Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Мунипов В.М., Зинченко В.П. Эргономика: человекоориентированное проектирование техники, программных средств и среды - файл Мунипов В.М., Зинченко В.П. Эргономика.doc


Мунипов В.М., Зинченко В.П. Эргономика: человекоориентированное проектирование техники, программных средств и среды
скачать (3388.5 kb.)

Доступные файлы (1):

Мунипов В.М., Зинченко В.П. Эргономика.doc6668kb.16.09.2004 19:32скачать

Мунипов В.М., Зинченко В.П. Эргономика.doc

1   ...   4   5   6   7   8   9   10   11   ...   46
(рис. 2-6).

Общую схему для разработки профессиограмм со­ставил из 16 вопросов Ян Райскуп [18, с.50 —51]. В ответах на них содержатся важнейшие данные для профессио-граммы:

1. Как называется работа и в чем она состоит (иными словами, что делается: название работы, специальнос­ти, профессии, должности, описание существенных ха­рактеристик и видовых особенностей труда)?

2. Каковы цель и значение работы (что производится и для какой цели: продукция, услуги; значение работы: ценность и важность продукции или оказываемых услуг для потребителей и предприятия)?

3. Что является предметом труда (из чего производят, над чем, с чем работают: материал, сырье, полуфабрикаты; нематериальные источники — информация, письменные данные и документы; обслуживание и оказание услуг)?

4. Каким способом выполняется работа (как это делается: технологический процесс, трудовой процесс, операция, рабочая задача)?

5. На основании чего производится работа (на каком основании это делается: производственная документа­ция, чертежи, указания, подробные технологические

53

инструкции, планы, расчеты; опосредованная информа­ция, инструкции, описания, приказы)?

6. Каковы критерии оценки результатов труда (на осно­вании чего оцениваются качество и эффективность труда: критерии оценки, нормы, лимит затрат времени, квалификационные разряды)?

7. Какая квалификация требуется для работы (что нужно уметь, знать: необходимое образование, требуемый практический опыт, мастерство, специализация)?

8. При помощи каких средств выполняется работа (чем работают: инструмент, машины, вспомогательные сред­ства, аппаратура, средства управления)?

9. В каких условиях выполняется работа (рабочая среда, ее факторы и параметры рабочего места — простран­ственные, гигиенические, эстетические и т.д.)?

10. Какова организация труда (когда и какими способами выполняется работа: организация производственного процесса, график работы и расписание смен, режим труда и отдыха, баланс рабочего времени)?

1 1. Какова кооперация труда (кто, что и с кем делает: распределение рабочих задач, правомочий и ответст­венности, установленная субординация — начальник, подчиненные; система руководства и управления пер­вичными производственными коллективами; характе­ристика социальной среды и микроклимата на произ­водстве)?

12. Какова интенсивность труда (каков объем, насколько быстро или медленно, как часто выполняется работа: количество работы, ее трудность, скорость, темп, нормы времени, продолжительность нагрузки, вариа­бельность труда — монотонность, систематичность, равномерность, цикличность, ритмичность)?

13. С какими видами опасности и ответственности сопря­жен производственный процесс (что может случиться на работе: неполадки, материальные потери, финансовые потери, штрафы за низкое качество или срыв сроков поставки продукции; неисправности, аварии, травмы, профессиональные заболевания, вред окружающей среде)?

14. Какое воздействие оказывает труд на работающих? (чем полезен и чем вреден человеку: положительное и отрицательное влияние материальных, организацион­ных и социальных факторов на личность, в том числе и комплексное их воздействие)?

15. Какую пользу приносит труд работнику (сколько он зарабатывает: заработок, зарплата, премия, натураль­ные выдачи, различные льготы, моральное удовлетво­рение от труда, общественное признание)?

16. Какие условия, требования и ограничения характерны для работы (кто может и кто не должен выполнять ее: административно-правовые, политические, медицин­ские, общественные и другие детерминанты)?
2.4. Методы распределения функций между человеком и машиной
^ Для распределения функций по-прежнему использу­ют перечни сравнительных преимуществ человека и машины при выполнении функций. Идея состоит в том, чтобы передать человеку то, в чем он превосходит машину, а машине то, в чем она превосходит человека. Задача распределения функций внутренне противоречи­ва, так как люди и машины не сравнимы. Если же они сравнимы, то незачем распределять функции между ними, поскольку одну можно заменить другой. Кроме того, любые перечни ограничений, касающихся машин, рискуют устареть еще до того, как они будут опублико­ваны. Тем не менее специалисты считают, что несовер­шенный способ распределения функций все же лучше, чем полное отсутствие такового.

Для распределения функций могут использоваться качественные и количественные методы. Для оценки выбранного распределения функций чаще всего исполь­зуется моделирование, а также методы макетирования и эксперимента.

Американскими учеными предложен подход, на­званный динамическим распределением функций. По­скольку первая заповедь эргономики — "чти своего по­требителя", то весьма желательно предоставление ему возможности самостоятельно распределять функции. За­данное же разработчиком системы распределение функ­ций не может быть изменено без преобразования всей системы. С развитием техники системы приобрели про­граммное обеспечение, позволяющее легко вводить из­менения. Это означает, что распределение функций боль­ше не является, образно говоря, "высеченным в камне". Акцент в проектировании переносится с предвосхище­ния требований человека в распределении функций на процесс оценки деятельности и удовлетворенности чело­века работой, а также функционирования системы. Когда слишком возрастает рабочая нагрузка, система автомати­чески принимает на себя большую ее часть, чтобы высво­бодить пользователя [19].

Рассматривая вопрос о том, какие методы распреде­ления функций полезны и соответствуют системе "чело­век—ЭВМ", П.Т.Кидд [20] обращается к первым работам в этой области и, в частности, к статье А.Чапаниса [21].

АЧапанис указывает на ряд вопросов, которые часто игнорируются при распределении функций:

1) общие сравнения человека и машины зачастую невер­ны; например, хотя компьютер лучше выполняет вычис­ления, это не причина всегда использовать его в этих целях;

2) не всегда важно решать, какой компонент сделает конкретную работу лучше; вполне достаточным может быть использование адекватного компонента;

3) общие сравнения людей и машин не указывают путей поиска компромисса.

А.Чапанис указывает также на ряд других важных моментов. Во-первых, распределение функций в челове­ко-машинных системах частично определяется социаль­ными и экономическими ценностями, которые в разных странах могут различаться. Поэтому проектирование, эф­фективное в одной стране, может не срабатывать в дру­гой. Во-вторых, распределение функций должно посто­янно переоцениваться, поскольку технология непрерыв­но меняется и то, что невозможно сегодня, вполне может

54

быть приемлемым в ближайшем будущем. В-третьих, многие затруднения при распределении функций обу­словлены инженерной неопределенностью. Инженеры часто изменяют проект и иногда действуют при этом методом проб и ошибок.

А.Чапанис рекомендует, чтобы при распределении функций сначала готовились полные и детальные специ­фикации. За этим должен следовать анализ всех функций системы. Затем можно провести пробное распределение функций. После этого должна последовать оценка всего набора функций, распределенных людям, чтобы убедить­ся, что нет их перегрузки или недогрузки.

Анализируя эти рекомендации, П.Т.Кидд высказыва­ет предположение, что, видимо, есть ряд моментов, дела­ющих саму идею формального распределения функций нереалистичной в ситуации проектирования.

Во-первых, как видно из опыта проектирования, написать полную и детальную спецификацию почти не­возможно. Некоторые ограничения и цели трудно сфор­мулировать и зачастую нельзя ясно выразить, пока не построена модель или макет системы. Когда специфика­ция написана и представлена клиенту, он, вероятно, ее примет. А когда система будет построена, он, вероятно, скажет, что это не то, чего он хотел или ожидал. Причина чаключается в том, что некоторые цели и ограничения существуют в неявном виде и становятся явными только тогда , когда цель не достигнута или нарушены ограни­чения. Это одна из причин, почему программное обеспе­чение (ПО) часто оказывается неадекватным или непод­ходящим.

Во-вторых, проектирование не является упорядочен­ным процессом, равномерно идущим от спецификаций к воплощению. В нем очень много итераций, и он гораздо сложнее, чем его часто изображают в простых линейных моделях. По ходу проектирования спецификации также часто меняются, когда выясняется, что что-то не подходит или кто-то предлагает лучшую идею. Конечно, эти изме­нения подлежат формальному контролю, но все равно проектная спецификация не будет статичным документом.

В-третьих, проектирование — процесс во многом подсознательный и творческий. Идеи приходят людям неожиданно, вдруг. Тогда они изучаются и обсуждаются. Предпринимаются некие эксперименты. Идея модифи­цируется и т.д. Во время этого творческого процесса решения по распределению функций принимаются ско­рее неявно, чем явно.

В-четвертых, инновации в технологии чаще начина­ются в исследовательской лаборатории. Этот процесс может направляться любопытством (например, что бы можно сделать с технологией экспертных систем?). Не­которые научные идеи могут воплотиться в продукте, который затем купят клиенты и добавят их к существу­ющим системам.

В-пятых, даже когда в начале имеется зеленая улица, аппаратные и программные средства часто покупаются "с полки", в неприспособленном виде. Следовательно, контроль за распределением функций ограничен, по­скольку детальное проектирование ведется на самом деле третьей стороной.

В-шестых, при распределении функций определяет­ся только, что будут делать человек и машина. При этом ничего не говорится о том, как машина работает. На современном языке это значит, что распределение функ­ций почти не влияет ни на архитектуру компьютеров, ни на особенности программного обеспечения.

В-седьмых, при распределении функций ничего не говорится о целях системы, а от них часто в первую очередь зависит, что будет требоваться от человека. Так, например, чтобы автоматизировать планирование рабо­ты цеха, можно использовать информационную систему в режиме генерации и, возможно, в реальном масштабе времени. Или можно использовать такую систему пассив­но, чтобы помочь пользователю понять особенности пла­нировочных алгоритмов и правил. Если в качестве цели проектировщик выбирает информационную систему для автоматической планировки, он тем самым налагает ог­раничения на действия, ожидаемые от людей. В методах распределения функций этот факт никак не отражен, и можно сказать, что они предусматривают вторичные, более детальные решения о распределении и опираются на основные проектировочные решения, уже принятые проектировщиком системы задолго до того, как,в процес­се проектирования встает вопрос о распределении функ­ций.

Наконец, проектирование — скорее искусство, чем наука. В нем смешались формальные и неформальные методы, анализы, математика, а также элементы сужде­ний и опыта. Чаще проектировщик знает, что для дости­жения заданного результата ему надо сделать то-то и то-то. Его опыт не побуждает проводить детальный ана­лиз задач, чтобы создать удовлетворительную работу для людей, которые будут использовать данную систему [20, с.218].


2.5. Моделирование в эргономике
2.5.1. Моделирование как средство выдви­жения и проверки гипотез в эргономичес­ких исследованиях
Использование метода моделирования получило до­статочно широкое распространение в эргономических исследованиях и проектировании. Моделирование таких в высшей степени сложных явлений, как деятельность человека, с достижением такого приближения и упроще­ния, которые позволяют сохранить, удержать в модели характеристики сложного оригинала и тем самым не исказить его природу или же сделать это в возможно минимальной степени, осуществимо на достаточно высо­ком уровне развития теории и экспериментальных иссле­дований. К последним относится построение модели предметного действия [22], которое было выполнено с помощью функционально-структурного анализа и яви­лось результатом глубокого и неординарного теоретичес­кого осмысления добротных результатов эксперимен-

55

тальных исследований (рис. 2-7). Модель выступает, с одной стороны, как средство, а с другой стороны — как предмет экспериментального исследования, заменяющий "подлинный" объект изучения.

В современном производстве стереотипность трудо­вых движений постепенно уступает место целесообраз­ным исполнительным действиям. Более того, во многих видах деятельности все чаще необходима защита от авто­матизма, от импульсивных, рефлекторных реакций. Ошибочные действия, иногда приводящие к аварийным ситуациям, нередко происходят не потому, что человек не успел, а потому, что поторопился. Целесообразные исполнительные действия понимаются как своего рода морфологические объекты, функциональные органы.

Известно, что по мере овладения человеком опреде­ленной системой действий, последняя стереотипизиру-ется. Но далее эта система постепенно превращается в своеобразный "орган индивидуальности", в средство выражения и реализации отношения человека к действи­тельности. Строение этого "органа", понимание и пред­видение того, что может быть реализовано с его помо­щью, представляет научный и практический интерес для эргономики.

Функционально-структурный анализ предполагает не только выделение компонентов, входящих в структу­ру, но и установление закона связи между ними. Прин­цип функционирования модели легче описать, идя от простого к сложному. Примем, что наиболее элементар­ным и простым действием является ответ на экстренно возникший сигнал (мигание в ответ на громкий щелчок или яркий пучок света, отдергивание руки от раскален­ной печи и т.д.). В таких случаях организация ответного действия совершается за очень короткие отрезки време­ни. Способ организации такого действия может быть представлен следующим образом.

Установочный сигнал, идущий от предметной ситуа­ции и приобретающий в этом случае характер пускового сигнала, попадает в полимодальный афферентатор, а затем в блок дифференциальных программ. Пусковой сигнал актуализирует элементарные или хорошо заучен­ные дифференциальные программы, которые трансфор­мируются в моторные команды, и ответная реакция осу­ществляется. Оценка степени целесообразности и ре­зультативности происходит постфактум. Такая схема ана­логична стимульно-реактивной схеме или схеме рефлек­торной дуги.

При формировании нового сложного предметного действия, несмотря на наличие у субъекта цели, двига­тельной задачи и общего представления о результате, появление установочного сигнала не может вызвать аде­кватного действия. Последнее должно быть построено, и его освоение происходит следующим образом.

Установочный сигнал поступает в интегральную про­грамму, а из нее — в схемы памяти, где начинается поиск близких или аналогичных поставленной цели схем (спо­собов) действия. Если такие схемы не находятся, субъект начинает использовать имеющиеся в его распоряжении схемы поисковых, в том числе перцептивных и опробу­ющих действий. Осуществление последних ведет к изменению предметной ситуации. Многократные, циклически повторяющиеся пробы оказываются все более эффектив­ными в достижении промежуточных результатов.

В ходе действий начинают заполняться предметным содержанием блоки, ответственные за образ ситуации, образ действия и интегральную программу. Это происхо­дит благодаря встрече информации (о совершенных в предметной ситуации изменениях), идущей через поли­модальный афферентатор по внешнему контуру, и ин­формации о совершенном движении, идущей по внутрен­нему контуру, которая транзитом (на этом этапе овладе­ния действием) проходит через пока еще перцептивно и процессуально пустой блок контроля и коррекций. В этом блоке еще нет представления о результатах действия, поскольку последние могут поступить в него лишь после того, как образ и интегральная программа будут сформи­рованы. Информация о движении, поступая в интеграль­ную программу, выполняет двоякую функцию. Во-пер­вых, она вместе с информацией, проходящей по внешне­му контуру, служит источником формирования образа, а во-вторых, модифицирует программу следующего пробу­ющего движения. В результате большого числа движе­ний, идущих по описанной схеме, складываются образ ситуации, образ действия и интегральная программа но­вого действия.

Интегральная программа, являясь производной от образа, содержит общую схему требуемого действия, обобщенную информацию о том, что и в какой последо­вательности необходимо сделать. Информация, посту­пающая в интегральную программу из образных компо­нентов, обогащается за счет схем и способов действия, хранящихся в блоке памяти. Результатом формирования образа и интегральной программы является не только сложившаяся схема действия, но и реальный план, про­грамма требуемых действий.

После того, как сформированы образ и интегральная программа, реализация действия идет по следующей схеме. Установочный сигнал через полимодальный аффе­рентатор актуализирует интегральную программу и образ действия, на основе чего возможно принятие ре­шения о целесообразности выполнения действия. На этой стадии интегральная программа становится производной от образа и представляет собой план действия. Информа­ция от интегральной программы идет по двум каналам: в блок контроля и коррекций и в блок дифференциальных программ. Информация, идущая по первому каналу, представлена в обобщенном виде как результат действия (схема действия). Информация, идущая по второму кана­лу, наоборот, достаточно конкретна: в ней отражены такие параметры требуемого действия, как время его выполнения, направление, степень пространственности, амплитуда перемещения, требуемые усилия и т.д. Инфор­мация о параметрах действия подвергается дальнейшей детализации в блоке дифференциальных программ. На­пример, информация о направлении действия и степени его пространственности трансформируется здесь в от­дельные моторные команды, ответственные за простран­ственно-временные характеристики движения по каж­дой координате.

56




Рис. 2-7. Функциональная модель предметного действия:

А— афферентатор полимодальный; П— схемы памяти; Од— образ действия; Ос— образ ситуации; ИП — интегральная программа, план действия; М — моторный компонент; ДП — дифференциальная программа; К — контроль и коррекция;

1 — предметная ситуация (двигательная задача,

мотив);

2 — установочный сигнал;

3 — текущие и экстренные сигналы;

4— текущие и экстренные команды;

5— изменение предметной ситуации;

6 — информация из окружающей среды;

7 — информация из схем памяти;

8 — актуализация образа;

9— информация, релевантная двигательной задаче;

10 —формирование программы, плана действия;

11 — схема действия;

12 — детализация программ действия;

13 —моторные команды;

14— текущая информация от движения;

15— текущий коррекционный сигнал;

16— упреждающая обратная связь;

17— коррекционные моторные команды;

18— конечная информация от движения;

19— изменение предметной ситуации

(информация для образа ситуации и образа действия);

20— изменение предметной ситуации

(информация для полимодального

афферентатора);

21 — конечный результат;

22— информация в схемы памяти.

57

Основная функция дифференциальных программ состоит в декомпозиции плана целостного действия. Ин­формация из дифференциальных программ также идет по двум каналам: по каналу прямой связи она попадает в блок коррекций и контроля, а затем — в моторный компонент действия. Таким образом, в блоке контроля и коррекций еще до начала моторного ответа имеются общее представление о схеме действия и начальные условия — детали требуемого действия.

Решение о необходимости корректировки действия вырабатывается на основе сличения информации о на­чальных условиях, хранящейся в блоке контроля и кор­рекций, и текущей информации о движении, поступаю­щей из моторного компонента. В результате вырабатыва­ется коррекционный сигнал, который после переработки в блоке дифференциальных программ преобразуется в коррекционные моторные команды. Последние в виде" текущей информации вновь поступают в блок контроля и коррекций, где процесс сличения повторяется. В случае сложного движения процесс может повторяться много­кратно. Решение об окончании действия принимается на основе сопоставления информации о движении и инфор­мации о схеме действия. Эта информация поступает в интегральную программу, где она сравнивается с инфор­мацией об изменениях, внесенных моторным актом в предметную ситуацию. При их несовпадении план кор­ректируется, а в случае совпадения принимается оконча­тельное решение о выполнении действия и эта информа­ция поступает в схемы памяти и там хранится.

Сформировавшаяся система предметного действия может функционировать на разных уровнях: ее свойства удовлетворяют требованиям, предъявляемым к жестким, самонастраивающимся и самоорганизующимся систе­мам. Предложенная модель пригодна для описания раз­нообразных видов и форм человеческого действия: это дискретное и непрерывное слежение, медленное и бал­листическое, формирующееся и заученное, исполнитель­ное и пробующе-перцептивное, планируемое и экстрен­ное действия. В осуществлении любого из перечислен­ных действий принимает участие специфический для него набор компонентов и связей между ними.
2.5.2. Общая характеристика математических моделей в эргономике
В проектной практике эргономики большое внима­ние уделяется развитию математических моделей. Основ­ное преимущество этих моделей состоит в том, что они позволяют рассматривать эргономические проблемы уже с момента зарождения программы, разработки, а не на предпоследнем этапе только для того, чтобы как-то вклю­чить человека в систему. Будучи вовлеченными в проект­ную деятельность с первоначального ее этапа, эргономис­ты оказываются перед необходимостью кардинального, а не частичного решения проблем человеческого фактора в технике, что, в свою очередь, стимулирует инноваци­онную деятельность по созданию изделий, рабочих мест и систем. Не менее существенно и то, что эргономические проектные решения в таких случаях, как правило, наиболее экономичные.

Кроме традиционных преимуществ, имеются допол­нительные аргументы в пользу использования математи­ческих моделей в эргономике [23]. Первый состоит в том, что эргономисты совместно с проектировщиками, инже­нерами, системотехниками участвуют в создании техни­ки и технологии. А партнеры эргономистов привыкли иметь дело с количественными показателями. Второй аргумент в пользу математических моделей в эргономике обусловливается ее тесным взаимодействием с общей теорией систем, которая открывает широкие возможнос­ти для применения математических методов. Суть третье­го в том, что математическое моделирование является важным средством развития эргономики как научной дисциплины. Четвертый аргумент: математическое моде­лирование применяется для изучения такого сложного явления, как деятельность человека. Пятый довод: мате­матические модели требуют определенной системы и способствуют повышению культуры в сборе данных. Шестой аргумент в пользу применения математических моделей в эргономике — они позволяют нередко осу­ществлять синтез там, где раньше он был невозможен.

Важно знать не только доводы в пользу применения математических моделей в эргономике, но и те ограниче­ния и подводные камни, которые с этим связаны.

1. Возможности моделей ограничены и они могут неаде­кватно отражать деятельность человека.

2. Модели могут давать повод для необоснованных экстра­поляции. Например, сервомеханическая модель предла­галась для применения в эргономике. Вначале эта мо­дель касалась лишь деятельности оператора при выпол­нении задачи компенсаторного слежения. Затем пред­принимались попытки использовать ее для изучения деятельности, в которой определяющее значение при­обретают такие факторы, как память и способность прогнозирования. Однако сервомеханические модели теряют свою эффективность при их экстраполяции на эту область.

3. Модели могут отрицательно влиять на проектирование работы. Существует опасность, что проектировщики, используя математические модели, будут видеть в рабо­чем месте интеграцию отдельных задач, количественно выражаемых, и не будут обращать внимание на соци­альный аспект деятельности.

4. Модели могут толкать на упрощенные эксперименты. В то же время могут создаваться модели на основе упро­щенных экспериментов.

5. Даже простые описательные модели могут иметь свои внутренние проблемы. Тем более это относится к слож­ным математическим моделям. Многие модели, особен­но касающиеся когнитивных процессов, настолько слож­ны, что даже трудно представить возможность их про­верки, разве только на очень глобальном уровне.

6. В некоторых случаях модели превращаются в самоцель. Устанавливаются взаимосвязи, которые не имеют прак­тической ценности. Поскольку практическая пригодность модели редко бывает видна в самом начале работы над нею, то значительные потери времени без практическо­го эффекта — вещь неизбежная.

Выделяют три типа эргономических моделей:

58

1. Модели, которые позволяют прогнозировать деятель­ность и работоспособность человека, но которые слабо или совсем не учитывают характеристики оборудования. " 2. Модели, позволяющие прогнозировать функционирова­ние системы, но которые мало или совсем не учитывают характеристик человека и его деятельности, разве что косвенно.

3. Модели, включающие как свойства человека и характе­ристики деятельности, так и параметры оборудования, т.е. деятельность человека с оборудованием и влияние функционирования оборудования на человека в той форме, в какой они сказываются на эффективности функционирования системы [24].

Математическое моделирование в эргономике соче­тается с использованием других методов, что характерно не только для этой дисциплины. "Необходимо сочетать моделирование с профессиональным чутьем, расчетами на бумаге, экспертными оценками и достижениями мно­гих других наук. Ни один из методов математического моделирования также не способен родить мудрого реше­ния, окажись он в руках глупца" [25].

Трудности, испытываемые разработчиками моделей, в первую очередь относятся к алгоритмам и вводимой информации. Наиболее трудно поддающиеся определе­нию классы переменных — мотивационные и когнитив­ные. Когда специалисты по эргономике вводят в свою модель такую переменную, как мотивация, они часто определяют ее в таких терминах, как высокая, средняя и низкая. Здесь сразу же напрашивается вопрос: высокое, среднее или низкое — что? Переменная, лишенная объ­ективного содержания, добавляет еще один неизвестный элемент во включающее ее уравнение. Многие модели содержат переменные именно этого типа. В результате большинство из них остаются мертворожденными, так как не основываются на достаточных эмпирических дан­ных. Сбор и подготовка информации в целях моделиро­вания представляет трудоемкую задачу. Приходится за­бираться далеко вглубь, что отнюдь не так интересно, как само создание модели. По этой причине эргономисты иногда экономят на информационной базе при разработ­ке моделей. Это существенно снижает полезность выпол­ненной работы [24].
2.5.3. Математическое моделирование деятельности человека-оператора
Существует несколько методов априорного анализа деятельности: обобщенно-структурный, операционно-психологический, метод статистического эталона, логико-информационный и т.д. Используются также три типа моделей поведения человека: когнитивные модели, моде­ли теории управления, сетевые модели задач. В данном разделе рассматривается один из возможных аналитичес­ких методов — метод математического моделирования деятельности [22].

В основу такого моделирования положена идея ис­пользования методов Монте-Карло для имитации вероят­ностно-временных характеристик деятельности операторов. Степень расчленения деятельности оператора на отдельные операции зависит от цели расчета и не имеет для модели существенного значения.

В общем случае время выполнения отдельной опера­ции состоит из двух составляющих:




59



60




61







2.5.4. Моделирование систем "человек—машина" в эргономике
Моделирование систем "человек —машина" более затруднительно, чем моделирование физических систем, поскольку:

1) фундаментальных законов или принципов в науке о поведении мало;

2) соответствующие процедурные элементы часто трудно описать и представить;

3) поведение людей во многом определяется социальными факторами, причем их влияние трудно выразить в коли­чественной форме;

4) во многих аспектах поведения существенными могут быть случайные элементы;

5) неотъемлемой частью таких систем становятся способ­ности человека к принятию решений и решению задач.

В современных условиях достаточно широко приме­няются изощренные методы анализа в эргономике, по­зволяющие прогнозировать динамику взаимодействия человека, технических средств и программного обеспе­чения. Все большее внимание уделяется разработке ими­тационных моделей систем "человек —машина". Такое моделирование предпочтительнее эмпирических иссле­дований в тех случаях, когда использование реальной системы невозможно, непрактично или даже опасно. Имитационное моделирование дополняет и углубляет экспериментальные исследования и аналитическое моде­лирование [27].

В системном моделировании, использующем воз­можности ЭВМ, в большей мере моделируется не струк­тура, а поведение объекта. Имеется в виду моделирова­ние сложных систем, которые человек не только форми­рует в системную целостность, но и в которые сам включается в качестве определяющей подсистемы. При этом возрастает роль неформализованных факторов мо­дели. Новое единство формализованного и неформализо­ванного важная черта системных моделей.

При неуклонном возрастании эвристических воз­можностей совершенствующихся формализованных приемов значение неформализованных утверждений, интуитивных догадок в области моделирования сложных систем становится все более существенным. Важной сто­роной системного моделирования является аксиологиза-ция, или учет, ценностных ориентиров конкретного типа общества. Поэтому в системном моделировании весьма существен удельный вес такой процедуры, как оценка. "Если технической базой системной модели служит не­уклонно совершенствующийся компьютер, то технологи­ческое основание этого познавательного приема состав­ляют такие специфические гносеологические особеннос­ти, как более органичное включение и в объект, и в модель человека, по сравнению с традиционными чисто объективными формами моделей (в силу этого системное моделирование тесно связано с самопознанием челове­ка), единство общественных и естественных наук при определяющей роли социальных концептуальных пред­посылок модели, диалоговость и сценарный подход" [6, с.467].

Системно-функциональный анализ лежит в основе разработки модели целостной системы "человек—маши­на", которая должна быть пригодна для определения требований к человеко-машинному интерфейсу, разра­ботки базы для оценки показателей выполнения деятель­ности и составления контрольного листа, позволяющего проверить, все ли эргономические требования воплощены в проекте системы. Деятельность эргономиста в процес­се проектирования сложных систем начинается с рас­смотрения всех важнейших требований системы и ее функций в их единстве и взаимосвязи. "Наиболее опти­мальный путь для обобщения информации, необходимой для анализа функций, состоит в подготовке общего сце­нария с полным набором системных операций. Сценарий состоит из осмысленного описания типичной последова­тельности системных операций в вербальной форме, в нем учитываются как нормальные условия протекания деятельности, так и возможные (и наиболее важные) пограничные случаи. В сценарии может отразиться неко­торая путаница или взаимопересечение отдельных функ­ций. Это не имеет серьезных последствий на начальном этапе описания, но в ходе дальнейшего анализа функций они должны быть четко рассортированы" [28, с. 109].

^ Разработка сценария закладывает фундамент меж­дисциплинарного сотрудничества ученых и специалис-

1   ...   4   5   6   7   8   9   10   11   ...   46



Скачать файл (3388.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации