Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по моделированию систем - файл 9_Концептуальные, алгоритмические, статические модели.doc


Загрузка...
Лекции по моделированию систем
скачать (1799.4 kb.)

Доступные файлы (18):

10_Псевдослучайные числа, процедуры их получения.doc127kb.31.03.2005 20:30скачать
11_Моделирование случайных воздействий.doc302kb.21.04.2005 22:59скачать
12_Приближенные способы преобразования.doc279kb.22.04.2005 01:52скачать
13_Имитационное моделирование.doc505kb.28.04.2005 15:43скачать
14_Характеристики мод-х систем и типовые схемы.doc1157kb.04.05.2005 23:18скачать
15_Планирование экспериментов.doc236kb.12.05.2005 16:07скачать
1_введение.doc207kb.07.01.2005 19:19скачать
1_общ_вопр_мод.DOC105kb.26.01.2005 11:17скачать
2_матем_мет_мод.doc89kb.22.02.2005 11:16скачать
3_Сетевые модели.doc21kb.08.02.2005 18:48скачать
6_Системы массового обслуживания.doc234kb.02.03.2005 23:51скачать
7_Сетевые модели Сети Петри.doc264kb.11.03.2005 10:17скачать
8_Обощенные модели А-схемы.doc206kb.18.03.2005 01:16скачать
9_Концептуальные, алгоритмические, статические модели.doc90kb.25.03.2005 13:09скачать
P-схемы.doc137kb.24.02.2005 22:48скачать
Модели данных.doc26kb.08.02.2005 14:10скачать
Непрерывно детерминированные модели.doc58kb.22.02.2005 17:07скачать
Сетевые модели.doc379kb.08.02.2005 18:42скачать

9_Концептуальные, алгоритмические, статические модели.doc

Реклама MarketGid:
Загрузка...
Лекция № 9

Формализация и алгоритмизация информационных процессов
С развитием вычислительной техники наиболее эффектив­ным методом исследования больших систем стало машинное мо­делирование, без которого невозможно решение многих крупных народнохозяйственных проблем. Поэтому актуальными задачами являются освоение теории и методов математического моделирования с учетом требований системности, анализ динамики и возможности управления машинным экспериментом с моделью, анализ адекватности моделей исследуемых систем.

Общие методологические аспекты широкого класса математичес­ких моделей позволяют исследовать механизм явления, протекающие в реальном объекте с большими или малыми скоростями, когда в натурных экспериментах с объектом трудно (или невозможно) проследить за изменениями, происходящими в течение короткого времени. или когда получение достоверных результатов сопряжено с длительным экспериментом. При необходимости машинная модель «растяги­вает» или «сжимает» реальное время, так как машинное моделиро­вание связано с понятием системного времени, отличного от реаль­ного. Кроме того, с помощью машинного моделирования можно обучать персонал АСОИУ принятию решений в управлении объектом.

Сущность машинного моделирования системы состоит в прове­дении на ЭВМ эксперимента с моделью, которая представляет собой некоторый программный комплекс, описыва­ющий формально и (или) алгоритмически поведение элементов системы S в процессе ее функционирования, т. е. в их взаимодейст­вии друг с другом и внешней средой Е.

Требованиями пользователя к модели M процесса функцинирования системы S являются:

1. Полнота модели должна предоставлять пользователю воз­можность получения необходимого набора оценок характеристик системы с требуемой точностью и достоверностью.

2. Гибкость модели должна давать возможность воспроизведе­ния различных ситуаций при варьировании структуры, алгоритмов и параметров системы.

3. Длительность разработки и реализации модели большой си­стемы должна быть по возможности минимальной при учете огра­ничений на имеющиеся ресурсы.

4. Структура модели должна быть блочной, т. е. допускать возможность замены, добавления и исключения некоторых частей без переделки всей модели.

5. Информационное обеспечение должно предоставлять возмож­ность эффективной работы модели с базой данных систем опреде­ленного класса.

6. Программные и технические средства должны обеспечивать эффективную (по быстродействию и памяти) машинную реализа­цию модели и удобное общение с ней пользователя.

7. Должно быть реализовано проведение целенаправленных (планируемых) машинных экспериментов с моделью системы с ис­пользованием аналитико-имитационного подхода при наличии ограниченных вычислительных ресурсов.

Моделирование систем с помощью ЭВМ можно использовать в следующих случаях: а) для исследования системы S до того, как она спроектирована, с целью определения чувствитель­ности характеристики к изменениям структуры, алгоритмов и пара метров объекта моделирования и внешней среды; б) на этапе проек­тирования системы S для анализа и синтеза различных вариантов системы и выбора среди конкурирующих такого вариантах; в) при эксплуатации системы, для получения информации, дополняющей результаты натурных испытаний (эксп­луатации) реальной системы, и получения прогнозов развития системы во времени.

^ 1.1 Концептуальные модели

Первым этапом машинного моделирования является построение кон­цептуальной модели М, системы S и ее формализация, т. е. основным назначением этого этапа является переход от содержательного опи­сания объекта к его математической модели. Наиболее ответственными и на­именее формализованными моментами в этой работе являются проведение границы между системой S и внешней средой Е, упроще­ние описания системы и построение сначала концептуальной, а за­тем формальной модели системы. Модель должна быть адекват­ной, иначе невозможно получить положительные результаты моде­лирования. Под адекватной моделью понимается модель, которая с определенной степе­нью приближения на уровне понимания моделируемой системы S разработчиком модели отражает процесс ее функционирования во внешней среде Е.

Наиболее рационально строить модель функционирования системы по блочному принципу. Могут выделяться три автономные группы блоков такой модели:

1 группа: представляют собой имитатор воздействий внешней среды Е на систему S;

2 группа: является собственно моделью процесса функционирования исследуемой системы S;

3 группа: служит для машинной реализации блоков двух первых групп, а также для фиксации и обработки результатов моделирования.

После перехода от описания | моделируемой системы S к ее модели М, построенной по блочному принципу, строятся математические модели процес­сов, происходящих в различных блоках. Математическая модель представляет собой совокупность соотношений (например, уравне­ний, логических условий, операторов), определяющих характери­стики процесса функционирования системы S в зависимости от структуры системы, алгоритмов поведения, параметров системы, воздействий внешней среды Е, начальных условий и времени

Формализации процесса функционирования лю­бой системы S должно предшествовать изучение составляющих его явлений. Результатом является описание процесса, в котором изложены закономерности, характерные для исследуемого процесса, и постановку прикладной задачи. Содержательное описание является исходным материалом для последующих этапов формализации. Для моделирования процесса функционирования системы на ЭВМ необходимо преобразовать математическую модель процесса в соответствующий моделирующий алгоритм и машинную программу.

Последовательность построения концептуальной модели М, системы и ее формализации:

1. Постановка задачи машинного моделирования системы.

2. Анализ задачи моделирования системы.

3. Определение требований к исходной информации об объекте моделирования и организация ее сбора.

4. Выдвижение гипотез и принятие предположений.

5. Определение параметров и переменных модели.

6. Установление основного содержания модели.

7. Обоснование критериев оценки эффективности системы.

8. Определение процедур аппроксимации;

9. Описание концептуальной модели системы.

10. Проверка достоверности концептуальной модели.

11. Составление технической документации по первому этапу.

^ 2. Алгоритмизация моделей

Вторым этапом моделирования является этап алгоритмизации модели и ее машинная реализация. Этот этап представляет собой этап, направленный на реализацию идей и математических схем в виде машинной модели М процесса функционирования систем S.

Процесс функционирования системы S можно рассматривать как последовательную смену ее состояний в k-мерном пространстве. Задачей моделирования процесса функционирования исследуемой системы S является построение функций z, на основе которых можно провести вычисление интересующих характеристик процесса функционирования системы. Для этого необходимы соотношения, связывающие функции z с переменными, параметрами и временем, а также начальные условиями в момент времени t=t0.

Существуют два типа состоя­ний системы:

1) особые, присущие процессу функционирования системы то­лько в некоторые моменты времени;

2) неособые, в которых процесс находится все остальное время. В этом случае функция состояния zi(t) могут изменяться скачкообразно, а между особыми – плавно.

Моделирующие алгоритмы могут быть построены по «принципу особых состо­яний». Обозначим скачкообразное (релейное) изменение состояния z как z, а «принцип особых состояний» — как принцип z.

«Принцип z» дает возможность для ряда систем существенно уменьшить затраты машинного времени на реализа­цию моделирующих алгоритмов.

Удобной фор­мой представления логической структуры моделей процессов функ­ционирования систем и машинных программ является схема. На различных этапах моделирования составляются следующие схемы моделирующих алгоритмов и программ:

^ Обобщенная (укрупненная) схема моделирующего алгоритма за­дает общий порядок действий при моделировании системы без каких-либо уточняющих деталей.

Детальная схема моделирующего алгоритма содержит уточне­ния, отсутствующие в обобщенной схеме.

^ Логическая схема моделирующего алгоритма представляет собо логическую структуру модели процесса функционирования систем S.

Схема программы отображает порядок программной реализа­ции моделирующего алгоритма с использованием конкретного ма­тематического обеспечения. Схема программы представляет собой интерпретацию логической схемы моделирующего алгоритма раз­работчиком программы на базе конкретного алгоритмического языка.

Этапы алгоритмизации модели и ее машинной реализации:

1. Построение логической схемы модели.

2. Получение математических соотношении.

3. Проверка достоверности модели системы.

4. Выбор инструментальных средств для моделирования.

5. Составление плана выполнения работ по программированию.

6. Спецификация и построение схемы программы.

7. Верификация и проверка достоверности схемы программы.

8. Проведение программирования модели.

9. Проверка достоверности программы.

10. Составление технической документации по второму этапу.
^ 3. Общая характеристика метода статистического моделирования

Статистическое моделирование представляет собой метод получения с помощью ЭВМ статистически данных о процессах, происходящих в моделируемой системе.

Сущность метода статистического моделирования сводится к построению для процесса функционирования исследуемой системы S некоторого моделирующего алгоритма, имитирующего поведение и взаимодействие элементов системы с учетом случайных входных воздействий и воздействий внешней среды E, и реализации этого алгоритма с использованием программно-технических средств ЭВМ.

Метод применяется:

1) для изучения стохастических систем;

2) для решения детерминированных задач.
Особенностью применения метода заключается во втором методе. А именно замена детерминированной задачи эквива­лентной схемой некоторой стохастической системы, выходные хара­ктеристики последней совпадают с результатом решения детерми­нированной задачи.

В результате статистического моделирования системы S получа­ется серия частных значений искомых величин или функций, стати­стическая обработка которых позволяет получить сведения о пове­дении реального объекта или процесса в произвольные моменты времени. Если количество реализации N достаточно велико, то полученные результаты моделирования системы приобретают ста­тистическую устойчивость и с достаточной точностью могут быть приняты в качестве оценок искомых характеристик процесса функ­ционирования системы S.

Теоретической основой метода статистического моделирования систем на ЭВМ являются предельные теоремы теории вероятностей. Множества случайных явлений (событий, величин) подчиняются определенным закономерностям, позволя­ющим не только прогнозировать их поведение, но и количественно оценить некото­рые средние их характеристики, проявляющие определенную устойчивость.

^ Примеры статистического моделирования. Методом статистического моделирования найти оценки выходных характеристик стохастической системы SR., функционирование которой описывается следующими соотно­шениями:

- входное воздействие;

- воздействие внешней среды;

 и  - случайные величины, для которых известны функции распределения.

Целью моделирования является оценка математического ожидания М[у] величины

В качестве оценки математического ожидания М [у], как следует из приведенных теорем теории вероятностей, может выступать среднее арифметическое, вычисленное по формуле



где yi случайное значение величины у; N — число реализации мат. ожиданий, которое достаточно для статистической устойчивости результатов.

Структурная схема системы SR показана на рис. 1.








Рис. 1. Структурная схема систе­мы SR

Здесь элементы выполняют следующие функции:

вычисление

В1, В2 на выходе

K1 и K2:


суммирование С:



извлечение квадратного корня И

Схема алгоритма, реализующего метод статистического моделирования для оценки М[у] системы SR, приведена на рис. 2.

Здесь LA и FI функции распределения случайных величин  и ;

N — задан­ное число реализации;

I=i — номер теку­щей реализации;

LAT = I;

FII = I;

EXP = e;

MY = М[у] ;

SY =

ВИД [...], ГЕН [...], ВРМ[...]—процедуры ввода исходных данных, генерации псевдослучайных по­следовательностей и выдачи результатов моделирования соответственно.

Таким образом, данная модель позво­ляет получить методом статистического моделирования на ЭВМ статистическую оценку математического ожидания выход­ной характеристики М[у] рассмотренной стохастической системы SR. Точность и достоверность результатов взаимодей­ствия в основном будут определяться чис­лом реализации N.





Рис. 2. Схема моделирующего ал­горитма системы SR




Скачать файл (1799.4 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации