Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Теоретическая механика. Шпора за 1 и 2 курс - файл 26.doc


Теоретическая механика. Шпора за 1 и 2 курс
скачать (1068.5 kb.)

Доступные файлы (41):

01 Три способа задания движения точки..doc28kb.20.01.2010 21:24скачать
02 определение скорости точки при координатном способе задания движения.doc26kb.18.01.2010 12:18скачать
03 Определение Естественный способ.doc31kb.18.01.2010 12:28скачать
04 Теорема о проекциях скоростей.doc26kb.18.01.2010 12:50скачать
05 ПОСТУПАТЕЛЬНОЕ ДВИЖЕНИЕ ТВЕРДОГО ТЕЛА.doc27kb.18.01.2010 13:20скачать
06 Вращательно движение.doc27kb.18.01.2010 13:29скачать
07 вычисление скорости и ускорения точки твердого тела при его вращении.doc33kb.18.01.2010 13:50скачать
08 Формула Эйлера.doc32kb.19.01.2010 13:19скачать
09 Плоскопараллельное движение твердого тела.doc44kb.19.01.2010 13:27скачать
10 Мгновенный центр скоростей..doc28kb.19.01.2010 13:47скачать
11 Способны нахождения МЦС.doc27kb.19.01.2010 13:59скачать
12 Определение скорости и ускорения точки плоской фигуры.doc25kb.19.01.2010 14:12скачать
14 Сферическое движения твердого тела.doc26kb.19.01.2010 15:00скачать
15 Свободное движение твердого дела.doc26kb.19.01.2010 15:04скачать
16 Сложное движение точки.doc27kb.19.01.2010 15:07скачать
17 Формула Бура.doc26kb.19.01.2010 15:23скачать
18 Абсолютная скорость и ускорение точки. Теорема Кориолиса.doc26kb.19.01.2010 15:45скачать
19 Ускорение Кориолиса.doc26kb.19.01.2010 15:48скачать
20 Аксиомы Динамики.Следствия.doc28kb.20.01.2010 12:37скачать
21 Первая ивторая задачи Динамики точки.doc27kb.20.01.2010 12:40скачать
23 Принцип относительности механики.doc25kb.20.01.2010 12:48скачать
24 Внешние и внутренние силы Два свойства.doc27kb.20.01.2010 14:04скачать
26.doc84kb.20.01.2010 20:53скачать
27.djvu97kb.20.01.2010 20:54скачать
28.doc68kb.20.01.2010 20:54скачать
29.doc43kb.20.01.2010 20:54скачать
30.djvu133kb.20.01.2010 20:54скачать
31.djvu225kb.20.01.2010 20:54скачать
32.djvu254kb.20.01.2010 20:54скачать
33.djvu147kb.20.01.2010 20:54скачать
34.djvu241kb.20.01.2010 20:54скачать
36.doc32kb.20.01.2010 22:08скачать
38.doc28kb.20.01.2010 22:35скачать
39.doc34kb.20.01.2010 22:07скачать
42.doc38kb.20.01.2010 23:07скачать
43 даламбер.doc36kb.20.01.2010 23:21скачать
44.doc41kb.20.01.2010 23:10скачать
45.doc30kb.20.01.2010 23:13скачать
45 Обобщенная сила.doc29kb.20.01.2010 21:36скачать
46 Уравнение Логранжа 2го рода.doc32kb.20.01.2010 21:36скачать
Всякое .doc229kb.20.01.2010 20:54скачать

26.doc

26

ТЕОРЕМА О ДВИЖЕНИИ ЦЕНТРА МАСС МЕХАНИЧЕСКОЙ СИСТЕМЫ. Центр масс механической системы движется как точка, масса которой равна массе всей системы M=Σmi, к которой приложены все внешние силы системы:



или в координатной форме:



где  - ускорение центра масс и его проекции на оси декартовых координат; внешняя сила и ее проекции на оси декартовых координат.

^

Закон Сохранения Импульса


Импульсом называют векторную величину, равную произведению массы тела на ее скорость:



При взаимодействии тел замкнутой системы полный импульс системы остается неизменным:



Закон сохранения импульса есть следствие второго и третьего законов Ньютона. Пример использования закона сохранения импульса.

Рассмотрим неупругое столкновение, при котором выполняется закон сохранения импульса. Пусть при абсолютно неупругом столкновении двух тел их скорость будет общей после удара. Ее нужно определить. Напишем векторное уравнение, соответствующее закону сохранения импульса системы:



После проецирования векторов на выбранную ось получим скалярное уравнение, которое позволит определить искомую величину vобщ. Еще один пример - реактивное движение. Рассмотрим простейший случай этого движения, при котором происходит одномоментное взаимодействие - выстрел из винтовки.

До выстрела скорости винтовки и пули были равны нулю. После выстрела они имели различные скорости. Если известна скорость пули, ее масса и масса ружья, можно определить скорость, которую приобрело ружье после выстрела:



Отсюда после проецирования векторов на выбранную ось получим:



^

Закон Сохранения Механической Энергии


Если в замкнутой системе не действуют силы, трения и силы сопротивления, то сумма кинетической и потенциальной энергии всех тел системы остается величиной постоянной.

Рассмотрим пример проявления этого закона. Пусть тело, поднятое над Землей, обладает потенциальной энергией Е1 = mgh1 и скоростью v1направленной вниз. В результате свободного падения тело переместилось в точку с высотой h2 (E2 = mgh2), при этом скорость его возросла от v1до v2. Следовательно, его кинетическая энергия возросла от



Запишем уравнение кинематики:



Умножим обе части равенства на mg, получим:



После преобразования получим:



Рассмотрим ограничения, которые были сформулированы в законе сохранения полной механической энергии.

Что же происходит с механической энергией, если в системе действует сила трения?

В реальных процессах, где действуют силы трения, наблюдается отклонение от закона сохранения механической энергии. Например, при падении тела на Землю сначала кинетическая энергия тела возрастает, поскольку увеличивается скорость. Возрастает и сила сопротивления, которая увеличивается с возрастанием скорости. Со временем она будет компенсировать силу тяжести, и в дальнейшем при уменьшении потенциальной энергии относительно Земли кинетическая энергия не возрастает.

Это явление выходит за рамки механики, поскольку работа сил сопротивления приводит к изменению температуры тела. Нагревание тел при действии трения легко обнаружить, потерев ладони друг о друга.

Таким образом, в механике закон сохранения энергии имеет довольно жесткие границы.

Изменение тепловой (или внутренней) энергии возникает в результате работы сил трения или сопротивления. Оно равно изменению механической энергии. Таким образом, сумма полной энергии тел при взаимодействии есть величина постоянная (с учетом преобразования механической энергии во внутреннюю).

Энергия измеряется в тех же единицах, что и работа. В итоге отметим, что изменить механическую энергию можно только одним способом - совершить работу.
^

Работа и Энергия


Термин "работа" в механике имеет два смысла: работа как процесс, при котором сила перемещает тело, действуя под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением:

А = Fs cos a.

Работа равна нулю, когда тело движется по инерции (F = 0), когда нет перемещения (s = 0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж).

1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия силы. Для определения быстроты совершения работы вводят величину "мощность".

Мощность равняется отношению совершенной работы ко времени, за которое она выполнена:



Единицей мощности в СИ служит 1 ватт (Вт). 1 Вт - мощность, при которой совершается работа в 1 Дж за 1 секунду.

Рассмотрим действие на тело некоторой постоянной силы F. На участке пути s будет произведена работа А. В результате у тела изменится скорость:



Величину  для материальной точки называют кинетической энергией тела.



Кинетическая энергия - энергия движения, ею обладают все движущиеся тела. Эта величина является относительной, то есть она изменяется в зависимости от выбранной системы отсчета.

Кроме этого вида механической энергии, существует и другой ее вид - потенциальная энергия. Рассмотрим систему двух взаимодействующих тел. Например, тела, поднятого над Землей, и саму Землю.

Работа силы тяжести при перемещении тела на отрезке |h1 - h2| будет равна:



Величину mgh в соответствующей точке, которая расположена на высоте h, называют потенциальной энергией тела, находящегося в поле тяжести.

Из предыдущего уравнения вытекает, что работа не зависит от траектории движения в доле силы тяжести, а определяется лишь изменением высоты.

Потенциальная энергия характеризует и другие взаимодействующие тела. Так, потенциальной энергией обладает сжатая пружина:



где k - модуль упругости, х - смещение от положения равновесия.

Потенциальная энергия, как и кинетическая, является величиной относительной, поскольку и высота, и смещение зависят от выбора точки отсчета.


Скачать файл (1068.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации