Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по ТАУ (автоматика) - файл ЛЕКЦИЯ 2.doc


Лекции по ТАУ (автоматика)
скачать (9255.7 kb.)

Доступные файлы (16):

ЛЕКЦИЯ 1.doc1018kb.17.04.2009 19:32скачать
ЛЕКЦИЯ 2.doc927kb.01.11.2006 00:09скачать
ЛЕКЦИЯ 3.doc1243kb.01.11.2006 00:44скачать
ЛЕКЦИЯ 4.doc945kb.01.11.2006 02:53скачать
ТАУ ЛЕКЦИЯ 10.doc776kb.16.02.2007 22:18скачать
ТАУ ЛЕКЦИЯ 11.doc1194kb.11.03.2007 17:13скачать
ТАУ ЛЕКЦИЯ 12.doc862kb.19.03.2007 22:10скачать
ТАУ ЛЕКЦИЯ 13.doc821kb.17.04.2007 03:47скачать
ТАУ ЛЕКЦИЯ 14.doc851kb.17.04.2007 04:53скачать
ТАУ ЛЕКЦИЯ 15.doc3215kb.12.05.2007 18:25скачать
ТАУ ЛЕКЦИЯ 16.doc1084kb.16.05.2007 01:19скачать
ТАУ ЛЕКЦИЯ 5.doc799kb.02.11.2006 03:20скачать
ТАУ ЛЕКЦИЯ 6.doc595kb.14.11.2006 00:39скачать
ТАУ ЛЕКЦИЯ 7.doc476kb.10.02.2007 11:42скачать
ТАУ ЛЕКЦИЯ 8.doc1189kb.10.02.2007 11:43скачать
ТАУ ЛЕКЦИЯ 9.doc1155kb.10.02.2007 02:00скачать

ЛЕКЦИЯ 2.doc





ЛЕКЦИЯ 2.
Математическое описание линейных систем автоматического управления.

Порядок исследования САУ включает математическое описание системы, исследование ее установившихся режимов и исследование переходных режимов.

Математическое описание системы, т.е. получение ее математической модели, начинается с разбиения ее на звенья и описания этих звеньев. Это описание может осуществляться либо аналитически в виде уравнений, связывающих входные и выходные величины звена, либо графически в виде характеристик, описывающих ту же связь. По уравнениям или характеристикам отдельных звеньев составляются уравнения или характеристики системы в целом, на основании которых и исследуется система.

На прошлой лекции было дано понятие о функциональной схеме САУ (Рис. 2).

В функциональной схеме система разбита на звенья исходя из выполняемых ими функций, т.е. назначения. Для математического описания систему разбивают на звенья по другому принципу, а именно – исходя из удобства получения этого описания. Для этого систему следует разбивать на возможно более простые («мелкие») звенья, но вместе с тем необходимо, чтобы они обладали направленностью действия.

^ Звеном направленного действия называется звено, передающее воздействие только в одном направлении – с входа на выход, так что изменение состояния такого звена не влияет на состояние предшествующего звена, работающего на его вход. В результате при разбиении системы на звенья направленного действия математическое описание каждого такого звена может быть составлено без учета связей его с другими звеньями. Соответственно, математическое описание всей системы в целом может быть получено как совокупность составленных независимо друг от друга уравнений или характеристик отдельных звеньев, образующих систему, дополненных уравнениями связи между звеньями.

В результате разбиения САУ на звенья направленного действия и получения математического описания звеньев составляется структурная схема системы, которая и является ее математической моделью. Структурная схема системы состоит из прямоугольников, изображающих звенья схемы, и стрелок, соединяющих выходы и входы звеньев согласно связям между звеньями в системе. Стрелками показываются также внешние воздействия, приложенные к отдельным звеньям системы. Каждому звену структурной схемы придается описывающее его уравнение или характеристика. При этом уравнение обычно записывается прямо на схеме внутри изображающего звено прямоугольника в виде передаточной функции. Получение структурной схемы является конечной целью математического описания системы.

В качестве примера на рис. 2.1 показано разбиение на звенья системы автоматического регулирования напряжения синхронного генератора, которая была дана на прошлой лекции (Рис. 5), т.е. замкнутая система управления по отклонению. При этом принято, что усилитель регулятора состоит из двух частей: усилителя напряжения УН и усилителя мощности УМ в виде, например, электромашинного усилителя. Каждый из этих усилителей обладает направленностью действия и поэтому может быть выделен в виде отдельного звена.


На рис.2.1 стрелками показаны внешние воздействия – задающее воздействие и возмущение в виде сопротивления нагрузки на зажимах генератора. На этом же рисунке в виде кружочка, разделенного на секторы, дано условное изображение элемента сравнения, т.е. суммирующего элемента, выявляющего разность ΔU=UЗU. Рядом показаны знаки сигналов (плюс у UЗ и минус у U). Часто сектор, соответствующий вычитаемому сигналу, чернится, как показано на рис. 2.1.

Основная сложность, которая существует при выводе уравнений звеньев системы, заключается в необходимости установления допустимой степени идеализации и упрощения звеньев. Главным упрощением, к которому следует стремиться при выводе уравнений звеньев системы, является их линеаризация, т.е. описание линейными дифференциальными уравнениями. Линеаризация нелинейности, содержащейся в уравнении звена, заключается в замене этой нелинейности приближенной линейной зависимостью.

Мы не будем подробно останавливаться на математическом аспекте процедуры линеаризации. В двух словах можно сказать, что процедура линеаризации заключается в замене нелинейного дифференциального уравнения приближенным линейным. Понятно, что такую замену невозможно с достаточной степенью точности осуществить во всей области определения входных и выходных величин. Поэтому область линеаризации ограничивают вблизи некоторого номинального режима. Выбор такого номинального режима является, в общем случае, нетривиальной задачей. На практике чаще всего в качестве такого номинального режима выбирают установившийся режим, т.е. режим функционирования системы при времени, стремящемся к бесконечности (t®¥). Установивщийся режим, как мы знаем, характеризуется установившимися значениями выходной и входной величин – y0 и x0, соответсвенно.



Рис. 2.2. Геометрическая интерпретация линеаризации.

Дадим геометрическую интерпретацию линеаризации. Изобразим графически нелинейную зависимость. Текущие значения координат y и x запишем как:

y(t) = y0 + Dy(t);

x(t) = x0 + Dx(t).

, где x(t), y(t)

– текущие значения,

y0, x0

– установившиеся значения,

Dy(t), Dx(t)

– отклонения от установившихся значений.

В точке (x0, y0), определяемой установившимися значениями, заменим участок кривой касательной и получим прямую, описываемую линейным уравнением:

y = yн + kx

, где yн

– постоянная величина;

k = [dy(t)/dx(t)]0

– коэффициент, определяемый наклоном касательной к кривой в точке (x0, y0).

Для исключения из уравнения величины yн перенесем начало координат в точку (x0, y0). Тогда получим линейное уравнение, связывающее между собой отклонения переменных величин от своих установившихся значений, вида:

Dy(t) = k Dx(t).

Таким образом, линеаризация уравнения геометрически может трактоваться как замена первоначальной кривой на касательную к ней прямую в точке установившегося режима. Очевидно, что эта замена тем точнее, чем меньше величины отклонений координат элемента от своих установившихся значений в исследуемом динамическом процессе.

Рассмотрим звено, описываемое нелинейной статической зависимостью Y=φ(X).


Пусть установившийся режим звена соответствует значениям входной и выходной величин X0 и Y0 (рис.2.2) и отклонения Х от Х0 в процессе работы звена достаточно малы. В этом случае исходную нелинейную зависимость Y=φ(X) можно разложить в ряд Тейлора в окрестностях точки установившегося режима и, отбросив члены ряда выше первого порядка малости, получить следующую приближенную зависимость:
,
где - значение производной функции φ(Х) по Х при подстановке в выражение этой производной Х=Х0.

Это уравнение можно переписать в таком окончательном виде:

,

где

.

Таким образом, линеаризация уравнения геометрически может трактоваться как замена первоначальной кривой на касательную к ней прямую в точке установившегося режима. Очевидно, что эта замена тем точнее, чем меньше величины отклонений координат элемента от своих установившихся значений в исследуемом динамическом процессе.

Коэффициент k в уравнении равен тангенсу угла наклона этой касательной относительно оси абсцисс. Поэтому его величина может быть найдена чисто графическим построением без нахождения аналитического выражения для исходной нелинейной зависимости φ(Х), как было показано ранее.

Рассмотрим теперь более общий случай, когда звено описывается нелинейным уравнением, включающим производные по времени от входной и выходной величин:

.

Такое уравнение называется динамическим. Оно характеризует переходный процесс, который протекает в системе.

Разложив, как и прежде, нелинейную функцию, находящуюся в левой части уравнения, в ряд Тейлора в точке установившегося режима, получим следующее линейное дифференциальное уравнение для приращений переменных:

. (2.1)

Здесь и т.д. – значения производных функции φ, получающиеся при подстановке значений Х0, Y0 и нулевых значений производных, соответствующих установившемуся режиму.

Показанная процедура линеаризации нелинейных звеньев приводит к приближенному описанию их линейными дифференциальными уравнениями в отклонениях.

В ТАУ приняты определенные формы записи линеаризованных дифференциальных уравнений звеньев. При этом уравнение (2.1) (с учетом только приведенных там членов) должно записываться так:

. (2.2)

Здесь - оператор дифференцирования по времени;

- приращения переменных в относительных единицах;

- коэффициенты передачи;

- постоянные времени.

Особенности приведенной формы записи заключаются в следующем. Выходная величина и ее производные находятся в левой части уравнения, а входная величина и ее производные – в правой. Коэффициент при приращении выходной величины равен единице [в результате деления обеих частей уравнения на ].

Коэффициенты левой части уравнения – постоянные времени. Размерность их – секунда в степени, равной порядку производной, перед которой стоит данный коэффициент.

Другой формой записи линейных уравнений звеньев является запись с помощью передаточной функции. Уравнение (2.2) при этом принимает вид:

,

или

,

где

. (2.3)

Дробь W(p) называется передаточной функцией звена. Пока будем рассматривать ее просто как удобный способ записи дифференциальных уравнений. Полное определение передаточной функции дам дальше, когда будем рассматривать преобразование Лапласа.

Рассматривая выше формы записи уравнений, принятые в ТАУ, мы оперировали для определенности уравнением 2-го порядка с одной входной величиной х. Однако в результате линеаризации реальных звеньев могут быть получены уравнения любого порядка. В общем случае звено САУ, имеющее n входов, описывается дифференциальным уравнением

, (2.3,а)

или в другом виде

.

Здесь xi – входные воздействия на звено (i = 1,2,…,n); Q(p) и Ri(p) – полиномы относительно р; - передаточная функция звена для i – го входного воздействия.
Применение преобразования Лапласа для решения линейных дифференциальных уравнений.

Линейные дифференциальные уравнения динамических систем решаются методами, которые подробно рассматриваются в курсах высшей математики. Для задач ТАУ наиболее удобным является операционный метод решения, основанный на функциональном преобразовании Лапласа

.

Эта функция устанавливает соответствие между функцией времени х(t) (вещественной переменной) и функцией Х(s) (комплексной переменной s=c+). Здесь х(t) – оригинал, Х(s) – изображение. Символически эта операция записывается так:

Х(s) = .

Чтобы вернуться от изображения к оригиналу, нужно выполнить обратное преобразование Лапласа по формуле:

.

Символ L указывает на то, что над функцией х(t) совершено преобразование Лапласа. На практике, чтобы не вычислять интегралы, для нахождения изображения по известному оригиналу или наоборот, используют специальные таблицы. Ниже приведено преобразование Лапласа для основных функций, которые наиболее часто встречаются при анализе систем автоматического управления.

Таблица преобразований Лапласа

х(t) (t > 0)

Х(s) = L[х(t)]

1(t)

1/s

δ(t)

1

t

1/s2

tn

n!/sn+1

eat

1/(s – a)

e-at

1/(s + a)

t·eat

1/(s – a)2

tn·eat

n!/(s – a)n+1

sin(ωt)

ω/(s2 + ω2)

cos(ωt)

s/(s2 + ω2)

sin(ωt + φ)

[sin(φ) ·s + cos(φ) ·ω]/(s2 + ω2)

cos(ωt + φ)

[cos(φ) ·s – sin(φ) ·ω]/(s2 + ω2)

eat·sin(ωt)

ω/[(s – a)2 + ω2]

eat·cos(ωt)

(s – a)/[(s – a)2 + ω2]

eat·sin(ωt + φ)

[sin(φ) ·(s – a) + cos(φ) ·ω]/[(s – a)2 + ω2]

eat·cos(ωt + φ)

[cos(φ) ·(s – a) – sin(φ) ·ω]/[(s – a)2 + ω2]

(n! – выражение факториала, оно равно: n! = 1·2·3·4·…· (n – 1) ·n).

Особо следует отметить, что вид оригинала функций, приведенных в таблице, определен только для t > 0, т.е. значения переменной t ограничены областью положительных значений. Для отрицательных t значение функции х(t) равно нулю. Это важно, и игнорирование этого факта может на практике привести к существенным ошибкам.

Рассмотрев преобразование Лапласа, дадим определение передаточной функции звена САУ.

Передаточной функцией звена W(s) называется отношение изображений Лапласа выходной и входной величин при нулевых начальных условиях, т.е.

. (2.4)

Для рассмотренного выше примера (выражение 2.3) передаточная функция W(s) будет отличаться от W(р) только заменой оператора дифференцирования р на комплексную переменную s и будет выглядеть следующим образом:

. (2.5)

^ Динамические характеристики элементов САУ.
Выше мы получили выражение (2.4), определяющее передаточную функцию линейного элемента системы управления. Это чрезвычайно важное выражение в теории автоматического управления. Оно связывает изображение выходного сигнала Y(s) c изображением входного сигнала Х(s) через динамические свойства элемента системы управления.

Ясно, что входное воздействие может иметь произвольный вид. Однако, чтобы охарактеризовать наиболее существенные черты динамического поведения объекта управления можно использовать некоторые "стандартные" виды входных воздействий. При этом выходной сигнал будет содержать определенную информацию о свойствах объекта управления.

Такие "стандартные" виды воздействий называются типовыми входными воздействиями. К ним относятся:

  1. Единичная ступенчатая функция: 1(t).

  2. Единичная импульсная функция: δ(t).

  3. Гармонические функции: sin(ωt) и cos(ωt).



а) б)

Рис. 2.4. Единичная ступенчатая функция а) и единичная импульсная функция б).

Математически эти функции описываются следующим образом:

; .



Рис. 2.5. Гармонические функции.

Динамической характеристикой любого элемента системы управления называется его реакция на типовое входное воздействие. В зависимости от вида типового воздействия разделяют временные и частотные характеристики.

Временные характеристики:

  • переходная характеристика h(t);

  • весовая функция или импульсная переходная функция w(t).

Частотные характеристики:

  • амплитудно-фазовая частотная характеристика (АФЧХ) или частотная передаточная функция;

  • амплитудная частотная характеристика (АЧХ);

  • фазовая частотная характеристика (ФЧХ);

  • логарифмическая амплитудная частотная характеристика (ЛАЧХ либо ЛАХ);

  • логарифмическая фазовая частотная характеристика (ЛФЧХ либо ЛФХ).


Перечисленные выше характеристики могут быть сняты экспериментально или построены по уравнению звена. Имеется и обратная возможность – по экспериментально полученным характеристикам составить уравнение звена. Кроме того, с помощью этих характеристик можно определить реакцию звена на любое возмущение произвольного вида. Эти характеристики являются исчерпывающим описанием динамических свойств звена.

Переходные характеристики.

Переходная, или временная, характеристика (функция) звена представляет собой реакцию на выходе звена, вызванную подачей на его вход единичного ступенчатого воздействия. Единичное ступенчатое воздействие (единичная ступенчатая функция) – это воздействие, которое мгновенно возрастает от нуля до единицы и далее остается неизменным. Сказанное иллюстрируется на рис.2.6,а и б. На рис. 2.6,б показаны три различных вида переходных характеристик, соответствующих различным типам звеньев, которые мы рассмотрим далее.


Таким образом, h(t) – это выражение для y(t) при x(t) = 1(t).

Наряду с переходной характеристикой применяется импульсная переходная (временная)характеристика или функция, называемая еще весовой функцией (функцией веса). Эта характеристика представляет собой реакцию звена на единичный импульс. Единичный импульс (единичная импульсная функция, или дельта-функция) – это математическая идеализация предельно короткого импульсного сигнала. Единичный импульс – это импульс, площадь которого равна единице при длительности, равной нулю, и высоте, равной бесконечности. На рис.2.4,б он условно показан в виде утолщения на оси ординат. На рис. 2.7 изображены типичные формы самих импульсных переходных характеристик.



Импульсная переходная характеристика обозначается w(t); единичный импульс обозначается δ(t). Таким образом, w(t) – это y(t) при x(t) = δ(t).

При этом, согласно определению,

.

Дельта-функция просто связана с единичной ступенчатой функцией:

.

Из этого выражения следует аналогичная связь между переходной и весовой функциями линейных звеньев:

w(t) = h’(t)

и наоборот

.

Учитывая это простое соотношение между переходной и весовой функциями, ниже будем применять главным образом первую из них, имея в виду, что вторую при необходимости всегда можно получить дифференцированием по формуле w(t) = h’(t).

Зная переходную или весовую функцию, можно определить реакцию звена на произвольное входное воздействие при нулевых начальных условиях с помощью следующих формул:

, (2.8)

где х(0) – значение х(t) при t = 0;

. (2.9)

Эти формулы легко получаются друг из друга, являясь вариантами интеграла Дюамеля, или интеграла свертки.

Переходные характеристики могут быть выражены непосредственно через передаточную функцию звена с помощью преобразования Лапласа над уравнением звена, записанным в общем виде согласно уравнению (2.3,а):

.

Считая начальные условия нулевыми и учитывая, что обе части этого уравнения представляют собой сумму производных с постоянными коэффициентами, получим:

.

Здесь - изображения Лапласа функций x(t) и y(t); Q(s) и R(s) – полиномы, отличающиеся от исходных полиномов Q(p) и R(p) только заменой оператора дифференцирования р на комплексную переменную s = c + . Отсюда

, (2.10)

где - передаточная функция звена (с заменой р на s).

В случае, когда входное воздействие x(t) представляет собой единичный импульс δ(t), учитывая, что его изображение по Лапласу , из (2.10) получаем следующее выражение для изображения весовой функции звена:

, (2.11)

т.е.

.

Таким образом, весовая функция определяется через передаточную функцию по формуле обратного преобразования Лапласа, т.е. является ее оригиналом.

В случае, когда x(t) = 1(t), учитывая, что L[1(t)] = 1/s, из (2.10) получаем выражение для изображения переходной характеристики:

.

Соответственно переходная характеристика звена

.

Выражения (2.10) и (2.11) можно трактовать как определения передаточной функции. Согласно (2.10), передаточная функция определяется как отношение изображений Лапласа выходной и входной величин при нулевых начальных условиях. Согласно (2.11), передаточная функция есть изображение Лапласа весовой функции.
Основные параметры переходной функции:

Рис. 2.8. Переходная характеристика САУ.


  • статическое отклонение (статическая ошибка) ε = 1(t) – hуст. Она характеризует разность между входным и выходным сигналами в установившемся режиме. Системы, у которых статическое отклонение не равно нулю (ε <> 0) называются статическими. Системы, у которых ε = 0, называются астатическими.

  • Динамическое отклонение, т.е. разность между максимальным отклонением и установившемся значением hmax – hуст.

  • Время регулирования (управления) Tу – это время переходного процесса. Это время, после которого разность между текущим значение выходного сигнала и установившимся значением будет иметь малую величину Δ. Как правило, Δ принимают равным 5% от hуст.



Время регулирования характеризует быстродействие системы автоматического управления. Чем меньше Tу, тем выше быстродействие.

  • Перерегулирование σ, %. Определяется выражением:



(В реальных системах перерегулирование обычно составляет 10 – 30%).

  • Частота колебаний процесса ω = 2π/T0, где T0 – период колебаний.

  • Время нарастания (установления) Tн – время, за которое система достигает установившегося значения.

  • Логарифмический декремент затухания, определяется по формуле:



  • Число колебаний n – число максимумов h(t) на промежутке от 0 до Tу.

Функции 1(t) и δ(t) можно использовать для экспериментального определения передаточной функции элемента системы управления:



Первый подход: подадим на вход *(t). Пусть *(t) ≈ (t) (т.к. (t) физически не реализуема), измерим w*(t) ≈ w(t). Теперь можно вычислить L[w*(t)] = W*(s) ≈ W(s).



Второй подход: На вход подаем 1(t). Измеряем h(t) и вычисляем передаточную функцию. W(s) = L[d/dt(h(t)].


Скачать файл (9255.7 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации