые понятия, которые характеризуют «стохастическую неопределенность», когда неопределенные факторы, входящие в задачу, представляют собой случайные величины (или случайные функции), вероятностные характеристики которых либо известны, либо могут быть получены из опыта. Такую неопределенность называют еще «благоприятной», «доброкачественной».

 

^ Понятие случайного процесса

 

Строго говоря, случайные возмущения присущи любому процессу. Проще привести примеры случайного, чем «неслучайного» процесса. Даже, например, процесс хода часов (вроде бы это строгая выверенная работа – «работает как часы») подвержен случайным изменениям (уход вперед, отставание, остановка). Но до тех пор, пока эти возмущения несущественны, мало влияют на интересующие нас параметры, мы можем ими пренебречь и рассматривать процесс как детерминированный, неслучайный.

Пусть имеется некоторая система ^ S (техническое устройство, группа таких устройств, технологическая система – станок, участок, цех, предприятие, отрасль промышленности и т.д.). В системе S протекает случайный процесс, если она с течением времени меняет свое состояние (переходит из одного состояния в другое), причем, заранее неизвестным случайным образом.

Примеры: 1. Система S – технологическая система (участок станков). Станки время от времени выходят из строя и ремонтируются. Процесс, протекающий в этой системе, случаен.

2. Система S – самолет, совершающий рейс на заданной высоте по определенному маршруту. Возмущающие факторы – метеоусловия, ошибки экипажа и т.д., последствия – «болтанка», нарушение графика полетов и т.д.

 

^ Марковский случайный процесс

 

Случайный процесс, протекающий в системе, называется Марковским, если для любого момента времени t0 вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t0 и не зависят от того, когда и как система пришла в это состояние.

Пусть в настоящий момент t0 система находится в определенном состоянии S0. Мы знаем характеристики состояния системы в настоящем и все, что было при t < t0 (предысторию процесса). Можем ли мы предугадать (предсказать) будущее, т.е. что будет при t > t0? В точности – нет, но какие-то вероятностные характеристики процесса в будущем найти можно. Например, вероятность того, что через некоторое время система ^ S окажется в состоянии S1 или останется в состоянии S0 и т.д.

Пример. Система S – группа самолетов, участвующих в воздушном бою. Пусть x – количество «красных» самолетов, y – количество «синих» самолетов. К моменту времени t0 количество сохранившихся ( не сбитых) самолетов соответственно – x0, y0. Нас интересует вероятность того, что в момент времени численный перевес будет на стороне «красных». Эта вероятность зависит от того, в каком состоянии находилась система в момент времени t0, а не от того, когда и в какой последовательности погибали сбитые до момента t0 самолеты.

На практике Марковские процессы в чистом виде обычно не встречаются. Но имеются процессы, для которых влиянием «предистории» можно пренебречь. И при изучении таких процессов можно применять Марковские модели (в теории массового обслуживания рассматриваются и не Марковские системы массового обслуживания, но математический аппарат, их описывающий, гораздо сложнее).

В исследовании операций большое значение имеют Марковские случайные процессы с дискретными состояниями и непрерывным временем.

Процесс называется процессом с дискретным состоянием, если его возможные состояния S1, S2, … можно заранее определить, и переход системы из состояния в состояние происходит «скачком», практически мгновенно.

Процесс называется процессом с непрерывным временем, если моменты возможных переходов из состояния в состояние не фиксированы заранее, а неопределенны, случайны и могут произойти в любой момент.

Далее рассматриваются только процессы с дискретным состоянием и непрерывным временем.

Пример. Технологическая система (участок) S состоит из двух станков, каждый из которых в случайный момент времени может выйти из строя (отказать), после чего мгновенно начинается ремонт узла, тоже продолжающийся заранее неизвестное, случайное время. Возможны следующие состояния системы:

^ S0 - оба станка исправны;

S1 - первый станок ремонтируется, второй исправен;

S2 - второй станок ремонтируется, первый исправен;

S3 - оба станка ремонтируются.

Переходы системы S из состояния в состояние происходят практически мгновенно, в случайные моменты выхода из строя того или иного станка или окончания ремонта.

При анализе случайных процессов с дискретными состояниями удобно пользоваться геометрической схемой – графом состояний. Вершины графа – состояния системы. Дуги графа – возможные переходы из состояния в



Рис.1. Граф состояний системы

состояние. Для нашего примера граф состояний приведен на рис.1.

Примечание. Переход из состояния S0 в S3 на рисунке не обозначен, т.к. предполагается, что станки выходят из строя независимо друг от друга. Вероятностью одновременного выхода из строя обоих станков мы пренебрегаем.

 

^ Потоки событий

 

Поток событий – последовательность однородных событий, следующих одно за другим в какие-то случайные моменты времени.

В предыдущем примере – это поток отказов и поток восстановлений. Другие примеры: поток вызовов на телефонной станции, поток покупателей в магазине и т.д.

Поток событий можно наглядно изобразить рядом точек на оси времени O t – рис. 2.



Рис.2. Изображение потока событий на оси времени

Положение каждой точки случайно, и здесь изображена лишь какая-то одна реализация потока.

Интенсивность потока событий () – это среднее число событий, приходящееся на единицу времени.

Рассмотрим некоторые свойства (виды) потоков событий.

Поток событий называется стационарным, если его вероятностные характеристики не зависят от времени.

В частности, интенсивность стационарного потока постоянна. Поток событий неизбежно имеет сгущения или разрежения, но они не носят закономерного характера, и среднее число событий, приходящееся на единицу времени, постоянно и от времени не зависит.

Поток событий называется потоком без последствий, если для любых двух непересекающихся участков времени и (см. рис.2) число событий, попадающих на один из них, не зависит от того, сколько событий попало на другой. Другими словами, это означает, что события, образующие поток, появляются в те или иные моменты времени независимо друг от друга и вызваны каждое своими собственными причинами.

Поток событий называется ординарным, если события в нем появляются поодиночке, а не группами по нескольку сразу.

Поток событий называется простейшим (или стационарным пуассоновским), если он обладает сразу тремя свойствами: 1) стационарен, 2) ординарен, 3) не имеет последствий.

Простейший поток имеет наиболее простое математическое описание. Он играет среди потоков такую же особую роль, как и закон нормального распределения среди других законов распределения. А именно, при наложении достаточно большого числа независимых, стационарных и ординарных потоков (сравнимых между собой по интенсивности) получается поток, близкий к простейшему.

Для простейшего потока с интенсивностью интервал T между соседними событиями имеет так называемое показательное (экспоненциальное) распределение с плотностью



где - параметр показательного закона.

Для случайной величины T, имеющей показательное распределение, математическое ожидание есть величина, обратная параметру, а среднее квадратичное отклонение равно математическому ожиданию



 

^ Уравнения Колмогорова для вероятностей состояний. Финальные вероятности состояний

 

Рассматривая Марковские процессы с дискретными состояниями и непрерывным временем, подразумевается, что все переходы системы S из состояния в состояние происходят под действием простейших потоков событий (потоков вызовов, потоков отказов, потоков восстановлений и т.д.). Если все потоки событий, переводящие систему S из состояния в состояние простейшие, то процесс, протекающий в системе, будет Марковским.

Итак, на систему, находящуюся в состоянии , действует простейший поток событий. Как только появится первое событие этого потока, происходит «перескок» системы из состояния в состояние (на графе состояний по стрелке ).

Для наглядности на графе состояний системы у каждой дуги проставляют интенсивности того потока событий, который переводит систему по данной дуге (стрелке). - интенсивность потока событий, переводящий систему из состояния в . Такой граф называется размеченным. Для нашего примера размеченный граф приведен на рис.3.



Рис.3. Размеченный граф состояний системы

На этом рисунке - интенсивности потока отказов; - интенсивности потока восстановлений.

Предполагаем, что среднее время ремонта станка не зависит от того, ремонтируется ли один станок или оба сразу. Т.е. ремонтом каждого станка занят отдельный специалист.

Пусть система находится в состоянии S0. В состояние S1 ее переводит поток отказов первого станка. Его интенсивность равна



где - среднее время безотказной работы первого станка.

Из состояния S1 в S0 систему переводит поток «окончаний ремонтов» первого станка. Его интенсивность равна



где - среднее время ремонта первого станка.

Аналогично вычисляются интенсивности потоков событий, переводящих систему по всем дугам графа. Имея в своем распоряжении размеченный граф состояний системы, строится математическая модель данного процесса.

Пусть рассматриваемая система S имеет - возможных состояний . Вероятность - го состояния - это вероятность того, что в момент времени система будет находиться в состоянии . Очевидно, что для любого момента времени сумма всех вероятностей состояний равна единице:



Для нахождения всех вероятностей состояний как функций времени составляются и решаются уравнения Колмогорова – особого вида уравнения, в которых неизвестными функциями являются вероятности состояний. Правило составления этих уравнений приведем здесь без доказательств. Но прежде, чем его приводить, объясним понятие финальной вероятности состояния.

Что будет происходить с вероятностями состояний при ? Будут ли стремиться к каким-либо пределам? Если эти пределы существуют и не зависят от начального состояния системы, то они называются финальными вероятностями состояний.



где - конечное число состояний системы.

Финальные вероятности состояний – это уже не переменные величины (функции времени), а постоянные числа. Очевидно, что



^ Финальная вероятность состояния – это по – существу среднее относительное время пребывания системы в этом состоянии.

Например, система ^ S имеет три состояния S1, S2 и S3. Их финальные вероятности равны соответственно 0,2; 0,3 и 0,5. Это значит, что система в предельном стационарном состоянии в среднем 2/10 времени проводит в состоянии S1, 3/10 – в состоянии S2 и 5/10 – в состоянии S3.

Правило составления системы уравнений Колмогорова: в каждом уравнении системы в левой его части стоит финальная вероятность данного состояния , умноженная на суммарную интенсивность всех потоков, ведущих из данного состояния, а в правой его части – сумма произведений интенсивностей всех потоков, входящих в - е состояние, на вероятности тех состояний, из которых эти потоки исходят.

Пользуясь этим правилом, напишем систему уравнений для нашего примера:

 



Эту систему четырех уравнений с четырьмя неизвестными , казалось бы, можно вполне решить. Но эти уравнения однородны (не имеют свободного члена), и, значит, определяют неизвестные только с точностью до произвольного множителя. Однако можно воспользоваться нормировочным условием



и с его помощью решить систему. При этом одно (любое) из уравнений можно отбросить (оно вытекает как следствие из остальных).

^ Продолжение примера. Пусть значения интенсивностей потоков равны:

.

Четвертое уравнение отбрасываем, добавляя вместо него нормировочное условие:



.

Т.е. в предельном, стационарном режиме система ^ S в среднем 40 % времени будет проводить в состоянии S0 (оба станка исправны), 20 % - в состоянии S1 (первый станок ремонтируется, второй работает), 27 % - в состоянии S2 (второй станок ремонтируется, первый работает), 13% - в состоянии S3 (оба станка ремонтируются). Знание этих финальных вероятностей может помочь оценить среднюю эффективность работы системы и загрузку ремонтных органов.

Пусть система S в состоянии S0 (полностью исправна) приносит в единицу времени доход 8 условных единиц, в состоянии S1 – доход 3 условные единицы, в состоянии S2 – доход 5 условных единиц, в состоянии S3 – не приносит дохода. Тогда в предельном, стационарном режиме средний доход в единицу времени будет равен условных единиц.

Станок 1 ремонтируется долю времени, равную . Станок 2 ремонтируется долю времени, равную . Возникает задача оптимизации. Пусть мы можем уменьшить среднее время ремонта первого или второго станка (или обоих), но это нам обойдется в определенную сумму. Спрашивается, окупит ли увеличение дохода, связанное с ускорением ремонта, повышенные расходы на ремонт? Нужно будет решить систему четырех уравнений с четырьмя неизвестными.

 

^ Задачи теории массового обслуживания

 

Примеры систем массового обслуживания (СМО): телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, станочные и другие технологические системы, системы управления гибких производственных систем и т.д.

Каждая СМО состоит из какого – то количества обслуживающих единиц, которые называются каналами обслуживания (это станки, транспортные тележки, роботы, линии связи, кассиры, продавцы и т.д.). Всякая СМО предназначена для обслуживания какого – то потока заявок (требований), поступающих в какие – то случайные моменты времени.

Обслуживание заявки продолжается какое – то, вообще говоря, случайное время , после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времени обслуживания приводит к тому, что в какие – то периоды времени на входе СМО скапливается излишне большое количество заявок (они либо становятся в очередь, либо покидают СМО необслуженными). В другие же периоды СМО будет работать с недогрузкой или вообще простаивать.

Процесс работы СМО – случайный процесс с дискретными состояниями и непрерывным временем. Состояние СМО меняется скачком в моменты появления каких - то событий (прихода новой заявки, окончания обслуживания, момента, когда заявка, которой надоело ждать, покидает очередь).

^ Предмет теории массового обслуживания – построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками – показателями эффективности СМО. Эти показатели описывают способность СМО справляться с потоком заявок. Ими могут быть: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди; среднее время ожидания обслуживания и т.д.

Математический анализ работы СМО очень облегчается, если процесс этой работы Марковский, т.е. потоки событий, переводящие систему из состояния в состояние – простейшие. Иначе математическое описание процесса очень усложняется и его редко удается довести до конкретных аналитических зависимостей. На практике не Марковские процессы с приближением приводятся к Марковским. Приведенный далее математический аппарат описывает Марковские процессы.

 

^ Классификация систем массового обслуживания

 

Первое деление (по наличию очередей):

  1. СМО с отказами;

  2. СМО с очередью.

^ В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем не обслуживается.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной.

^ СМО с очередями подразделяются на разные виды в зависимости от того, как организована очередь – ограничена или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания, «дисциплины обслуживания».

Итак, например, рассматриваются следующие СМО:

  • СМО с нетерпеливыми заявками (длина очереди и время обслуживания ограничено);

  • СМО с обслуживанием с приоритетом, т.е. некоторые заявки обслуживаются вне очереди и т.д.

Кроме этого СМО делятся на открытые СМО и замкнутые СМО.

^ В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО – зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже исправно и ждет наладки.

Классификация СМО далеко не ограничивается приведенными разновидностями, но этого достаточно.
 

^ Математические модели простейших систем массового обслуживания

 

Ниже будут рассмотрены примеры простейших систем массового обслуживания (СМО). Понятие «простейшие» не означает «элементарные». Математические модели этих систем применимы и успешно используются в практических расчетах.

 

^ Одноканальная СМО с отказами

 

Дано: система имеет один канал обслуживания, на который поступает простейший поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти: абсолютную и относительную пропускную способность СМО и вероятность того, что заявка, пришедшая в момент времени t, получит отказ.

Система при любом t > 0 может находиться в двух состояниях: S0 – канал свободен; S1 – канал занят. Переход из S0 в S1 связан с появлением заявки и немедленным началом ее обслуживания. Переход из S1 в S0 осуществляется, как только очередное обслуживание завершится (рис.4).



Рис.4. Граф состояний одноканальной СМО с отказами

Выходные характеристики (характеристики эффективности) этой и других СМО будут даваться без выводов и доказательств.

Абсолютная пропускная способность (среднее число заявок, обслуживаемых в единицу времени):



где – интенсивность потока заявок (величина, обратная среднему промежутку времени между поступающими заявками - );

– интенсивность потока обслуживаний (величина, обратная среднему времени обслуживания )

^ Относительная пропускная способность (средняя доля заявок, обслуживаемых системой):



Вероятность отказа (вероятность того, что заявка покинет СМО необслуженной):



Очевидны следующие соотношения: и .

Пример. Технологическая система состоит из одного станка. На станок поступают заявки на изготовление деталей в среднем через 0,5 часа . Среднее время изготовления одной детали равно . Если при поступлении заявки на изготовление детали станок занят, то она (деталь) направляется на другой станок. Найти абсолютную и относительную пропускную способности системы и вероятность отказа по изготовлению детали.

Решение.



Т.е. в среднем примерно 46 % деталей обрабатываются на этом станке.

.

Т.е. в среднем примерно 54 % деталей направляются на обработку на другие станки.

 

^ N – канальная СМО с отказами (задача Эрланга)

Это одна из первых задач теории массового обслуживания. Она возникла из практических нужд телефонии и была решена в начале 20 века датским математиком Эрлангом.

Дано: в системе имеется n – каналов, на которые поступает поток заявок с интенсивностью . Поток обслуживаний имеет интенсивность . Заявка, заставшая систему занятой, сразу же покидает ее.

Найти: абсолютную и относительную пропускную способность СМО; вероятность того, что заявка, пришедшая в момент времени t, получит отказ; среднее число заявок, обслуживаемых одновременно (или, другими словам, среднее число занятых каналов).

Решение. Состояние системы ^ S (СМО) нумеруется по максимальному числу заявок, находящихся в системе (оно совпадает с числом занятых каналов):

  • S0 – в СМО нет ни одной заявки;

  • S1 – в СМО находится одна заявка (один канал занят, остальные свободны);

  • S2 – в СМО находится две заявки (два канала заняты, остальные свободны);

  • . . .

  • Sn – в СМО находится n – заявок (все n – каналов заняты).

Граф состояний СМО представлен на рис. 5



Рис.5 Граф состояний для n – канальной СМО с отказами

Почему граф состояний размечен именно так? Из состояния S0 в состояние S1 систему переводит поток заявок с интенсивностью (как только приходит заявка, система переходит из S0 в S1). Если система находилась в состоянии S1 и пришла еще одна заявка, то она переходит в состояние S2 и т.д.

Почему такие интенсивности у нижних стрелок (дуг графа)? Пусть система находится в состоянии S1 (работает один канал). Он производит обслуживаний в единицу времени. Поэтому дуга перехода из состояния S1 в состояние S0 нагружена интенсивностью . Пусть теперь система находится в состоянии ^ S2 (работают два канала). Чтобы ей перейти в S1, нужно, чтобы закончил обслуживание первый канал, либо второй. Суммарная интенсивность их потоков равна и т.д.

Выходные характеристики (характеристики эффективности) данной СМО определяются следующим образом.

^ Абсолютная пропускная способность:



где n – количество каналов СМО;

– вероятность нахождения СМО в начальном состоянии, когда все каналы свободны (финальная вероятность нахождения СМО в состоянии S0);

 



Рис.6. Граф состояний для схемы «гибели и размножения»

Для того, чтобы написать формулу для определения , рассмотрим рис.6

Граф, представленный на этом рисунке, называют еще графом состояний для схемы «гибели и размножения». Напишем сначала для общую формулу (без доказательства):



Кстати, остальные финальные вероятности состояний СМО запишутся следующим образом.

Вероятность того, что СМО находится в состоянии S1, когда один канал занят:



Вероятность того, что СМО находится в состоянии S2, т.е. когда два канала заняты:



Вероятность того, что СМО находится в состоянии Sn, т.е. когда все каналы заняты.



Теперь для n – канальной СМО с отказами



При этом







Относительная пропускная способность:



Напомним, что это средняя доля заявок, обслуживаемых системой. При этом

;

.

Вероятность отказа:



Напомним, что это вероятность того, что заявка покинет СМО необслуженной. Очевидно, что .

Среднее число занятых каналов (среднее число заявок, обслуживаемых одновременно):



При этом

.

Пример. Имеется технологическая система (участок), состоящая из трех одинаковых станков. В систему поступают для обработки детали в среднем через 0,5 часа (). Среднее время изготовления одной детали . Если при поступлении заявки на изготовление детали все станки заняты, то деталь направляется на другой участок таких же станков. Найти финальные вероятности состояний системы и характеристики (показатели эффективности) данной СМО.

,

т.е. в среднем две заявки на обработку деталей в час.

.

Граф состояний системы представлен на рис.7

 



Рис.7Граф состояний для рассматриваемого примера

Возможные состояния системы:

^ S0 – в СМО (на участке) нет ни одной заявки;

S1 – в СМО (на участке) одна заявка;

S2 – в СМО (на участке) две заявки;

S3 – в СМО (на участке) три заявки (заняты все три станка).

Вероятность того, что все станки свободны:



Вероятность того, что один станок занят:



Вероятность того, что два станка заняты:



Вероятность того, что все три станка заняты:









Т.е. в среднем в этой системе обрабатывается 1,82 дет/ч (примерно 91 % направляемых деталей), при этом примерно 9 % деталей направляется для обработки на другие участки. Одновременно в среднем работает в основном один станок (). Но из–за случайных характеристик потока заявок иногда работают одновременно все три станка (), отсюда 9 % отказов.

 

^ Возможные постановки задач оптимизации n – канальных СМО с отказами

 

  1. Определить оптимальное число каналов, обеспечивающее минимум затрат на систему, при условии достижения требуемого уровня ее безотказной работы.

Пример. Пусть . Целевая функция (затраты на СМО) запишется: , где . Найти: .

Решение:







или

.

По другому можно записать:

.

Последнее равенство начинает выполняться при , т.к.

;;

;

.

  1. Определить оптимальное число каналов, обеспечивающее максимум прибыли от эксплуатации СМО в единицу времени.

Содержание каждого канала в единицу времени обходится в какую–то сумму. Чем больше каналов, тем больше затраты на эксплуатацию СМО. Вместе с тем, чем больше каналов (при и ), тем больше доля обслуживаемых заявок. А каждая обслуженная заявка дает определенный (пусть постоянный) доход в единицу времени. При увеличении числа каналов растут доходы D, но растут и расходы на эксплуатацию СМО – R. Чтобы решить эту задачу, необходимо найти оптимальное число каналов , обеспечивающее максимум целевой функции , т.е. нужно максимизировать прибыль в единицу времени.


Скачать файл (1799.4 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации