Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по ТАУ (автоматика) - файл ТАУ ЛЕКЦИЯ 6.doc


Лекции по ТАУ (автоматика)
скачать (9255.7 kb.)

Доступные файлы (16):

ЛЕКЦИЯ 1.doc1018kb.17.04.2009 19:32скачать
ЛЕКЦИЯ 2.doc927kb.01.11.2006 00:09скачать
ЛЕКЦИЯ 3.doc1243kb.01.11.2006 00:44скачать
ЛЕКЦИЯ 4.doc945kb.01.11.2006 02:53скачать
ТАУ ЛЕКЦИЯ 10.doc776kb.16.02.2007 22:18скачать
ТАУ ЛЕКЦИЯ 11.doc1194kb.11.03.2007 17:13скачать
ТАУ ЛЕКЦИЯ 12.doc862kb.19.03.2007 22:10скачать
ТАУ ЛЕКЦИЯ 13.doc821kb.17.04.2007 03:47скачать
ТАУ ЛЕКЦИЯ 14.doc851kb.17.04.2007 04:53скачать
ТАУ ЛЕКЦИЯ 15.doc3215kb.12.05.2007 18:25скачать
ТАУ ЛЕКЦИЯ 16.doc1084kb.16.05.2007 01:19скачать
ТАУ ЛЕКЦИЯ 5.doc799kb.02.11.2006 03:20скачать
ТАУ ЛЕКЦИЯ 6.doc595kb.14.11.2006 00:39скачать
ТАУ ЛЕКЦИЯ 7.doc476kb.10.02.2007 11:42скачать
ТАУ ЛЕКЦИЯ 8.doc1189kb.10.02.2007 11:43скачать
ТАУ ЛЕКЦИЯ 9.doc1155kb.10.02.2007 02:00скачать

ТАУ ЛЕКЦИЯ 6.doc





ЛЕКЦИЯ 6.

Структурные схемы систем автоматического управления


Систему автоматического управления можно рассматривать как комбинацию динамических звеньев (типовых и нетиповых). Каждое звено имеет определенное математическое описание, выраженное чаще всего в виде передаточной функции W(s). Зная математическое описание звеньев и связи между ними, всегда можно получить математическое описание всей системы в целом. Для представления системы управления с помощью динамических звеньев используют структурные схемы.

Дадим определение структурной схемы. Структурной схемой называется изображение системы управления в виде совокупности типовых и нетиповых динамических звеньев с указанием связей между ними.

Основными элементами структурных схем являются следующие.

1. Динамическое звено. Звено в структурной схеме выступает как элементарная структурная единица, преобразователь информации (сигнала). В поле звена указывается его математическое описание (передаточная функция W(s)).



Как правило, звено имеет один вход и один выход, однако допускается также использование в структурных схемах звеньев с несколькими входами и одним выходом. Тогда возле каждого входа указывается своя передаточная функция. Выходной сигнал в этом случае будет определяться выражением:

Y(s) = W1(s)X1(s) + W2(s)X2(s) + …



2. Линия передачи сигнала (линия связи). Устанавливает связь между звеньями. Стрелка указывает направление передачи сигнала.



3. Разветвление (узел). Используется, когда один и тот же сигнал поступает на разные звенья системы управления.



4. Сумматор. Используется, когда сигналы преобразуются в новый сигнал, равный сумме исходных. Поскольку сигналы в одной системе управления могут иметь разную физическую природу, то следует особо отметить, что суммируемые сигналы должны иметь одинаковую размерность (нельзя, например, складывать электрическое напряжение с током).



5. Элемент сравнения. Формирует сигнал, равный разности входных сигналов. Элемент сравнения можно рассматривать как сумматор с инвертированным входом. Встречается два варианта обозначения вычитаемого сигнала, поступающего на вход элемента сравнения: 1) сектор, соответствующий входу вычитаемого сигнала, выделяется цветом; 2) вход вычитаемого сигнала указывается знаком минус.



Преобразование структурных схем

При расчетах систем автоматического управления может возникнуть необходимость в преобразовании структурной схемы для приведения ее к более простому виду или к виду, более удобному для решения некоторой конкретной задачи. Исходная и преобразованная структурные схемы должны быть эквивалентными, т.е. одинаковым образом отражать динамические свойства системы управления.

Любая структурная схема включает в себя последовательно и параллельно соединенные звенья, а также элементы соединенные обратной связью. Звенья соединенные подобным образом можно заменить на одно звено, имеющее эквивалентную передаточную функцию.
^

Последовательное соединение звеньев


Последовательным называется такое соединение звеньев, при котором выходная величина одного звена подается на вход последующего звена.



Для этого соединения справедливы следующие соотношения:

Y1(s) = W1(s)·X(s) Y(s) = W2(s)·Y1(s) = W1(s)·W2(s)·X(s) = Wэ(s)·X(s)

Wэ(s) = W1(s)·W2(s)

Для случая последовательного соединения n звеньев имеем:

Wэ(s) = W1(s)·W2(s)·…·Wn(s)

Другими словами, эквивалентная передаточная функция цепи последовательно соединенных звеньев равна произведению передаточных функций отдельных звеньев. Таким образом цепочку параллельных звеньев в структурной схеме можно заменить одним звеном с передаточной функцией Wэ(s) = W1(s)·W2(s)·…·Wn(s).
^

Параллельное соединение звеньев


Параллельным называется такое соединение звеньев, при котором на вход всех звеньев подается один и тот же сигнал, а выходные сигналы от всех звеньев суммируются.



Для этого соединения справедливы следующие соотношения:

Y(s) = Y1(s) + Y2(s) + Y3(s) = W1(s)·X(s) + W2·X(S) + W3(s)·X(s) =

= [W1(s) + W2(s) + W3(s)]·Y(s) = Wэ(s)·X(s)

Wэ(s) = W1(s) + W2(s) + W3(s)

Для случая параллельного соединения n звеньев имеем:

Wэ(s) = W1(s) + W2(s) +…+ Wn(s)

Другими словами, эквивалентная передаточная функция параллельно соединенных звеньев равна сумме передаточных функций отдельных звеньев. Таким образом цепочку параллельных звеньев в структурной схеме можно заменить одним звеном с передаточной функцией Wэ(s) = W1(s) + W2(s) +…+ Wn(s).
^

Соединение звеньев с обратной связью


Соединение с обратной связью имеет прямую цепь передачи сигнала и цепь обратной связи. Обратная связь может быть отрицательной и положительной. При отрицательной обратной связи на вход прямой цепи подается разность межу входным сигналом х(t) и выходным сигналом линии обратной связи. При положительной обратной связи эти величины складываются.



Для соединения с отрицательной обратной связью справедливы следующие соотношения:

Y(s) = W1(s)·E(s) = W1(s)·[X(s) – Y2(s)] Y2(s) = W2(s)·Y(s)

Y(s) = W1(s)·X(s) – W1(s)·Y2(s) = W1(s)·X(s) – W1(s)·W2(s)·Y(s)

Y(s) + W1(s)·W2(s)·Y(s) = Y(s)·[1 + W1(s) ·W2(s)] = W1(s)·X(s)

Y(s) = W1(s)/[1 + W1(s)·W2(s)]·X(s)

В итоге получаем следующее выражение для эквивалентной (результирующей) передаточной функции:

Wэ(s) = W1(s)/[1 + W1(s)·W2(s)]

Для случая соединения с положительной обратной связью получается аналогичное выражение для эквивалентной передаточной функции, только при этом знак плюс в знаменателе изменяется на знак минус:

Wэ(s) = W1(s)/[1 – W1(s)·W2(s)]

Частным случаем соединения с обратной связью является ситуация, когда выходной сигнал от прямой цепи передается без изменения на элемент сравнения или сумматор. Такие обратные связи называются единичными, т.к. у них передаточная функция в обратной цепи равна единице (W2(s) = 1). Тогда эквивалентные передаточные функции для отрицательной и положительной обратной связи упрощаются и принимают следующий вид, соответственно:

Wэ(s) = W1(s)/[1 + W1(s)]

Wэ(s) = W1(s)/[1 – W1(s)]


^

Правила преобразования структурных схем

В тех случаях, когда структурная схема оказывается слишком сложной, например, содержит перекрестные связи, ее упрощают пользуясь правилами преобразования структурных схем. Смысл этих правил состоит в переносе элементов структурной схемы из одного положения в другое, так чтобы при этом сохранялась эквивалентность структурных схем.

  1. ^

    Перенос узла через звено.




Чтобы перенести узел через звено с передаточной функцией W(s), необходимо включить в линию, не проходящую через звено (выход 2), дополнительный элемент – звено с передаточной функцией 1/W(s). Убедимся, что эти схемы эквивалентны. Действительно, сигнал у(t) после такого переноса не изменится, а сигнал на выходе 2 будет равен: Х(s)·W(s)·1/W(s) = Х(s), т.е. он совпадает с исходным сигналом х(s).
  1. ^

    Перенос звена через узел.




Чтобы перенести звено с передаточной функцией W(s) через узел, необходимо включить в обе линии звенья с передаточной функцией W(s). Легко убедиться, что эквивалентность структурных схем при этом сохраняется.
  1. ^

    Перенос сумматора через звено.




Сразу отметим, что данное правило преобразования структурных схем применимо как к сумматорам, так и к элементам сравнения, т.к. элемент сравнения можно рассматривать как сумматор с инвертированным входом.

Чтобы перенести сумматор через звено с передаточной функцией W(s), необходимо к обоим входам на сумматор добавить дополнительный элемент – звено с передаточной функцией W(s). Убедимся, что эти схемы эквивалентны. Выходной сигнал на исходной схеме равен: Y(s) = W(s)·[X1(s)  X2(s)]; выходной сигнал на преобразованной схеме равен: Y(s) = W(s)X1(s)  W(s)X2(s), т.е. выходные сигналы совпадают.
  1. ^

    Перенос звена через сумматор.




Это правило преобразования структурных схем также применимо как к сумматорам, так и к элементам сравнения. Чтобы перенести звено с передаточной функцией W(s) через сумматор, необходимо в линию без звена (вход 2) включить дополнительный элемент – звено с передаточной функцией 1/W(s). Убедимся, что эти схемы эквивалентны. Выходной сигнал на исходной схеме равен: Y(s) = W(s)·X1(s)  X2(s); выходной сигнал на преобразованной схеме равен: Y(s) = W(s)·[X1(s)  1/W(s)·X2(s)] = W(s)·X1(s)  X2(s), т.е. выходные сигналы совпадают.
  1. ^

    Перенос узла через сумматор.




Чтобы перенести узел через сумматор, необходимо в схему включить дополнительный элемент – элемент сравнения. Эти схемы эквивалентны, т.к. выходные сигналы совпадают: у(t) = х1(t) + х2(t) и х1(t) = у(t) – х2(t) = х1(t) + х2(t) – х2(t).



При применении этого правила преобразования структурных схем для переноса узла через элемент сравнения в схему необходимо включить дополнительно не элемент сравнения, а сумматор. Эквивалентность этих схем также легко проверить: у(t) = х1(t) – х2(t) и х1(t) = у(t) + х2(t) = х1(t) – х2(t) + х2(t).
  1. ^

    Перенос сумматора через узел.




Это правило преобразования структурных схем применимо как к сумматорам, так и к элементам сравнения. Чтобы перенести сумматор через узел, необходимо в схему включить дополнительный сумматор. Эти схемы эквивалентны, т.к. выходные сигналы совпадают: у(t) = х1(t) + х2(t).
  1. ^

    Перенос сумматора через сумматор.




Это правило преобразования структурных схем фактически реализует правило коммутативности сложения в математике – от перестановки мест слагаемых сумма не изменяется. Оно, разумеется, применимо как к сумматорам, так и к элементам сравнения.
  1. ^

    Перенос звена через звено.




Это правило преобразования структурных схем фактически реализует правило коммутативности умножения в математике – от перестановки мест множителей произведение не изменяется.
  1. ^

    Перенос узла через узел.




Это правило настолько очевидно, что не имеет смысла его комментировать.


Скачать файл (9255.7 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации