Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по моделированию систем - файл 2_матем_мет_мод.doc


Загрузка...
Лекции по моделированию систем
скачать (1799.4 kb.)

Доступные файлы (18):

10_Псевдослучайные числа, процедуры их получения.doc127kb.31.03.2005 20:30скачать
11_Моделирование случайных воздействий.doc302kb.21.04.2005 22:59скачать
12_Приближенные способы преобразования.doc279kb.22.04.2005 01:52скачать
13_Имитационное моделирование.doc505kb.28.04.2005 15:43скачать
14_Характеристики мод-х систем и типовые схемы.doc1157kb.04.05.2005 23:18скачать
15_Планирование экспериментов.doc236kb.12.05.2005 16:07скачать
1_введение.doc207kb.07.01.2005 19:19скачать
1_общ_вопр_мод.DOC105kb.26.01.2005 11:17скачать
2_матем_мет_мод.doc89kb.22.02.2005 11:16скачать
3_Сетевые модели.doc21kb.08.02.2005 18:48скачать
6_Системы массового обслуживания.doc234kb.02.03.2005 23:51скачать
7_Сетевые модели Сети Петри.doc264kb.11.03.2005 10:17скачать
8_Обощенные модели А-схемы.doc206kb.18.03.2005 01:16скачать
9_Концептуальные, алгоритмические, статические модели.doc90kb.25.03.2005 13:09скачать
P-схемы.doc137kb.24.02.2005 22:48скачать
Модели данных.doc26kb.08.02.2005 14:10скачать
Непрерывно детерминированные модели.doc58kb.22.02.2005 17:07скачать
Сетевые модели.doc379kb.08.02.2005 18:42скачать

2_матем_мет_мод.doc

Реклама MarketGid:
Загрузка...
Лекция №2

МАТЕМАТИЧЕСКИЕ МЕТОДЫ МОДЕЛИРОВАНИЯ ИНФОРМАЦИОННЫХ ПРОЦЕССОВ И СИСТЕМ
Основные этапы построения математической модели:

  1. составляется описание функционирования системы в целом;

  2. составляется перечень подсистем и элементов с описанием их функционирования, характеристик и начальных условий, а также взаимодействия между собой;

  3. определяется перечень воздействующих на систему внешних факторов и их характеристик;

  4. выбираются показатели эффективности системы, т.е. такие числовые характеристики системы, которые определяют степень соответствия системы ее назначению;

  5. составляется формальная математическая модель системы;

  6. составляется машинная математическая модель, пригодная для исследования системы на ЭВМ.


Требования к математической модели:

Требования определяются прежде всего ее назначением, т.е. характером поставленной задачи:

"Хорошая" модель должна быть:

  1. целенаправленной;

  2. простой и понятной пользователю;

  3. достаточной с точки зрения возможностей решения поставленной задачи;

  4. удобной в обращении и управлении;

  5. надежной в смысле защиты от абсурдных ответов;

  6. допускающей постепенные изменения в том смысле, что, будучи вначале простой, она при взаимодействии с пользователями может становиться более сложной.


Математическая модель, в широком смысле, это приближенное описание какого-либо класса явлений внешнего мира, выраженное с помощью математической символики. Применительно к задачам исследования качества системы математическая модель должна обеспечивать адекватное описание влияния параметров и условий функционирования на показатели ее качества. Что касается точности модели, то ее уровень должен обеспечивать достоверное сравнительное оценивание и ранжирование по уровню качества альтернативных вариантов

В основе изучения и моделирования процессов функционирования технических систем всегда лежит эксперимент - реальный или логический. Суть реального эксперимента состоит в непосредственном изучении конкретного физического объекта. В ходе логического эксперимента свойства объекта исследуются не на самом объекте, а с помощью его математической или содержательной (словесной) модели, изоморфной объекту с точки зрения изучаемых эксперименте свойств.

Подавая на вход системы различные входные процессы и измеряя процесс на ее выходе, исследователь получает возможность установить и записать математически существующую между ними связь в виде уравнения, связывающего для каждого интервала времени значения входных и выходных воздействий и потому называемого уравнением «вход-выход». Кроме того, для адекватного отражения связи между входом и выходом системы в системотехнике вводится понятие «состояние». По своему смыслу состояние z(τ) представляет собой совокупность существенных свойств (характеристик) системы, знание которых в настоящем (в момент времени τ) позволяет определить ее поведение в будущем (в моменты времени t > τ). Благодаря этому понятию, уравнение “вход-выход”-состояние принимает вид:

YT = A(T, z(τ), XT), (2.1)

где XT, YT - входной и выходной процесс на интервале времени T;

A(*)- оператор выходов.
Согласно (2.1), выходной процесс полностью определяется входным процессом и начальным состоянием и не зависит от того, каким образом система была переведена в это состояние. Отсюда ясно, что уравнение (2.1) ограничивает класс рассматриваемых систем только такими системами, функционирование которых в настоящем не зависит от того, как они функционировали в прошлом.

Для полного описания процесса функционирования системы необходимо задать условия определения состояния системы. Для этого вводится понятие уравнения состояния:

z(t) = B(τt, z(τ), Xτt), (2.2)

где

B(*) - оператор, устанавливающий однозначную зависимость z(t) от пары (z(τ), Xτt), которая задана на интервале t, и называемый оператором перехода.

Уравнения (2.1) и (2.2) имеют достаточно логичное обобщение и на многомерный случай, когда каждая из компонент уравнений имеет векторный вид:



Таким образом, модель функционирования системы должна обеспечивать прогнозирование процесса функционирования на всем интервале функционирования T (множество времени) по заданному вектору начального состояния записанном в векторном виде входному процессу (T). Согласно изложенному выше, для решения этой задачи достаточно задать множества допустимых значений входных X и выходных Y процессов, а также множество возможных состояний системы Z и операторы выхода A и перехода B. Модель функционирования системы без предыстории представляет собой кортеж

MF = <T, X, Y, Z, A, B>. (2.3)

Если все компоненты в (2.3) известны, модель функционирования полностью определена и может быть использована для описания и изучения свойственных системе процессов функционирования. Множества и операторы, составляющие общесистемную модель (2.3), могут обладать различными свойствами, совокупность которых позволяет конкретизировать характер функционирования системы:

N – непрерывность;

Lлинейность;

Cстационарность;

Pстохастичность (вероятность).

Наделяя систему теми или иными свойствами общесистемная модель конкретизируется до системной модели.

Системные свойства:

1). Если интервал функционирования системы Т = [] представляет отрезок оси действительных чисел, заданный началом и концом , то система функционирует в непрерывном времени. Если, кроме того непрерывны операторы А и В, то система наз. непрерывной.

2). С т.зр. реакции на внешнее воздействие объекты подразделяют на линейные и нелинейные. Линейными наз. такой объект, реакция которого на совместное воздействие 2-х любых внешних возмущений равно сумме реакций на каждое из этих воздействий, приложенных к системе порознь.

- принцип суперпозиции,

(0)=0 (начальное состояние системы),

где - оператор объекта, устанавливает связь входа и выхода.

Для линейных систем выполняется принцип суперпозиции.

3). Поскольку стационарная система при фиксированном начальном состоянии Z(t0) одинаково реагирует на эквивалентные, отличающиеся только сдвигом по времени, входные воздействия, то наложение интервала t0, t на оси времени не оказывает влияния на процесс функционирования системы. Модель М для стационарных систем не содержит в явном виде интервал функционирования Т.

4) Если в модели М операторы А и В каждой паре (X, V, Z(t0)) (вход, состояние) ставят в соответствие единственные значения Y и Z, описываемая этой моделью система называется детерминированной. Для стохастической (вероятностной) системы Y и Z, случайные величины, заданные законами распределения.
Общесистемная и системные модели функционирования (в дальнейшем термин «модель функционирования» для краткости может заменяться термином «модель» с сохранением исходного смысла) обладают исключительно высокой степенью общности. Они, безусловно, необходимы для теоретических исследований и полезны, так как выявляют общие закономерности, присущие весьма широкому классу систем. Но в повседневной практической деятельности инженеры традиционно используют так называемые конструктивные модели - гораздо менее общие, но позволяющие производить конкретные вычисления. Конструктивные модели в сущности представляют собой алгоритмы, пользуясь которыми, можно определить значения одних переменных, характеризующих данную систему, по заданным или измеренным значениям других переменных. Однако между системными и конструктивными моделями нет противоречия. По мере накопления знаний о системе, уточнения и конкретизации ее свойств и характеристик системная модель естественным образом преобразуется в конструктивную. Следовательно, конструктивная модель может и должна закономерно вырастать из более общей системной модели. Такой - истинно системотехнический подход – представляется более обоснованным, чем априорное задание конструктивной модели исследователем, использующим для этого лишь свою интуицию и субъективные представления о возможностях тех или иных математических схем.

Таким образом, наиболее важные и принципиальные этапы построения модели функционирования системы определяются процессом реализации системотехнической цепочки преобразований «общесистемная модель системная модель конструктивная модель машинная модель».

Моделирование процессов функционирования конкретной системы должно начинаться с записи всех компонент общесистемной модели (2.3), определения их содержательного смысла и областей изменения. Согласно модели (2.3), необходимо определить: интервал времени, на котором нас интересует функционирование системы; множество входных и выходных воздействий и области их возможных изменений; множество характеристик состояния системы и область их возможных изменений.

Классификация системных моделей


MNLCP - легко мат.описание

MNLCP - нет адекватного мат.описания (трудно)
Инверсия (N) – данное свойство не выполняется, например нет свойства непрерывности

Общесистемная и системные модели обладая высшей степенью общности устанавливают закономерности, которые присущи всем или достаточно широкому классу систем. В инженерной практике используют так называемые конструктивные модели, пригодные для инженерных расчетов.

КМ – алгоритмы, пользуясь которыми можно определить значения одних переменных, характеризующих систему по заданным или измеренным значениям других переменных.

КМ – может и должна вырастать из большой общей системной модели путем конкретизации ее свойств.

При построении моделей функционирования систем применяют следующие подходы:

  1. непрерывно-детерминированный подход (дифференцированные уравнения);

  2. дискретно-детерминированный (конечные автоматы);

  3. дискретно-стохастический подход (вероятностные автоматы);

  4. непрерывно-стохастический подход (системы СМО)

  5. обобщенный / универсальный подход (агрегитивные системы)








Скачать файл (1799.4 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации