Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции - Автоматизированный электро привод,курс. Часть 2 - файл Курс лекций. Ч2..doc


Лекции - Автоматизированный электро привод,курс. Часть 2
скачать (620.2 kb.)

Доступные файлы (1):

Курс лекций. Ч2..doc1235kb.08.12.2007 15:10скачать

содержание
Загрузка...

Курс лекций. Ч2..doc

  1   2   3   4
Реклама MarketGid:
Загрузка...
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ
ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО ПРОФЕССИАНАЛЬНОГО ОБРАЗОВАНИЯ
УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ

ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ


В.И.БАБАКИН

Курс лекций по дисциплине:

«Автоматизированный электропривод типовых

производственных механизмов и технологических

комплексов».
Часть 2.


Уфа 2007

Содержание

1.АЭП с асинхронным двигателем 4

1.1АЭП с АД с реостатным регулированием 4

1.2АЭП с АКЗД с регулируемым напряжением,подводимым к статору АД 5

2.Современное состояние АЭП с двигателями переменного тока 7

2.1Проблемы синтеза и управления АЭП 7

3.Автоматизированный асинхронный электропривод с использованием синхронных

электромашинных преобразователей частоты 9

4. Автоматизированный асинхронный электропривод с использованием асинхронных

электромашинных преобразователей частоты 11

5.Автоматизированный электропривод с двигателем переменного тока со статическими преобразователями частоты (СПЧ) 11

5.1Преобразователь частоты с звеном постоянного тока 12

6.Автономные инверторы (АИ)……………………………………………………………… 13

7.АЭПТ с ЧП имеющий в структуре управляемый выпрямитель………………………… .14

8.Регулирование скорости в АЭП с ПЧ с УВ……………………………………………… ...17

9.Пуск в АЭП с ПЧ с УВ…………………………………………………………………… …18

10.Торможение в АЭП с УВ………………………………………………………………… ..19

10.1.Торможение противовключением ( ТП )……………………………………………… ..19

10.2.Динамическое торможение……………………………………………………………… 19

10.3.Реверс……………………………………………………………………………………. ..20

11.Преимущества и недостатки АЭП с ПЧ с УВ…………………………………………… .20

12. Автоматизированный электропривод с использованием ПЧ с ШИР……………… ….20

13.Регулирование скорости, пуск торможение в АЭП с ШИР…………………………… ...21

13.1 Регулирование скорости в АЭП с ШИР……………………………………………… …21

13.2 Пуск в АЭП с ШИР…………………………………………………………………… ….22

13.3 Торможение в АЭП с ШИР……………………………………………………………… 22

14 Автоматизированный электропривод с использованием ПЧ с ШИМ…………………...22

15 Принцип действия ПЧ с ШИМ……………………………………………………………..23

16 Принципиальные схемы ПЧ с ШИМ………………………………………………………24

17 ПЧ с ШИМ на базе незапираемых тиристоров…………………………………………....25

18 Элементная база современных частотных преобразователей…………………………....26

18.1 Силовые фильтры…………………………………………………………………………27

18.2Характеристики современных мощных силовых ключей с двухсторонним теплоотводом

19 Припинциальные схемы ПЧ на базе IGBT транзисторов………………………………...29

20 Регулирование скорости в АЭП с ПЧ с ШИМ…………………………………………….29

21 Пуск в АЭП с ПЧ с ШИМ…………………………………………………………………..29

22 Торможение в АЭП с ПЧ с ШИМ……………………………………………………… .29

23 Аварийные режимы в АЭП с ПЧ с ШИМ…………………………………………………29

24 Влияние длины монтажного кабеля на перенапряжения на зажимах двигателя……….30

25 Принципы и основы векторного управления……………………………………………...34

26 Реализация векторного управления………………………………………………………..36

27 Автоматизированный электропривод переменного тока с непосредственным преобразо-

ванием частоты ( НПЧ )…………………………………………………………………… ..38

28 Автоматизированный электропривод переменного тока в каскадных схемах………….40

29 Автоматизированные электроприводы с электрическими электромашинными каскадами……………………………………………………………………………………… 42

30 Автоматизированные электроприводы с электромеханическими электромашинными каскадами………………………………………………………………………………………..43

31 Автоматизированные электроприводы с асинхронно-вентильными каскадами (АВК ).44

32 Автоматизированные электроприводы переменного тока с машинами двойного пита-

ния……………………………………………………………………………………………. .45

33 Автоматизированные электроприводы переменного тока с машинами двойного питания в синхронном режиме………………………………………………………………… 46

34 Автоматизированные электроприводы переменного тока с машинами двойного пита-

ния в асинхронном режиме…………………………………………………………………..48

35 Автоматизированные электроприводы переменного тока с вентильным двигателем …50

36 Автоматизированные электроприводы переменного тока следящего типа……… …….52
1. АЭП с асинхронным двигателем
1.1 АЭП с АД с реостатным регулированием.

рис.1

Эти схемы применяются для АД с фазным ротором.

Принцип действия: Изменяя активное сопротивление цепи ротора, мы тем самым воздействуем на скольжение, при этом изменяется угловая скорость.

Один из важнейших показателей качества регулирования – плавность. В данном случае зависит от числа ступеней добавочного сопротивления вводимого в цепь ротора, которое в свою очередь ограничивается стандартной аппаратурой управления с помощью релейно-контакторных схем. Увеличение числа ступеней повлечет за собой увеличение числа реле и контактов, что в свою очередь приведет к уменьшению быстродействия и надежности системы в целом. Кроме того, такие электроприводы обладают низкими энергетическими показателями, невысоким КПД в области глубокого регулирования, при значительном увеличении добавочного сопротивления резко уменьшается жесткость характеристики что скажется на устойчивости работы электропривода.

С целью увеличения плавности регулирования применяют импульсное параметрическое регулирование. Сущность этого метода заключается в попеременном введении и выведении добавочного сопротивления в цепи ротора, при этом среднее значение равно:





где t1- длительность замкнутого состояния ключа;

t2- длительность разомкнутого состояния ключа.

рис.2

ω будет изменятся плавно в приделе между двумя граничными характеристиками ε=1 и ε=0

Диапазон регулирования скорости в ЭП с реостатным регулированием ограничивается:

  1. Большими потерями мощности (низкий КПД)

  2. Низкой стабильностью(Д=1,5÷1).

^ 1.2 АЭП с АКЗД с регулируемым напряжением, подводимым к статору АД.
Принцип действия таких электроприводов заключается в том, что при уменьшения напряжения, подводимого к статору пропорционально квадрату напряжения снижается электромагнитный момент и уменьшается скорость вращения ω.
Регулирование осуществляется с помощью регуляторов напряжения, включаемых в цепь статора. При этом различают два способа регулирования:

  • импульсное;

  • непрерывное.


До недавнего времени в основном использовались импульсные способы регулирования.

Простейшая принципиальная схема импульсного регулирования:
рис.3
При этом частота замыканий размыканий соизмерима с частотой сети f ≤ 200 Гц. При изменении скважности управляющих импульсов изменяется действующее значение напряжения: При ε=1 двигатель работает на естественной механической характеристике, при этом ключи К постоянно замкнуты. По мере уменьшения ε угловая скорость уменьшается. При этом уменьшается критический момент МКР, как следствие уменьшение перегрузочной способности (жесткости) рабочей части механической характеристики. При малых значениях скважности, т.е. на малых скоростях привод работает неустойчиво.

Недостатки:

  • Низкие энергетические показатели, что связано с увеличением напряжения и скорости, а также с переходными электромагнитными процессами, вызванными включением выключением обмоток статора двигателя.

  • Такие электропривода могут работать только в продолжительном режиме, т.к. не обеспечивают кратковременного запуска и остановки двигателя.

Несколько лучшими, в этом плане, показателями обладают электропривода с импульсным регулирование напряжения и импульсным чередованием фаз.


КН включается на интервалах выключенного состояния ключей КВ, при ε=0 импульсов управляющих ключами КВ. ЭП будет работать в режиме торможения противовключением. Семейство механических характеристик в таких ЭП будут боле жесткими в рабочей части (перегрузочная способность ниже).







Рис.4

Отличие механической характеристики при импульсном регулировании напряжения и импульсным чередованием фаз (в рабочей части электропривод работает более устойчиво). При очень малых значениях ε характеристики переходят в область торможения противовключением, что позволяет быстро остановить двигатель. Такие электроприводы для повторно-кратковременных режимов, но эти электроприводы имеют еще более низкие энергетические показатели, т.к. наложение двигательного и тормозного режимов вызывает практически непрерывные электромагнитные переходные процессы, сопровождающиеся большими потерями мощности.

Недостатки:

Уменьшение напряжения питания при постоянной мощности на валу двигателя приведет к уменьшению напряжения на зажимах ротора, увеличению тока ротора, уменьшению коэффициента мощности двигателя и уменьшения КПД.

Показатели качества:

  1. Низкие энергетические показатели;

  2. Низкая стабильность регулирования:

  3. Диапазон регулирования Д=1,5÷1;

  4. Плавность высокая;

  5. Направление однозвенное “вниз”;

  6. Допустимая нагрузка на валу.

Целесообразно регулировать при М=const т.к. это частично позволяет освободиться от первого недостатка.

В настоящее время широкое распространение получили ЭП с непрерывным регулированием напряжения:

  • РН-АД;

  • ТРН-АД.

Такие электроприводы обладают значительно лучшими энергетическими показателями, чем ЭП с ИРН, но все остальные показатели такие же.
В последнее время такие электроприводы получили неоправданно широкую рекламу. Предлагается использовать их для механизмов, работающих в повторно кратковременном режиме. Регулирование ω в системе ТРН-АД осуществляется с помощью изменения напряжения на зажиме статора путем изменения угла отпирания тиристоров. Рис.5


^ Преимущества ЭП по системе ТРН-АД: По первоначальным затратам на 30-40% дешевле, чем ЭП с частотным преобразователем; на 20-50% снижены затраты на тех обслуживание.

^ Недостатки ЭП по системе ТРН-АД: Низкий диапазон регулирования Д=2÷1.

Этот недостаток, в какой то степени может быть устранен при использовании АЭП с регулируемой ЭДС в обмотке статора, т.е. регулированием не напряжения, а ЭДС.

^ 2. Современное состояние АЭП с двигателями переменного тока.

2.1 Проблемы синтеза и управления АЭП.
Объект управления –

  1. ЭД (электромеханический преобразователь);

  2. СП (силовой электрический преобразователь);

  3. ИП (измерительный преобразователь).


1) ЭД (электромеханический преобразователь).

Наиболее широкий класс ЭД, используемых в современном электроприводе АКЗД общепромышленного назначения. Эти двигатели предназначены для использования в регулируемых электроприводах, для прямого включения в промышленную сеть. В основном изменения в этой области носят характер некоторых конструктивных усовершенствований электродвигателя. Разрабатываются и серийно производятся специальные модификации АКЗД, предназначенные для использования в частотно регулируемом электроприводе (фирмой Siemens разрабатываются и серийно выпускаются в течении пяти лет АКЗД для использования при пониженных и при повышенных частотах питания 500-1000 Гц) . Кроме того наблюдается увеличение производства СД с возбуждением от постоянных магнитов (бесконтактные). Эти ЭД обладают улучшенными массогабаритными и ценовыми показателями, и не уступают по технико-энергетическим показателям. Среди перспективных ЭД – индукторный двигатель, который по утверждению разработчиков имеет значительно лучшие технические и энергетически характеристики и требует очень простого силового преобразователя (себестоимость электропривода значительно ниже). Синхронно-реактивный электродвигатель имеет массогабаритные показатели находящиеся в промежутке между АД и СД и при этом значительно более высокую энергетическую эффективность при значительно меньшей стоимости.
2) СП (силовой электрический преобразователь);

В области СП в электроприводе с двигателями постоянного тока в настоящее время в основном используются преобразователи имеющие структуру выпрямитель - АИН. Причем если до 2000 г. Требования к качеству выпрямления не регламентировалось, то в настоящее время появился ряд нормативной документации, которая строго регламентирует наличие в структуре СП выпрямительных устройств. Это стандарты IEEE-519, МЭК555 – интеграционные стандарты; ГОСТ 13109. Для улучшения качественных показателей современных СП, в частности для улучшения качества электропотребления, а именно повышение коэффициента мощности в настоящее время применяют выпрямители на полностью управляемых силовых ключах со стабилизацией выходного напряжения. Схемы с дополнительной индуктивностью, схемы с коммутирующим входным ключом реализуются по смарт технологии. Однако более эффективными и дешевыми представляются СП с неуправляемыми выпрямителями. В СП в настоящее время используется современная база, в которой используются современные электронные приборы, такие как тиристоры MGT или IGST, а также полностью управляемые транзисторы IGBT. Кроме того в настоящее время ведутся разработка транзисторов с разрешающей способностью по напряжению 6-10 кВ.

В настоящее время наиболее перспективным режимом работы СП является режим высокочастотной ШИМ с частотой модуляции 20 кГц и векторным управлением (воздействие через моментообразующую и потокообразующую составляющую тока статора). Этот режим является наиболее благоприятным для двигателей с номинальной частотой 500-1000 Гц т.к. в этом случае проблема согласования частоты модуляции с частотой питающего двигатель напряжения решается значительно проще. В настоящее время перспективным видом СП является также НПЧ, имеющий матричную структуру с матричной системой управления. Преимуществом таких преобразователей является отсутствие реактивных элементов, т.е. емкостей и индуктивностей в силовой схеме, практически синусоидальность формы выходного напряжения и тока, а также возможность работы в режиме опережающего cosφ.
3) ИП (измерительный преобразователь).

В качестве первичных измерителей в настоящее время используют традиционно известные средства, к которым можно отнести серийно выпускаемые датчики тока и напряжения, датчики Холла, тахогенераторы, фотоимпульсные и кодовые датчики перемещения и положения, электромагнитные револьверы, сельсины и т.д. Объем использования таких современных датчиков как емкостные, лазерные практически равен нулю. Наиболее перспективным видом ИП являются косвенные измерители, в которых на базе легко измеряемых параметров, таких как активное и индуктивное сопротивление двигателя, скорость и положение ротора и т.д. При использовании таких измерительных систем отпадает необходимость в использования большого количества датчиков и в частности датчика скорости вращения. Такие системы измерения называются безсенсорными.
^ Задачи управления электроприводом:

Наиболее часто встречающимся видом задач управления является задача непосредственного регулирования скорости вращения ЭП. Кроме того, имеются специально регулируемые приводы, которые выполняют задачи регулирования электромагнитного момента, мощности, ускорения, регулирование положения ротора, регулирование какого-либо технологического параметра. Кроме того имеются задачи стабилизации, слежения, позиционирования, обеспечение инвариантности (заключается в обеспечении независимости или слабой зависимости от неконтролируемых возмущений), обеспечении автономности (обеспечение независимости какого-либо параметра объекта от остальных параметров.

Синтез управления ЭП сводится к нахождению достаточно обусловленной модели ЭП, которая в настоящее время представляет собой в большинстве случаев систему уравнений Кирхгофа по второму закону эля электромагнитных цепей ЭД и СП. Обычно эти уравнения записываются для эквивалентной двухфазной машины, а также системы уравнений Ньютона для механических цепей ЭП.

Основная проблема при создании модели ЭП:

  • Учет насыщения магнитной цепи двигателя;

  • Учет упругих механических связей;

  • Учет нелинейных связей.

^ 3. Автоматизированный асинхронный электропривод с использованием синхронных электромашинных преобразователей частоты.
АЭП с электромашинными ПЧ обладают важным преимуществом: совместимость с энергосистемой, т.е. не загрязняют сеть.

Различают два вида электромашинных ПЧ:

  1. Электромашинный синхронный ПЧ (ЭМСПЧ);

  2. Электромашинный асинхронный ПЧ (ЭМАСПЧ).


АЭП с электромашинной СПЧ.

Основным элементом такой системы является трехфазный синхронный генератор согласованный по мощности с приводным АД. При этом выходное напряжение и частота определяется угловой скоростью вала генератора и величиной магнитного потока возбуждения. При изменении скорости будет изменятся выходное напряжение. Если принять напряжение на зажимах фазы статорной обмотки очевидно, что при Ф=const с увеличением скорости вращения вала одновременно с увеличением частоты будет увеличиваться также действующие значение выходного напряжения. В данном случае можно реализовывать только пропорциональный закон регулирования.





рис.6

В состав ПЧ входят:

  • Основное звено – трехфазный синхронный генератор (Г2);

  • ДПТ НВ (Д2) выход системы Г-Д соединен при помощи вала с СГ;

  • Вспомогательный приводной двигатель АКЗ (Д1) с нерегулируемой скоростью.

Коэффициент пропорциональности С выходного генератора (Г2) можно изменять при изменении IВ3 при помощи резистора R3. Скорость вращения вала генератора Г2 , регулируется IВ1 генератора (Г1) реостатом R1, а также IВ2 двигателя (Д2) реостатом R2. В данной системе возможно регулирование скорости в обе стороны от номинальной. Однако верхний диапазон регулирования скорости используется редко, т.к. двигатель работает при напряжении больше номинального. При полностью выведенных реостатах R1 и R2 при этом напряжение и скорость вращения равны номинальному.
Показатели качества:

  • Регулирование двузонное, плавное, стабильное;

  • Низкий КПД, высокий cosφ;

  • Pустmin = 400 %


Преимущества АЭП с ЭСПЧ:

  • Нет отрицательного влияния на сеть;

  • Простота управления.




  • Недостатки АЭП с ЭСПЧ:

  • Низкий КПД;

  • Наличие большого количества вращающихся частей;

  • Неудовлетворительные массогабаритные показатели;

  • Возможность регулировать только по пропорциональному закону.


^ 4. Автоматизированный асинхронный электропривод с использованием асинхронных электромашинных преобразователей частоты.
Основным элементом такой системы является трехфазный асинхронный генератор согласованный по мощности с приводным АД.

рис.7

Показатели качества:

  • Регулирование двузонное, плавное, стабильное;

  • Низкий КПД, высокий cosφ;

  • Pустmin = 200-400 %


Преимущества АЭП с ЭСПЧ:

  • Нет отрицательного влияния на сеть;

  • Простота управления.


Недостатки АЭП с ЭСПЧ:

  • Низкий КПД;

  • Наличие большого количества вращающихся частей;

  • Неудовлетворительные массогабаритные показатели;

  • Возможность регулировать любому закону.

  • Необходимость применения автотрансформаторов.

^ 5. Автоматизированный электропривод с двигателем переменного тока со статическими преобразователями частоты (СПЧ).
В настоящее время СПЧ является наиболее широко применяемым и перспективным видом ПЧ в составе автоматизированного электропривода с двигателем переменного тока.

СПЧ классифицируется по следующим признакам:

  1. По структуре преобразования энергии.

  • СПЧ с непосредственным преобразованием.

  • СПЧ с звеном постоянного тока.

  1. По виду инвертеров подразделяются на:

  • ПЧ с сетноведомыми инверторами.

Силовые ключи таких инверторов запираются при подаче на анод отрицательной полуволны питающего напряжения.

  • ПЧ с автономным инвертором

Силовые ключи таких инверторов запираются либо при разряде коммутирующих конденсаторов, либо с помощью управляющих импульсов.

  • ПЧ с АИН

  • ПЧ с АИТ

  • ПЧ с АИ с поочередной коммутацией (ПЧ с неполным управляющим напряжением)

  • ПЧ с АИ с индивидуальной коммутацией (ПЧ с полностью управляющим напряжением)


^ 5.1 Преобразователь частоты с звеном постоянного тока
В настоящее время этот вид частотных преобразователей является наиболее широко распространенным видом, и при этом в отличии от НП+Ч поставляется в виде самостоятельного элемента электропривода.

рис.8

где U1 – трехфазное переменное напряжение с постоянной амплитудой.

П1 – управляемый или неуправляемый выпрямитель, который предназначен для преобразования входного синусоидального напряжения в выходное постоянное (пульсирующее) напряжение.

Ф – фильтр тока или напряжения предназначен для сглаживания пульсации с выхода выпрямителя.

П2 – автономный инвертор тока или напряжения, предназначен для преобразования постоянного сглаженного тока или напряжения в переменное трехфазное.

М – трехфазный двигатель переменного тока с короткозамкнутым ротором.
В предлагаемой структурной схеме блок П1 может работать как в управляемом так и в неуправляемом режимах. При этом в первом случае АИ выполняет функции изменения только выходной частоты преобразователя, а функции воздействия на амплитуду выходного напряжения выполняет выпрямитель. Во втором случае АИ выполняет функции изменения выходной частоты и действующего значения выходного напряжения.

Вариант УВ имеет несомненное преимущество, заключающееся в существенном упрощении системы управления, несмотря на наличие БУВ. При этом вся система значительно удешевляется.

В случае варианта с НВ значительно улучшается совместимость всей системы с электрической сетью. Однако при этом схема управления существенно усложняется и соответственно вся система становится значительно дороже.
^ 6. Автономные инверторы (АИ).
По степени управляемости АИ делятся на:

  • АИ с поочередной коммутацией.

  • АИ с индивидуальной коммутацией.

Схемное отличие этих двух инверторов заключается в том, что в АИ с поочередной коммутацией все силовые ключи являются рабочими. В АИ с индивидуальной коммутацией на каждый рабочий силовой ключ приходится как минимум по одному вспомогательному силовому ключу. Второй вариант как правело более функционален, но при этом значительно более дорогой и менее надежный. В настоящее время практически все АИ относятся к АИ с поочередной коммутацией.

Рассмотрим принцип действия АИ с поочередной коммутацией на примере однофазного АИ у которого запирание силовых ключей осуществляется с помощью коммутирующего конденсатора.

Рис.9

Т1,Т2 – рабочие тиристоры

СК – коммутирующий конденсатор
Пусть в момент времени t = 0 открыт Т2, Т1 закрыт; входное напряжение приложено к Rн2, через промежуток времени равный периоду коммутации Т2 подается отпирающий импульс на Т1. При этом входное напряжение прикладывается к Rн1, а через открытую цепь Т1, Rн1, Rн2 к Т2 прикладывается обратное напряжение с Ск в результате чего Т2 запирается и т.д. Период коммутации –длительность открытия ключа.

По форме выходного напряжения и тока Аи делится на:

  • АИТ

  • АИН

У АИТ форма выходного напряжения зависит, как от последовательности и длительности коммутации силовых ключей так и от характера нагрузки, а форма выходного тока зависит, только от последовательности и длительности коммутации силовых ключей.

У АИН форма выходного тока зависит, как от последовательности и длительности коммутации силовых ключей так и от характера нагрузки, а форма выходного напряжения зависит, только от последовательности и длительности коммутации силовых ключей.

Внешнее отличие АИТ от АИН: АИТ имеет входной L – фильтр, а входной L или LC фильтр. Кроме того, если в схеме инвертора используются не полностью управляемые силовые ключи, то на каждую фазу АИТ имеется один конденсатор, а у АИН по одному коммутирующему конденсатору на каждый силовой ключ.

Рассмотрим работу однофазного АИТ.

Рис.10




Т1,Т3 – силовые ключи анодной группы

Т2,Т4 – силовые ключи катодной группы

СК – коммутирующий конденсатор

L – входной фильтр.
В первый момент времени в открытом состоянии находятся два накрест лежащих силовых ключа – первый из анодной, второй из катодной группы. В момент отпирания двух других силовых ключей первые два запираются и т.д. При этом если открыты ключи Т3 и Т2 происходит заряд конденсатора в прямом направлении, при открытых ключах Т1 и Т4 происходит перезаряд конденсатора в противоположном направлении.

рис.11

В момент времени t = 0 подается отпирающий импульс на Т1 и Т4. конденсатор Ск в этот момент предварительно заряжен, и при отпирании Т1 и Т4 разряжается на Т3 и Т2 в направлении отрицательной полярности тем самым закрывая Т3 и Т2. в следующий промежуток времени равный периоду коммутации Т1 и Т4 ток через сопротивление нагрузки будет протекать в положительном направлении. По истечении промежутка времени происходит перезаряд конденсатора в противоположное направление. В этот момент подается отпирающий импульс на Т3 и Т2 конденсатор разряжается в направлении отрицательной полярности запирает Т1 и Т4 , ток протекает через Т4, Zн, и открытый Т2 и будет иметь отрицательное направление.


^ 7. АЭПТ с ЧП имеющий в структуре управляемый выпрямитель.
В настоящее время имеется тенденция расширения области применения управляемых выпрямителей в структуре ПЧ, в частности в тех электроприводах, которые по технологическим условиям нуждаются в частом торможении ( т.е. для электропривода работающего в повторно-кратковременном режиме S5). Это связано с тем, что УВ обладает таким важным свойством, как двусторонняя проводимость. Это позволяет использовать такой энергетически эффективный вид торможения как рекуперативное. Но негативные свойства УВ полностью устранить невозможно. В настоящее время используются преобразователи, содержащие два входных блока: первый – неуправляемый выпрямитель, участвующий в работе привода в двигательном режиме; второй – УВ, участвующий в работе ПЧ в режиме торможения.

Рассмотрим схему и принцип работы ПЧ с тиристорным УВ и тиристорным АИТ, у которого коммутация силовых ключей осуществляется с помощью коммутирующих конденсаторов.

-рис.12

Входным блоком преобразователя является УВ, построенный по шести-тактной мостовой трехфазной схеме выпрямления. Основной функцией УВ кроме выпрямления является регулирование действующего значения выходного напряжения преобразователя. Для сглаживания пульсации выходного тока выпрямителя использован последовательный L - фильтр.

АИТ состоит из шести силовых ключей, три из которых Т1, Т3, Т5 имеют общий анод и образуют анодную группу; три других Т2, Т4, Т6 Имеют общий катод и образуют катодную группу. Принцип действия АИТ основан на том, что в первый момент времени в открытом состоянии находятся два накрест лежащих силовых ключа: один из анодной группы, второй из катодной группы. Отпирание силовых ключей осуществляется в момент подачи управляющих импульсов от БУИ (многоканальная система управления). При этом последовательность подачи импульсов на каждый вентиль соответствует их порядковому номеру. Запирание силовых ключей осуществляется при разряде какого-либо из трех конденсаторов в направлении отрицательной полярности и также соответствует порядку чередования номеров силовых ключей.

При выходной частоте f2 = 50Гц преобразователь работает в следующем режиме: промежуток между двумя соседними управляющими импульсами составляет , длительность открытия каждого ключа будет составлять 1200. При этом запирающие конденсаторы С1, С2, С3 должны обладать такой емкостью, чтобы время равное 600 удерживать заряд необходимый для запирания очередного ключа.
Работу преобразователя продемонстрируем с помощью диаграммы:

  1. Ток с выхода выпрямителя имеет идеальную выпрямленную форму.

  2. Направление токов в фазах монтажного кабеля преобразователь-двигатель

    • от П к Д - положительным.

    • от Д к П - отрицательным.

рис.13

1. t = 0 Открыт Т1, Т6. Ток цепи протекает через силовой ключ Т1 фазу А кабеля и через открытый Т6 возвращается в фазу С. . При этом предварительно заряжен С3, в промежуток времени 0-600 перезаряжается С1, а С3 удерживает свой заряд.

2. t = 600 Подается отпирающий импульс на Т2. При этом С3 разряжается на Т6 и запирает его. В промежуток времени 600 - 1200 открыты Т1 и Т2. Ток течет через фазу А к двигателю, а через фазу Б от двигателя к преобразователю. . В этом промежутке времени перезаряжается С2, С1 сохраняет свой заряд.

3. t = 1200 Подается отпирающий импульс на Т3. При этом С1 разряжается на Т1 и запирает его. В промежуток времени 1200 - 1800 открыты Т2 и Т3. Ток течет через фазу Б к двигателю, а через фазу С от двигателя к преобразователю. . В этом промежутке времени перезаряжается С3, С2 сохраняет свой заряд.

4. t = 1800 Подается отпирающий импульс на Т4. При этом С2 разряжается на Т2 и запирает его. В промежуток времени 1800 - 2400 открыты Т3 и Т4. Ток течет через фазу Б к двигателю, а через фазу А от двигателя к преобразователю. . В этом промежутке времени перезаряжается С1, С3 сохраняет свой заряд.

5. t = 2400 Подается отпирающий импульс на Т5. При этом С3 разряжается на Т3 и запирает его. В промежуток времени 2400 - 300 открыты Т4 и Т5. Ток течет через фазу С к двигателю, а через фазу А от двигателя к преобразователю. . В этом промежутке времени перезаряжается С2 С1 охраняет свой заряд.

6. t = 3000 Подается отпирающий импульс на Т6. При этом С1 разряжается на Т4 и запирает его. В промежуток времени 3000 - 360 открыты Т5 и Т6. Ток течет через фазу С к двигателю, а через фазу Б от двигателя к преобразователю. . В этом промежутке времени перезаряжается С3 С2 охраняет свой заряд.

Чтобы увеличить выходную частоту необходимо уменьшить промежуток между управляющими импульсами для этого увеличиваем угол управления β. Соответственно с законом управления изменится действующее значение выходного напряжения, в частности при пропорциональном законе управления при увеличении частоты угол управления выпрямителем α уменьшится пропорционально увеличению угла β.

Существенным недостатком рассмотренной схемы является необходимость использования конденсаторов большой мощности, необходимой для поддерживания зарядов в промежутке между двумя коммутациями. Частично избавиться от этого недостатка позволяет использование АИ с отсекающими диодами.

рис.14

Здесь в катодной и анодной цепи силовых ключей последовательно включаются отсекающие диоды Д1, Д3, Д5 и Д2, Д4, Д6. Их число равно числу ключей. Эти диоды препятствуют разряду конденсаторов в период коммутации ключа и за счет этого существенно улучшают показания инвертера.


^ 8. Регулирование скорости в АЭП с ПЧ с УВ.
В АЭП с преобразователем частоты и имеющим в структуре управляемый выпрямитель регулирование скорости ω осуществляется в широком диапазоне, при этом обеспечиваются достаточно высокие показатели качества. Регулирование ω осуществляется воздействием на АИ с помощью БУИ при одновременном воздействии на УВ с помощью БУВ в соответствии с законом регулирования. При этом возможно двухзонное регулирование. Однако для механизмов с MC = const, и для механизмов с линейно возрастающей МС регулирование вверх ограниченно тем, что для этого необходимо одновременно с увеличением частоты относительно fНОМ, увеличивать напряжение. В результате чего может произойти пробой изоляции. Регулирование ω вверх применяется значительно реже, чем в диапазоне вниз и в незначительных приделах.

В общем случае семейство регулировочных характеристик будет иметь вид:

рис.15
Показатели качества регулирования:

  1. Стабильность при частотном регулировании высокая т.к. характеристики в рабочей части имеют одинаковую жесткость.

  2. Плавность практически не ограничена.

  3. Высокая экономичность, однако при глубоком регулировании вниз от основной частоты, при котором требуется существенное уменьшение угла управления α выпрямителя и при этом коэффициент мощности привода в целом может оказаться очень низким.

  4. Регулирование в основном осуществляется при MC = const на валу двигателя.

  5. Направление двухзонное, в основном применяется регулирование вниз.

  6. Диапазон регулирования Д=100÷1.


^ 9. Пуск в АЭП с ПЧ с УВ.
Пуск начинается при пониженном напряжении и при минимальной частоте, что соответственно обеспечивает отсутствие броска тока или минимизацию тока и одновременно большие пусковые моменты. При этом инвертор работает с большими периодами коммутации силовых ключей, а УВ с углом управления α = П/2. Энергетическая эффективность пуска в такой системе уменьшается за счет того, что в начале пуска привод потребляет большое количество реактивной составляющей.

рис.16
  1   2   3   4



Скачать файл (620.2 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации