Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по моделированию систем - файл 1_введение.doc


Загрузка...
Лекции по моделированию систем
скачать (1799.4 kb.)

Доступные файлы (18):

10_Псевдослучайные числа, процедуры их получения.doc127kb.31.03.2005 20:30скачать
11_Моделирование случайных воздействий.doc302kb.21.04.2005 22:59скачать
12_Приближенные способы преобразования.doc279kb.22.04.2005 01:52скачать
13_Имитационное моделирование.doc505kb.28.04.2005 15:43скачать
14_Характеристики мод-х систем и типовые схемы.doc1157kb.04.05.2005 23:18скачать
15_Планирование экспериментов.doc236kb.12.05.2005 16:07скачать
1_введение.doc207kb.07.01.2005 19:19скачать
1_общ_вопр_мод.DOC105kb.26.01.2005 11:17скачать
2_матем_мет_мод.doc89kb.22.02.2005 11:16скачать
3_Сетевые модели.doc21kb.08.02.2005 18:48скачать
6_Системы массового обслуживания.doc234kb.02.03.2005 23:51скачать
7_Сетевые модели Сети Петри.doc264kb.11.03.2005 10:17скачать
8_Обощенные модели А-схемы.doc206kb.18.03.2005 01:16скачать
9_Концептуальные, алгоритмические, статические модели.doc90kb.25.03.2005 13:09скачать
P-схемы.doc137kb.24.02.2005 22:48скачать
Модели данных.doc26kb.08.02.2005 14:10скачать
Непрерывно детерминированные модели.doc58kb.22.02.2005 17:07скачать
Сетевые модели.doc379kb.08.02.2005 18:42скачать

1_введение.doc

Реклама MarketGid:
Загрузка...
ВВЕДЕНИЕ

МОДЕЛИРОВАНИЕ КАК МЕТОД НАУЧНОГО ПОЗНАНИЯ

Методологическая основа моделирования. Все то, на что направ­лена человеческая деятельность, называется объектом (лат. objection - предмет). Выработка методологии направлена на упо­рядочение получения и обработки информации об объектах, кото­рые существуют вне нашего сознания и взаимодействуют между собой и внешней средой.

В научных исследованиях большую роль играют гипотезы, т. е. определенные предсказания, основывающиеся на небольшом коли­честве опытных данных, наблюдений, догадок. Быстрая и полная проверка выдвигаемых гипотез может быть проведена в ходе специ­ально поставленного эксперимента. При формулировании и провер­ке правильности гипотез большое значение в качестве метода сужде­ния имеет аналогия.

Аналогией называют суждение о каком-либо частном сходстве двух объектов, причем такое сходство может быть существенным и несущественным. Необходимо отметить, что понятия существен­ности и несущественности сходства или различия объектов условны и относительны. Существенность сходства (различия) зависит от уровня абстрагирования и в общем случае определяется конечной целью проводимого исследования. Современная научная гипотеза создается, как правило, по аналогии с проверенными на практике научными положениями. Таким образом, аналогия связывает гипо­тезу с экспериментом.

Гипотезы и аналогии, отражающие реальный, объективно суще­ствующий мир, должны обладать наглядностью или сводиться к удобным для исследования логическим схемам; такие логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явле­ний, называются моделями. Другими словами, модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Компьютерная модель – это программная реализация математической модели, дополненная различными служебными программами (например, рисующими и изменяющими графические образы во времени). Компьютерная модель имеет две составляющие – программную и аппаратную. Программная составляющая так же является абстрактной знаковой моделью. Это лишь другая форма абстрактной модели, которая, однако, может интерпретироваться не только математиками и программистами, но и техническим устройством – процессором компьютера.

Моделированием называется замещение одного объекта другим с целью получения информации о свойствах объекта-оригинала путем изучения объекта-модели.

Таким образом, моделирование может быть определено как пред­ставление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью. Теория замещения одних объектов (оригиналов) другими объектами (моде­лями) и исследования свойств объектов на их моделях называется теорией моделирования.
ГЛАВА 1

^ ОСНОВНЫЕ ПОНЯТИЯ ТЕОРИИ МОДЕЛИРОВАНИЯ СИСТЕМ

В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или индуктивного - путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатыва­емых раздельно) подхода. В отличие от этого системный подход предполага­ет последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.

^ Понятие системы и элемента системы. Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством - стремлени­ем достичь некоторой цели. Эту особенность учтем в следующих определениях системы.

Система S — целенаправленное множество взаимосвязанных элементов любой природы.

Внешняя среда Е — множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздей­ствием.

^ Понятие модели. Модель – представление объекта, системы или понятия, в некоторой форме, отличного от их реального существования.

Моделирование – во-первых, построение модели, во-вторых, изучение модели, в-третьих, анализ системы на основе данной модели.

При системном подходе к моделированию систем необходимо прежде всего четко определить цель моделирования. Применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет по­дойти к выбору критерия и оценить, какие элементы войдут в со­здаваемую модель М. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.

Цели моделирования:

1) оценка – оценить действительные характеристики проектируемой или существующей системы, определить насколько система предлагаемой структуры будут соответствовать предъявляемым требованиям.

2) сравнение – произвести сравнение конкурирующих систем одного функционального назначения или сопоставить несколько вариантов построения одной и той же системы.

3) прогноз оценить поведение системы при некотором предполагаемом сочетании рабочих условий.

4) анализ чувствительности – выявить из большого числа факторов, действующих на систему тем, которое в большей степени влияют на ее поведение и определяют ее показатели эффективности.

5) оптимизация – найти или установить такое сочетание действующих факторов и их величин, которое обеспечивает наилучшие показатели эффективности системы в целом.

1-4 задачи анализа, 5 - задача синтеза.

^ Подходы к исследованию систем. Важным для системного под­хода является определение структуры системы — совокупности связей между элементами системы, отражающих их взаимодейст­вие.

При структурном подходе выявляются состав выделенных эле­ментов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. После­дняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание струк­туры — это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо фор­мализуемое на базе теории графов.

Менее общим является функциональное описание, когда рас­сматриваются отдельные функции, т. е. алгоритмы поведения систе­мы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели.

Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классичес­кий подход может быть использован при создании достаточно простых моделей. Процесс синтеза модели М на основе классичес­кого (индуктивного) подхода представлен на рис. 1.1, а. Реальный объект, подлежащий моделированию, разбивается на отдель­ные подсистемы, т. е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные сто­роны процесса моделирования. По отдельной совокупности исход­ных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некото­рая компонента К будущей модели. Совокупность компонент объ­единяется в модель М.



Рис. 1.1. Процесс синтеза модели на основе классического (а) и системного (б) подходов
Таким образом, разработка модели М на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свои собственные задачи и изолирована от других частей модели. Поэтому классичес­кий подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно неза­висимое рассмотрение отдельных сторон функционирования реаль­ного объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличитель­ные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) образуется путем суммирования отдельных ее компонент и не учитывается возник­новение нового системного эффекта.

Процесс синтеза модели ^ М на базе системного подхода условно представлен на рис. 1.1, б. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования Т к модели системы S. На базе этих требова­ний формируются ориентировочно некоторые подсистемы П, эле­менты Э и осуществляется наиболее сложный этап синтеза — вы­бор В составляющих системы, для чего используются специальные критерии выбора КВ.

^ Стадии разработки моделей. На базе системного подхода может быть предложена и некоторая последовательность разработки мо­делей, когда выделяют две основные стадии проектирования: мак­ропроектирование и микропроектирование.

На стадии макропроектирования на основе данных о ре­альной системе S и внешней среде Е строится модель внешней среды, выявляются ресурсы и ограничения для построения моде­ли системы, выбирается модель системы и критерии, позволяющие оценить адекватность модели М реальной системы S.

Стадия микропроектирования в значительной степени зави­сит от конкретного типа выбранной модели. В случае имитацион­ной модели необходимо обеспечить создание информационного, математического, технического и программного обеспечений систем моделирования.

Независимо от типа используемой модели ^ М при ее построении необходимо руководствоваться рядом принципов системного под­хода:

1) пропорционально-последовательное продвижение по этапам и направлениям создания модели;

2) согласование информаци­онных, ресурсных, надежностных и других характеристик;

3) пра­вильное соотношение отдельных уровней иерархии в системе моде­лирования;

4) целостность отдельных обособленных стадий постро­ения модели.

^ КЛАССИФИКАЦИЯ ВИДОВ МОДЕЛИРОВАНИЯ СИСТЕМ

Классификация видов модели­рования систем S приведена на рис. 1.2.



Рис. 1.2. Классификация видов моделирования систем

Детерминирован­ное моделирование отображает процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероят­ностные процессы и события. В этом случае анализируется ряд реализаций случайного процесса и оцениваются средние характе­ристики, т. е. набор однородных реализаций. Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описа­ния процессов, которые предполагаются дискретными, соответст­венно непрерывное моделирование позволяет отразить непрерыв­ные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как диск­ретных, так и непрерывных процессов.

В зависимости от формы представления объекта (системы S) можно выделить мысленное и реальное моделирование.

^ Мысленное моделирование часто является единственным спосо­бом моделирования объектов, которые либо практически нереализуемы в заданном интервале времени, либо существуют вне усло­вий, возможных для их физического создания. Например, на базе мысленного моделирования могут быть проанализированы многие ситуации микромира, которые не поддаются физическому экспери­менту. Мысленное моделирование может быть реализовано в виде наглядного, символического и математического.

При наглядном моделировании на базе представлений человека о реальных объектах создаются различные наглядные модели, от­ображающие явления и процессы, протекающие в объекте. В основу гипотетического моделирования исследователем закладывается не­которая гипотеза о закономерностях протекания процесса в реаль­ном объекте, которая отражает уровень знаний исследователя об объекте и базируется на причинно-следственных связях между вхо­дом и выходом изучаемого объекта. Гипотетическое моделирование используется, когда знаний об объекте недостаточно для по­строения формальных моделей.

^ Аналоговое моделирование основывается на применении анало­гий различных уровней. Наивысшим уровнем является полная ана­логия, имеющая место только для достаточно простых объектов. С усложнением объекта используют аналогии последующих уров­ней, когда аналоговая модель отображает несколько либо только одну сторону функционирования объекта.

Существенное место при мысленном наглядном моделировании занимает макетирование. Мысленный макет может применяться в случаях, когда протекающие в реальном объекте процессы не поддаются физическому моделированию, либо может предшество­вать проведению других видов моделирования. Если ввести условное обозначение отдель­ных понятий, т. е. знаки, а также определенные операции между этими знаками, то можно реализовать знаковое моделирование и с помощью знаков отображать набор понятий — составлять от­дельные цепочки из слов и предложений. Используя операции объ­единения, пересечения и дополнения теории множеств, можно в от­дельных символах дать описание какого-то реального объекта.

В основе языкового моделирования лежит некоторый тезаурус. Последний образуется из набора входящих понятий, причем этот набор должен быть фиксированным. Следует отметить, что между тезаурусом и обычным словарем имеются принципиальные раз­личия. Тезаурус — словарь, в котором каждому слову может соответствовать лишь единствен­ное понятие, хотя в обычном словаре одному слову могут соответ­ствовать несколько понятий.

^ Символическое моделирование представляет собой искусственный процесс создания логического объекта, который замещает реальный и выражает основные свойства его отношений с помощью опреде­ленной системы знаков или символов.

^ Математическое моделирование. Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристи­ки рассматриваемого реального объекта. Вид математической мо­ли зависит как от природы реального объекта, так и задач ис­следования объекта и требуемой достоверности и точности решения этой задачи.

Для аналитического моделирования характерно то, что процессы функционирования элементов системы записываются в виде некоторых функциональных соотношений (алгебраических, интегродиференциальных, конечно-разностных и т.п.) или логических условий.

^ Имитационное моделирование позволяет по исходным данным получить сведения о состоянии процесса в определенные моменты времени, дающие возможность оценить характеристики системы S.






Скачать файл (1799.4 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации