Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции по ТАУ (автоматика) - файл ЛЕКЦИЯ 3.doc


Лекции по ТАУ (автоматика)
скачать (9255.7 kb.)

Доступные файлы (16):

ЛЕКЦИЯ 1.doc1018kb.17.04.2009 19:32скачать
ЛЕКЦИЯ 2.doc927kb.01.11.2006 00:09скачать
ЛЕКЦИЯ 3.doc1243kb.01.11.2006 00:44скачать
ЛЕКЦИЯ 4.doc945kb.01.11.2006 02:53скачать
ТАУ ЛЕКЦИЯ 10.doc776kb.16.02.2007 22:18скачать
ТАУ ЛЕКЦИЯ 11.doc1194kb.11.03.2007 17:13скачать
ТАУ ЛЕКЦИЯ 12.doc862kb.19.03.2007 22:10скачать
ТАУ ЛЕКЦИЯ 13.doc821kb.17.04.2007 03:47скачать
ТАУ ЛЕКЦИЯ 14.doc851kb.17.04.2007 04:53скачать
ТАУ ЛЕКЦИЯ 15.doc3215kb.12.05.2007 18:25скачать
ТАУ ЛЕКЦИЯ 16.doc1084kb.16.05.2007 01:19скачать
ТАУ ЛЕКЦИЯ 5.doc799kb.02.11.2006 03:20скачать
ТАУ ЛЕКЦИЯ 6.doc595kb.14.11.2006 00:39скачать
ТАУ ЛЕКЦИЯ 7.doc476kb.10.02.2007 11:42скачать
ТАУ ЛЕКЦИЯ 8.doc1189kb.10.02.2007 11:43скачать
ТАУ ЛЕКЦИЯ 9.doc1155kb.10.02.2007 02:00скачать

ЛЕКЦИЯ 3.doc





ЛЕКЦИЯ 3.
Частотные характеристики.

Частотные характеристики описывают установившиеся вынужденные колебания на выходе звена, вызванные гармоническим воздействием на входе. Рассмотрим такой режим.

Пусть на вход звена (рис.2.6,а) подано гармоническое воздействие

,

где xmax – амплитуда, а ω – угловая частота этого воздействия.

По окончании переходного процесса на выходе звена будут существовать гармонические колебания с той же частотой, что и входные колебания, но отличающиеся в общем случае по амплитуде и фазе. Т.е. в установившемся режиме выходная величина звена

,

где ymax – амплитуда выходных установившихся колебаний.

При фиксированной амплитуде входных колебаний амплитуда и фаза установившихся колебаний на выходе звена зависят от частоты колебаний. Если постепенно увеличивать от нуля частоту колебаний и определять установившиеся значения амплитуды и фазы выходных колебаний для разных частот, можно получить зависимость от частоты отношения амплитуд A = ymax / xmax и сдвига фаз φ выходных и входных установившихся колебаний.


Эти зависимости называются соответственно ^ А(ω)амплитудной частотной характеристикой (АЧХ) и φ(ω) – фазовой частотной характеристикой (ФЧХ). Примерный вид этих характеристик у обычных инерционных звеньев изображен на рис.3.1,а и б. Как показано на этих рисунках, у таких звеньев в силу их инерционности амплитудная частотная характеристика по мере увеличения частоты в конце концов спадает до нуля. При этом, чем менее инерционно звено, тем длиннее его амплитудная частотная характеристика, т.е. тем больше полоса пропускаемых звеном частот, или, просто, его полоса пропускания.

Теоретически частотная характеристика продолжается до бесконечности, но практически полоса пропускания оценивается значением частоты, при котором отношение амплитуд А = 0,707, и при дальнейшем повышении частоты не изменяется (считается, что в диапазоне от –ωП до +ωП элемент системы управления пропускает гармонический сигнал без заметного ослабления). Полоса пропускания ΔωП = 2ωП. Наличие максимума у АЧХ говорит о резонансных свойствах звена. Частота, соответствующая максимуму амплитудной характеристики, называется резонанснойр). Частота, на которой коэффициент усиления входного сигнала равен единице, называется частотой среза ωс.

Фазовая частотная характеристика показывает фазовые сдвиги, вносимые элементом системы управления на различных частотах. У обычных инерционных звеньев, как показано на рис.3.1,б, при положительных ω ФЧХ всегда отрицательна (φ < 0), т.е. выходные колебания отстают по фазе от входных, и это отставание растет с частотой.

Обыкновенные амплитудная и фазовая частотные характеристики можно объединить в одну характеристику – амплитудно – фазовую частотную характеристику (АФЧХ), используя А(ω) и φ(ω) в качестве полярных координат (рис.3.2). Строится она на комплексной плоскости. Каждая точка АФЧХ соответствует определенному значению частоты ω. Совокупность всех точек при изменении частоты от нуля до бесконечности представляет собой непрерывную линию (которая называется годографом), соответствующую частотной передаточной функции W(jω). Значения ω для конечного количества точек характеристики наносятся вдоль характеристики, как показано на рис.3.2. Имея АФЧХ, можно по этим точкам построить характеристики А(ω) и φ(ω).



АФЧХ строится как для положительных, так и для отрицательных частот. При замене в W(jω) ω на – ω получается сопряженная комплексная величина. Поэтому АФЧХ для отрицательных частот является зеркальным отражением АФЧХ для положительных частот относительно вещественной оси. На рис. 3.2 АФЧХ для отрицательных частот показана пунктирной линией.

АФЧХ можно строить и в прямоугольной системе координат – в комплексной плоскости. При этом координатами будут показанные на рис.3.2 проекции U и V вектора А на соответствующие оси. Зависимости U(ω) и V(ω) называются соответственно действительной (вещественной) и мнимой частотными характеристиками.

В дальнейшем для краткости будем в названии различных частотных характеристик опускать слово «частотная», говоря просто об амплитудной характеристике, фазовой характеристике.

При исследовании САУ амплитудную и фазовую частотные характеристики удобно строить в логарифмических координатах.


Это связано с двумя обстоятельствами. Во-первых, в логарифмических координатах характеристики деформируются таким образом, что возникает возможность в подавляющем большинстве практических случаев упрощенно изображать амплитудные частотные характеристики ломаными линиями.

Второе удобство связано с построением АЧХ цепочки последовательно соединенных звеньев, т.е. в логарифмическом масштабе АЧХ цепочки звеньев равна сумме амплитудных характеристик отдельных звеньев.

АЧХ в логарифмических координатах (Рис. 3.3) строится в виде зависимости 20lg A от lg ω, называется логарифмической амплитудной характеристикой (ЛАХ), а фазовая – в виде зависимости φ от lg ω, называется логарифмической фазовой характеристикой (ЛФХ).

Величина 20 lg A обозначается L. В качестве единицы этой величины используется децибел, равный одной десятой бела. Бел – это единица десятичного логарифма коэффициента усиления мощности сигнала, т.е. 1 бел соответствует усилению мощности в 10 раз, 2 бела – в 100 раз, 3 бела – в 1000 раз и т.д. Т.к. мощность сигнала пропорциональна квадрату амплитуды, а lg A2 = 2 lg A, то усиление в белах, выраженное через отношение амплитуд А, равно 2 lg A. Соответственно в децибелах оно равно 20 lg A. При этом существуют следующие соотношения между значениями A и L:


А

0.001

0.01

0.1

0.316

0.89

1

1.12

3.16

10

100

1000

L,дБ

-60

-40

-20

-10

-1

0

1

10

20

40

60


При применении ЛАХ логарифмическая фазовая характеристика строится в полулогарифмических координатах, т.е. в виде зависимости φ от lg ω, чтобы обе характеристики были связаны одним масштабом на оси абсцисс. Использование логарифмического масштаба на оси ординат фазовой характеристики не имеет смысла, т.к. фазовый сдвиг цепочки звеньев и так получается просто в виде суммы фазовых сдвигов на отдельных ее звеньях.

На оси абсцисс указываются либо прямо значения lg ω, либо, что практически более удобно, значения самой частоты ω. В первом случае единицей приращения lg ω является декада, соответствующая изменению частоты в 10 раз. Применяется также деление оси абсцисс на октавы. Октава соответствует изменению частоты в два раза. (Одна октава равна 0.303 декады, т.к. lg 2 = 0.303).

Заметим также, что, т.к. при использовании логарифмического масштаба точка, соответствующая ω=0, находится слева в бесконечности, логарифмические характеристики строятся не от нулевой частоты, а от достаточно малого, но конечного значения ω, которое и откладывается в точке пересечения координатных осей. Точка пересечения ЛАХ с осью абсцисс соответствует частоте среза ωс. Верхняя полуплоскость ЛАХ соответствует значениям А>1 (усиление амплитуды), а нижняя полуплоскость – значениям А<1 (ослабление амплитуды).

Аналитические выражения для рассмотренных выше частотных характеристик могут быть легко получены по передаточной функции. Если в выражение передаточной функции звена W(s) подставить s = , то получится комплексная величина W(), которая представляет собой функцию ω и является амплитудно-фазовой частотной (или просто частотной) характеристикой звена. Ее модуль представляет собой амплитудную частотную характеристику А(ω), а аргумент – фазовую частотную характеристику φ(ω).

(3.1)

Формула (3.1) определяет искомую связь передаточной функции с частотными характеристиками звена, указанную выше: модуль частотной функции W() есть А(ω), а аргумент - φ(ω).

Если представить W() не в показательной, а в алгебраической форме, т.е.

, (3.2)

то здесь U(ω) и V(ω) будут введенными ранее действительной и мнимой частотными характеристиками, являющимися координатами амплитудно-фазовой характеристики в комплексной плоскости.

Согласно (3.1) и (3.2), связь между приведенными выше частотными характеристиками следующая:



Порядок получения выражения для перечисленных выше частотных характеристик по передаточной функции звена несложен. После подстановки в выражение для передаточной функции получаем:

,

где индексами R и Q отмечены части соответствующих комплексных величин в числителе и знаменателе.

После освобождения от мнимости в знаменателе окончательно имеем:

,

где

^

Типовые динамические звенья систем автоматического управления


Что такое динамическое звено? На предыдущих занятиях мы рассматривали отдельные части системы автоматического управления и называли их элементами системы автоматического управления. Элементы могут иметь различный физический вид и конструктивное оформление. Главное, что на такие элементы подается некоторый входной сигнал х(t), и как отклик на этот входной сигнал, элемент системы управления формирует некоторый выходной сигнал у(t). Далее мы установили, что связь между выходным и входным сигналами определяется динамическими свойствами элемента управления, которые можно представить в виде передаточной функции W(s). Так вот, динамическим звеном называется любой элемент системы автоматического управления, имеющий определенное математическое описание, т.е. для которого известна передаточная функция.



а)



б)

Рис. 3.4. Элемент (а) и динамическое звено (б) САУ.

Типовые динамические звенья – это минимально необходимый набор звеньев для описания системы управления произвольного вида. К типовым звеньям относятся:

  • пропорциональное звено;

  • апериодическое звено I-ого порядка;

  • апериодическое звено II-ого порядка;

  • колебательное звено;

  • интегрирующее звено;

  • идеальное дифференцирующее звено;

  • форсирующее звено I-ого порядка;

  • форсирующее звено II-ого порядка;

  • звено с чистым запаздыванием.

Пропорциональное звено

Пропорциональное звено иначе еще называется безынерционным.

1. Передаточная функция.

Передаточная функция пропорционального звена имеет вид:

W(s) = K где К – коэффициент усиления.

2. Математическое описание звена.

Пропорциональное звено описывается алгебраическим уравнением:

у(t) = K·х(t)

3. Физическая реализация звена.

Примерами таких пропорциональных звеньев могут служить, рычажный механизм, жесткая механическая передача, редуктор, электронный усилитель сигналов на низких частотах, делитель напряжения и др.



4. Переходная функция.

Переходная функция пропорциональное звена имеет вид:

h(t) = L-1[W(s)/s] = L-1[K/s] = K·1(t)

5. Весовая функция.

Весовая функция пропорционального звена равна:

w(t) = L-1[W(s)] = K·δ(t)





Рис. 3.5. Переходная функция, весовая функция, АФЧХ и АЧХ пропорционального звена.
6. Частотные характеристики.

Найдем АФЧХ, АЧХ, ФЧХ и ЛАХ пропорционального звена:

W(jω) = K = K +0·j

A(ω) = = K

φ(ω) = arctg(0/K) = 0

L(ω) = 20·lg[A(ω)] = 20·lg(K)

Как следует из представленных результатов, амплитуда выходного сигнала не зависит от частоты. В действительности ни одно звено не в состоянии равномерно пропускать все частоты от 0 до ¥, как правило на высоких частотах, коэффициент усиления становится меньше и стремиться к нулю при ω → ∞. Таким образом, математическая модель пропорционального звена является некоторой идеализацией реальных звеньев.

Апериодическое звено I-ого порядка

Апериодические звенья иначе еще называются инерционными.

1. Передаточная функция.

Передаточная функция апериодического звена I-ого порядка имеет вид:

W(s) = K/(T·s + 1)

где K – коэффициент усиления; T – постоянная времени, характеризующая инерционность системы, т.е. продолжительность переходного процесса в ней. Поскольку постоянная времени характеризует некоторый временной интервал, то ее величина должна быть всегда положительной, т.е. (T > 0).

2. Математическое описание звена.

Апериодическое звено I-ого порядка описывается дифференциальным уравнением первого порядка:

T·dу(t)/dt + у(t) = K·х(t)

3. Физическая реализация звена.

Примерами апериодического звена I-ого порядка могут служить: электрический RC-фильтр; термоэлектрический преобразователь; резервуар с сжатым газом и т.п.







4. Переходная функция.

Переходная функция апериодического звена I-ого порядка имеет вид:

h(t) = L-1[W(s)·1(t)] = L-1[K/(s·(T·s + 1))] = K – K·e-t/T = K·(1 – e-t/T)


Рис. 3.6. Переходная характеристика апериодического звена I-го порядка.

Переходный процесс апериодического звена I-ого порядка имеет экспоненциальный вид. Установившееся значение равно: hуст = K. Касательная в точке t = 0 пересекает линию установившегося значения в точке t = T. В момент времени t = T переходная функция принимает значение: h(T) ≈ 0.632·K, т.е. за время T переходная характеристика набирает только около 63% от установившегося значения.

Определим время регулирования Tу для апериодического звена I-ого порядка. Как известно из предыдущей лекции, время регулирования – это время, после которого разница между текущим и установившимся значениями не будет превышать некоторой заданной малой величины Δ. (Как правило, Δ задается как 5 % от установившегося значения).

h(Tу) = (1 – Δ)·hуст = (1 – Δ)·K = K·(1 – e-Tу/T), отсюда е-Tу/T = Δ, тогда Tу/T = -ln(Δ), В итоге получаем Tу = [-ln(Δ)]·T.

При Δ = 0,05 Tу = - ln(0.05)·T ≈ 3·T.

Другими словами, время переходного процесса апериодического звена I-ого порядка приблизительно в 3 раза превышает постоянную времени.

5. Весовая функция.

Весовая функция апериодического звена I-ого порядка имеет вид:

w(t) = L-1[W(s)] = L-1[K/(T·s + 1)] = (K/T)·e-t/T



Рис. 3.7. Весовая функция апериодического звена I-го порядка.

Для весовой функции апериодического звена I-ого порядка характерен скачок в начальный момент времени t = 0. Это происходит из-за того, что на вход звена подается δ-функция. Поскольку δ-функция – это математическая абстракция, которую на практике можно смоделировать в виде короткого импульса, то в реальном, физически реализуемом процессе будет наблюдаться переходный процесс, обозначенный на рисунке пунктиром.

6. Частотные характеристики.

Найдем АФЧХ, АЧХ, ФЧХ и ЛАЧХ апериодического звена I-ого порядка:

W(jω) = K/(T·jω + 1) = K·(T·jω – 1­)/[(T·jω + 1)·(T·jω – 1)] =

= K·(T·jω – 1­)/(-T2ω2 – 1) = K/(T2ω2 + 1) – [KTω/(T2ω2 + 1)]·j











Рис. 3.8. АФЧХ, АЧХ, ФЧХ, ЛАХ и ЛФХ апериодического звена I-ого порядка.

ЛАХ апериодического звена I-ого порядка представляет собой трансцендентную функцию. Чтобы упростить использование ЛАХ, вводят понятие асимптотических ЛАХ, то есть кусочно-линейных функций, не сильно отличающихся от истинных.

Переход к асимптотической ЛАХ: заменяем истинную ЛАХ – ломаной асимптотической. Выделим области низких и высоких частот и по отдельности рассмотрим поведение ЛАХ в этих областях. После чего, оценим максимальную ошибку, возникающую на границе областей.

Область низких частот: T22 <<1; т.е. <<1/T; можно пренебречь выражением T22. Получаем: L() = 20lgK. Это горизонтальная прямая.

Область высоких частот: T22 >>1; т.е. >>1/T; можно пренебречь 1 в сравнении с выражением T22. Получаем L() = 20lgK – 20lgT. Это – уравнение прямой с наклоном -20дБ/декаду. (В логарифмических координатах декада – это интервал, соответствующий изменению частоты в 10раз).

Точке пересечения этих прямых соответствует частота ω1 = 1/T, которая называется частотой сопряжения. Вычислим максимальную ошибку ЛАХ в этой точке:

Lmax = (20lgK) – [20lgK + 10lg(T212+1)] = -10lg2  -3 дб.

Следует заметить, что ошибка асимптотической ЛАХ апериодического звена I-ого порядка не зависит от параметров звена (K и T) и равна приблизительно –3 дб.


Скачать файл (9255.7 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации