Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Борботько Т.В. Лекции по курсу Основы защиты информации - файл 1.doc


Борботько Т.В. Лекции по курсу Основы защиты информации
скачать (2076.5 kb.)

Доступные файлы (1):

1.doc2077kb.04.12.2011 20:46скачать

1.doc

1   2   3   4   5   6   7   8   9   ...   12
^

4.10. Высокочастотное навязывание


Перехват обрабатываемой техническими средствами информации может осуществляться путем специальных воздействий на элементы технических средств. Одним из методов такого воздействия является высокочастотное навязывание, т.е. воздействие на технические средства высокочастотных сигналов. В настоящее время используются два способа высокочастотного навязывания:

1. Посредством контактного введения высокочастотного сигнала в электрические цепи, имеющие функциональные или паразитные связи с техническим средством.

2. Путем излучения высокочастотного электромагнитного поля. Возможность утечки информации при использовании высокочастотного навязывания связана с наличием в цепях технических средств нелинейных или параметрических элементов. Навязываемые высокочастотные колебания воздействуют на эти элементы одновременно с низкочастотными сигналами, возникающими при работе этих средств и содержащими конфиденциальные сведения. В результате взаимодействия на таких элементах высокочастотные навязываемые колебания оказываются промодулированными низкочастотными опасными сигналами. Распространение высокочастотных колебаний, модулированных опасными сигналами, по токоведущим цепям или излучение их в свободное пространство создают реальную возможность утечки закрытой информации.

На рис. 33 представлена схема, иллюстрирующая принцип реализации высокочастотного навязывания в телефонном аппарате при положенной микротелефонной трубке (т.е. в ситуации, когда телефонный разговор не ведется и цепь питания микрофона разомкнута).

В рассматриваемом случае в телефонную линию подаются от специального высокочастотного генератора высокочастотные колебания с частотой более 100 кГц. Низкочастотные (опасные) сигналы формируются в ТСОИ на элементах, обладающих свойствами электроакустических преобразователей (звонок, микрофон и т.д.), которые преобразуют акустические сигналы (разговорную речь в помещении, где расположен телефонный аппарат) в электрические.



Рис. 33. Принцип реализации высокочастотного навязывания в телефонном аппарате

Несмотря на то, что цепь микрофона телефонного аппарата разомкнута рычажным переключателем, между цепью микрофона и выходом линии существует паразитная емкость Сп порядка 5 15 пФ. На достаточно высоких частотах емкостное сопротивление этого переключателя будет относительно невысоким, поэтому навязываемые высокочастотные колебания через емкость Сп будут приложены к микрофону. Если в это время на микрофон действует достаточное звуковое давление опасного сигнала, обусловленное ведением разговоров в помещении, где расположен телефонный аппарат, то на выходе микрофона появится напряжение опасного сигнала. Происходит модуляция высокочастотных колебаний опасным речевым сигналом. Аналогичные явления наблюдаются и в звонковой цепи телефонного аппарата.

Излучение высокочастотных колебаний, промодулированных опасным сигналом, в свободное пространство осуществляется с помощью случайной антенны — телефонного провода. Промодулированный высокочастотный сигнал распространяется также в телефонной абонентской линии за пределы контролируемой территории. Следовательно, прием высокочастотных колебаний можно осуществлять либо путем подключения приемного устройства к телефонной линии, либо по полю.
^

5. пассивные методы защиты информации от утечки по техническим каналам

5.1. Экранирование электромагнитных полей


Рассмотрим процесс экранирования электромагнитного поля при падении плоской волны на бесконечно протяженную металлическую пластину толщиной d, находящуюся в воздухе (рис. 34). В этом случае на границе раздела двух сред с различными электрофизическими характеристиками (воздух—металл и металл—воздух) волна претерпевает отражение и преломление, а в толще экрана, ввиду его проводящих свойств, происходит частичное поглощение энергии электромагнитного поля. Таким образом, электромагнитная волна при взаимодействии с экраном отражается от его поверхности, частично проникает в стенку экрана, претерпевает поглощение в материале экрана, многократно отражается от стенок экрана и, в конечном счете, частично проникает в экранируемую область. В результате общая эффективность экранирования (величина потерь энергии электромагнитной волны) металлической пластиной определяется суммой потерь за счет поглощения (затухания) энергии в толще материала Апогл, отражения энергии от границ раздела внешняя среда—металл и металл—экранируемая область Аотр и многократных внутренних отражений в стенках экрана Амотр:



(28)

Потери на поглощение связаны с поверхностным эффектом в проводниках, приводящим к экспоненциальному уменьшению амплитуды проникающих в металлический экран электрических и магнитных полей.

Это обусловлено тем, что токи, индуцируемые в металле, вызывают омические потери и, следовательно, нагрев экрана.



Рис. 34. Экранирование электромагнитного поля металлическим экраном

Глубина проникновения  определяется как величина, обратная коэффициенту затухания и зависит от частоты: чем больше частота, тем меньше глубина проникновения. В СВЧ диапазоне глубина проникновения  в металлах имеет малую величину и тем меньше, чем больше проводимость металла и его магнитная проницаемость.



(29)

где  — абсолютная магнитная проницаемость материала экрана; f — частота электромагнитного поля;  — удельная проводимость материала экрана.

Выражение для определения потерь на поглощение экраном толщиной d может быть представлено в следующем виде:



(30)

Таким образом, потери на поглощение растут пропорционально толщине экрана, магнитной проницаемости и удельной проводимости его материала, а также частоте электромагнитного поля.

Потери на отражение на границе раздела двух сред связаны с различными значениями полных характеристических сопротивлений этих сред. При прохождении волны через экран она встречает на своем пути две границы раздела — воздух—металл и металл—воздух.

Хотя электрическое и магнитное поля отражаются от каждой границы по-разному, суммарный эффект после прохождения обеих границ одинаков для обеих составляющих поля. При этом наибольшее отражение при входе волны в экран (на первой границе раздела) испытывает электрическая составляющая поля, а при выходе из экрана (на второй границе раздела) наибольшее отражение испытывает магнитная составляющая поля. Для металлических экранов потери на отражение определяются выражением:



(31)

Откуда следует, что потери на отражение велики у экрана, изготовленного из материала с высокой проводимостью и малой магнитной проницаемостью.

Потери на многократные отражения в стенках экрана связаны с волновыми процессами в толще экрана и в основном определяются отражением от его границ. Для электрических полей почти вся энергия падающей волны отражается от первой границы (воздух—металл) и только небольшая ее часть проникает в экран. Поэтому многократными отражениями внутри экрана для электрических полей можно пренебречь.

Для магнитных полей большая часть падающей волны проходит в экран, в основном отражаясь только на второй границе (металл—воздух), тем самым, создавая предпосылки к многократным отражениям между стенками экрана. Корректирующий коэффициент Амотр многократного отражения для магнитных полей в экране с толщиной стенки d при глубине проникновения  равен:



(32)

Величина Амотр имеет отрицательное значение, т.е. многократные отражения в толще экрана ухудшают эффективность экранирования. С уменьшением эффективности можно не считаться в случаях, когда на данной частоте выполняется условие d>, но им нельзя пренебрегать при применении тонких экранов, когда толщина экрана меньше глубины проникновения.
1   2   3   4   5   6   7   8   9   ...   12



Скачать файл (2076.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации