Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Колтюбинговые технологии - файл 1.doc


Колтюбинговые технологии
скачать (10135.5 kb.)

Доступные файлы (1):

1.doc10136kb.09.12.2011 01:53скачать

содержание
Загрузка...

1.doc

  1   2   3   4   5   6
Реклама MarketGid:
Загрузка...


МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Государственное образовательное учреждение высшего профессионального образования
РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

НЕФТИ И ГАЗА имени И.М. ГУБКИНА
ФИЛИАЛ РГУ НЕФТИ И ГАЗА имени И.М. ГУБКИНА

в г. ОРЕНБУРГЕ
Курсовая работа по дисциплине «Нефтегазовые технологии»

Колтюбинговые технологии

Проверил:

___________ Мухтаров Р. Г.

«__»____________2011г.

Выполнил:
«__»____________2011г.


Содержание


Понятие колтюбинговые технологии 3

Колонна гибких труб 6

Агрегаты с использованием колонн гибких труб и их устройство 15

Список использованной литературы 34

^

Понятие колтюбинговые технологии



Колтюбинговые технологии (от coiled tubing – «намотанная труба») основаны на применении гибких непрерывных труб вместо традиционных буровых труб и насосно–компрессорных труб (НКТ) при внутрискважинных работах: капитальном ремонте (в т.ч. при гидроразрыве пластов), бурении, геофизических исследованиях. Гибкие трубы позволяют получить доступ в горизонтальные и боковые стволы. Перспектива применения безмуфтовой стальной трубы вместо множества свинчиваемых была очевидна на всех этапах развития нефтегазового хозяйства. Первые шаги в России эта технология сделала еще в 1971 г. стараниями ОКБ бесштанговых насосов.

Бурение, подземный ремонт, исследование скважин все это различные технологии и процессы по назначению, применяемой технике и технологии операций. Но общим для этих процессов является применение колонн гибких непрерывных металлических труб. Первым опытом применения непрерывной гибкой металлической трубы для подземного ремонта и добычи пластовой жидкости можно считать использование установки погружного электроцентробежного насоса, разработанной под руководством Н.В. Богданова. Ее отличительной особенностью был спуск и эксплуатация погружного агрегата на колонне гибких стальных труб. Кабель питания погружного двигателя при этом располагался внутри колонны. Это предложение и было основным в идее автора проекта, поскольку исключало контакт кабеля со стенками эксплуатационной скважины при спускоподъемных операциях и эксплуатации. В результате надежность кабеля многократно увеличивалась по сравнению с традиционными схемами. Помимо этого, выполнение подземного ремонта сводилось к наматыванию трубы на барабан без свинчивания и развинчивания резьбовых соединений колонны. Данное техническое решение имеет много положительных сторон, но в контексте рассматриваемого вопроса важно одно – колонна непрерывных металлических труб использовалась для операций подземного ремонта скважин (ПРС). К сожалению, это направление создания нефтепромыслового оборудования не получило дальнейшего развития прежде всего из–за отсутствия на тот момент надежных и дешевых гибких труб.

Приоритет в области конструирования, изготовления и промышленной эксплуатации установок с колонной гибких труб (КГТ) принадлежит фирмам США и Канады. В настоящее время в мире эксплуатируется более 600 установок, причем их число все время возрастает. В нашей стране их количество на данный момент не превышает 30. Особенностью описываемого оборудования является работа гибкой трубы при наличии пластических деформаций, что требует создания труб с принципиально иными свойствами, чем изготавливаются в настоящее время. Достаточно интенсивные работы в этом направлении, специалисты ведут под эгидой ООО "ЛУКОЙЛ–Западная Сибирь", НК "ЛУКОЙЛ", ОАО «Татнефть».

Бурное развитие техники и технологии с использованием колонны гибких труб обусловлено следующими их преимуществами:

а) при исследовании скважин:

– обеспечение возможности доставки приборов в любую точку горизонтальной скважины;

– высокая надежность линии связи со спускаемыми приборами;

б) при выполнении подземных ремонтов:

– отсутствует необходимость в глушении скважины и, как одно из следствий, не ухудшаются коллекторские свойства призабойной зоны продуктивного пласта;

– сокращается время проведения спускоподъемных операций за счет исключения свинчивания (развинчивания) резьбовых соединений колонны труб;

– уменьшается период подготовительных и заключительных операций при развертывании и свертывании агрегата;

– исключается загрязнение окружающей среды технологической и пластовой жидкостями;

в) при проведении буровых работ:

– исключается возникновение ситуаций, связанных с внезапными выбросами, открытым фонтанированием;

– обеспечивается возможность бурения с использованием в качестве бурового раствора нефти или продуктов ее переработки. Это позволяет осуществлять вскрытие продуктивного пласта оптимальным образом и совмещать процесс бурения с отбором пластовой жидкости;

– становится возможным выполнять разрушение породы в условиях депресии;

– обеспечивается эффективное бурение горизонтальных участков скважин;

– становится возможным применять устройства, информирующие бурильщика о режимах бурения и оперативного управления процессом проводки скважины. При работе с подобным оборудованием реализуется "эффект присутствия" оператора установки на забое скважины.

Весьма важным при проведении любых работ в скважине является решение социальной задачи – исключается значительный объем операций, выполняемых под открытым небом в любое время года при любой погоде. Хотя наиболее трудоемкие операции по свинчиванию и развинчиванию труб в настоящее время механизированы, объем ручного труда остается значительным.

В ряде случаев, это касается прежде всего работ в горизонтальных скважинах, применение КГТ является необходимым условием проведения операций. К таким случаям относится выполнение любых работ в горизонтальных участках большой длины.

При разбуривании и эксплуатации морских месторождений использование КГТ особенно эффективно.

Следует отметить и недостатки, присущие рассматриваемой технике. К ним, в частности, относятся:

а) самопроизвольное и неконтролируемое скручивание КГТ;

б) невозможность принудительного проворота КГТ;

в) ограниченная длина труб, намотанных на барабан;

г) сложность ремонта КГТ в промысловых условиях.

В то же время новые технологии не являются панацеей от всех бед и полностью не заменяют существующих традиционных технологий, а в ряде областей не могут быть ими заменены. Наличие оборудования для работы с колонной гибких труб не исключает применения агрегатов ПРС, подъемников и другого существующего нефтепромыслового оборудования. Оно дополняет его и в ряде случаев приумножает до сих пор не реализованные возможности.

В то же время область применения описываемых технологий постоянно расширяется. Сейчас у специалистов, работающих над созданием и совершенствованием оборудования, существует мнение, что нет таких операций или процессов при бурении и ПРС, где нельзя было бы применить КГТ. Предполагают, что в ближайшее время с помощью таких установок будут выполнять более половины всех подземных ремонтов скважин.

В нашей стране до сих пор не сформировалась и не устоялась терминология этой новой области нефтепромысловой техники и технологии.

^

Колонна гибких труб




1.1Мировой опыт применения колонн гибких труб



Впервые массовое использование гибких труб большой длины было осуществлено при проведении операции по форсированию Ла–Манша при высадке союзных войск во Франции во время второй мировой войны. Для обеспечения снабжения войск горючим было развернуто 23 нитки трубопроводов по дну пролива: 6 трубопроводов были стальными с внутренним диаметром 76,2 мм, а остальные имели композиционную конструкцию – внутри слой из свинца, снаружи стальная оплетка. Укладку стальных трубопроводов проводили с плавучих катушек диаметром порядка 12 м. На них были намотаны секции трубопроводов длиной 1220 м. Каждая секция, в свою очередь, состояла из сваренных встык труб длиной 6,1 м.

Подобная технология была положена в основу изготовления колонн гибких непрерывных труб в начальный период проведения работ на промыслах. Впервые это осуществила компания "Creat Lakes Steel Co." (США) в 1962 г. Трубы диаметром 33,4 мм с толщиной стенки 4,4 мм сваривали в атмосфере инертного газа встык из 15 кусков. Изготовленную трубу наматывали на катушку с диаметром сердечника 2,7 м.

Технологию создания гибких труб все время совершенствовали и отрабатывали, но только к концу 70–х годов их качество стало соответствовать требованиям, необходимым для проведения работ на нефтепромыслах.

Параллельно специалисты Канады создавали гибкие трубы для бурения скважин. К 1976 г. фирмой "Flex Tube Service Ltd." была изготовлена и использована при проведении буровых работ гибкая колонна из стали диаметром 60,3 мм, которая наматывалась на катушку с диаметром сердечника около 4 м. и состояла из сваренных встык 12–метровых труб.

Вскоре специалисты этой же фирмы изготовили колонну бурильных труб диаметром 60,3 из алюминия. Работы по созданию труб подобной конструкции были прекращены из–за их низкой прочности, при которой спуск на глубину колонны возможен лишь до 900 м.

Основное внимание изготовителей труб было сосредоточено на отработке технологии, которая могла бы обеспечить как можно большую длину отдельных плетей и таким образом сократить число поперечных стыков, а также на совершенствовании конструкции самого стыка.

К 1983 г. благодаря использованию заготовок ленты из Японии специалистам фирмы "Quality Tubing Inc." (США) удалось увеличить длину плетей до 900 м. Стыки отдельных плетей выполняли еще до поступления ленты в трубогибочную машину, что позволило существенно повысить качество труб. При этом наружный диаметр последних был увеличен до 89 мм.

К 1991 г. глубина спуска КГТ увеличилась до 5200 м, а в 1995 г. был начат выпуск труб с наружным диаметром 114,3 мм.

  1   2   3   4   5   6



Скачать файл (10135.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации