Конспект для сдачи экзамена по Основам термодинамики
скачать (4084.4 kb.)
Доступные файлы (1):
1.rtf | 4085kb. | 16.12.2011 03:39 | ![]() |
содержание
- Смотрите также:
- Конспект для сдачи экзамена по курсу Коллоидная химия [ лекция ]
- Конспект лекций для сдачи экзамена по курсу Биофизика [ лекция ]
- Конспект для сдачи экзамена по Макроэкономике [ лекция ]
- Конспект лекции для сдачи экзамена по Менеджменту [ документ ]
- Гинекология. Краткие лекции для сдачи экзамена [ лекция ]
- Ответы для сдачи экзамена по Аудиту [ документ ]
- Конспект лекций для сдачи экзамена по курсу Политология (73 вопроса) [ документ ]
- Конспект для сдачи экзамена по курсу Основы менеджмента [ лекция ]
- Конспект лекций для сдачи экзамена по курсу Микроэкономика [ лекция ]
- Конспект для сдачи экзамена по курсу Экономика и управление предприятием [ документ ]
- Конспект лекций для сдачи экзамена по курсу Бухгалтерский учет и анализ экономической деятельности предприятия [ лекция ]
- Конспект лекций для сдачи экзамена по Микроэкономике [ лекция ]
1.rtf
Основы термодинамики.
Конспект лекций
Введение в термодинамику. Основные понятия
Система.
Параметры.
Состояние.
Процесс.
Функции состояния.
Уравнение состояния.
Температура. I закон термодинамики.
Температура.
Внутренняя энергия системы. Работа и теплота.
I закон.
Работа расширения.
Теплота и теплоемкость.
Уравнение Пуассона
Термохимия.
Энтальпия.
Теплоты химических реакций. Закон Гесса.
Термохимические уравнения.
Связь между Qp и QV
Теплота образования химических соединений.
Зависимость теплового эффекта химической реакции от температуры.
уравнение Кирхгоффа
Второй закон.
Энтропия
Другие формулировки
Обратимые и необратимые процессы.
Изменение энтропии в различных процессах.
Закон Джоуля
Постулат Планка. Абсолютная энтропия.
Равновесие в однокомпонентных гетерогенных системах.
Уравнение Клапейрона – Клаузиуса
Условия равновесия и направление самопроизвольного процесса в однокомпонентной гетерогенной системе.
Фазовое равновесие в конденсированных системах.
Интегрирование уравнения Клапейрона-Клаузиуса для процесса парообразования.
Термодинамические свойства многокомпонентных систем. Растворы. Химический потенциал.
Определения.
Характеристические функции многокомпонентных систем.
Однородные функции. Уравнение Гиббса-Дюгема.
Условия равновесия в многокомпонентных гетерогенных системах.
Термодинамика смесей идеальных газов.
Характеристические функции идеального газа.
Химический потенциал газа в смеси идеальных газов.
Энтропия смешения.
^
Система.
Тело или группа тел, произвольно выделяемая нами из внешнего мира, называется системой. Все, что не входит в нашу систему, мы называем внешней средой или просто средой.
Изолированной или замкнутой системой называется такая система, которая не может обмениваться со средой веществом и энергией. Система называется адиабатической, если она не обменивается теплом с окружающей средой (адиабарос – греческое – непереходимый).
Система называется закрытой, если она не обменивается со средой веществом. Однако закрытая система может изменять свой состав, если в ней протекает химическая реакция, которую символически можно записать в виде:





Это уравнение показывает, что в системе число молей водорода уменьшилось на 2, кислорода на 1, а число молей воды увеличилось на 2.
Параметры.
Все признаки, характеризующие систему и ее отношение к среде, называются параметрами системы. Объем, показатель преломления, удельный вес, заряд, давление.
^ называется объем, давление, температура, энергия, концентрация веществ и производные только от этих (теплоемкость, коэффициент расширения и т.д.). Все параметры делятся на два класса – внутренние и внешние.
Параметры, определяемые положением не входящих в нашу систему внешних тел, называются внешними параметрами. Объем системы, величина поверхности определяются расположением внешних тел. Напряжение силового поля зависит от положения источников поля – зарядов и токов, не входящих в систему.
Параметры называются внутренними, если они определяются совокупным движением и распределением в пространстве тел и частиц, входящих в нашу систему. Плотность, давление, энергия – внутренние параметры. Естественно, что величины внутренних параметров зависят от внешних параметров.
Кроме того, параметры можно разделить и по другому признаку. Назовем интенсивными параметрами такие, которые не зависят от количества вещества в системе, например, давление, температура, коэффициент теплопроводности и т.п.. Параметры, которые зависят от количества вещества в системе, назовем экстенсивными, к таковым относятся объем, энергия, энтропия и т.д.
Следует заметить, что отнесенные к единице количества вещества экстенсивные параметры приобретают свойства интенсивных, например, мольный объем, мольная энергия.
Состояние.
Этот термин обозначает данную совокупность значений параметров системы. Если изменяется хотя бы один, то изменяется и состояние системы. Состояние называется стационарным, если оно не меняется во времени.
Состояние называется равновесным, если в системе не только все параметры постоянны, но и нет никаких стационарных потоков за счет действия каких-либо внешних источников, т.е. неизменность не обусловлена никакими внешними процессами.
1.4. Процесс.
Процессом называется ряд последовательных изменений состояния системы. Процесс, после которого система возвращается в первоначальное состояние, называется круговым процессом или циклом.
V = Const изохорический (греческое chora – пространство),
p = Const изобарический (греческое baros – тяжесть, вес),
t = Const изотермический (греческое therme – жар, теплота),
Q = 0 адиабатический.
Функции состояния.
Свойство системы, не зависящее от предыстории системы и полностью определяемое ее состоянием в данный момент (т.е. совокупностью параметров), называется функцией состояния. Если Z – функция состояния и в состоянии 1 имеет величину





Чтобы Z имела свойства функции состояния необходимо и достаточно либо


Если процесс не круговой, то

Изменение функции состояния не зависит от процесса перехода между 1 и 2:



Иными словами, бесконечно малое изменение функции состояния dZ обладает свойствами полного дифференциала.
Уравнение состояния.
Изменение одного из свойств системы вызывает изменение, по крайней мере, еще одного свойства, т.е. имеется функциональная зависимость термодинамических параметров, которая носит название уравнения состояния.
Уравнение φ(p,v,T) = 0 является уравнением состояния чистого вещества, если 1) отсутствуют электрические и магнитные поля,
2) эн. гравитации и поверхности можно пренебречь,
3) v – раномерно заполнен объем,
4) во всех частях системы давление и температура постоянны.
pV = nRT – частный случай. Уравнение состояния различных систем термодинамика берется в готовом виде.
Глава 2. Температура. I закон термодинамики.
2.1. Температура.
Введем следующие два постулата:
изолированная система с течением времени всегда приходит в состояние равновесия и никогда самопроизвольно из него выйти не может;
если две системы порознь находятся в равновесии с третьей, то они находятся и в равновесии между собой.
Возьмем две равновесные изолированные системы и дадим им возможность взаимодействовать друг с другом путем теплообмена. Очевидно, возможны два варианта: либо равновесное состояние обеих систем не нарушится, либо нарушится, но стечением времени эта двойная система (в целом изолированная) придет в новое состояние равновесия (постулат 1). Отсюда можно сделать вывод, что существует некоторый параметр, который может указать нарушается ли равновесное состояние систем при тепловом контакте друг с другом или нет. Этот параметр называется температурой.
Итак: любая термодинамическая система обладает функцией состояния – температурой. Равенство температур во всех точках есть условие теплового равновесия двух систем или двух частей одной и той же системы.
Очевидно, во-первых, чтобы узнать одинаковы ли температуры двух систем, совершенно необязательно их приводить в тепловой контакт друг с другом, можно, согласно постулату 2, их привести в тепловой контакт с некоей третьей системой, которую мы обычно называем термометром.
Во-вторых, мы совершенно условно принимаем, что температура той системы выше, которая при тепловом контакте уменьшает свою энергию.
В-третьих, единицей измерения температуры является кельвин, который обозначается буквой К. Международным соглашением приняты следующие величины температур основных и вспомогательных реперных точек:
МПТШ – 68 (ред. 1975 г.)
Ратм Т,К t, 0C
Н2 тройная точка 6,939·10-2 13,81 -259,34
Ne кипение 1 27,102 -246,048
О2 тройная точка 1,54·10-3 54,361 -218,789
кипение 1 90,188 -182,962
^ тройная точка 0,680 83,798 -189,352
Н2О тройная точка 6,03·10-3 273,16 0,01
Н2О кипение 1 373,15 100
Sn плавление 1 505,1181 231,9681
Zn плавление 1 692,73 419,58
Ag плавление 1 1235,08 961,43
Au плавление 1 1337,58 1064,43
вторичные реперные точки (ред. 1975 г.)
Ne тройная 0,4283 24,561 -248,589
N2 тройная 0,1236 63,146 -210,004
N2 кипение 1 77,344 -195,806
Ar кипение 1 87,294 -185,856
CO2 сублим. 1 194,674 -78,476
Hg плавление 1 234,314 -38,836
H2O плавление 1 273,15 0
(С6Н5)2О тр.точка 1 300,02 26,87
С6Н5СООН тр.точка 1 395,52 122,37
In плавление 429,74 156,634
Bi плавление 544,592 271,442
Pb плавление 600,652 327,502
Hg кипение 1 629,81 356,66
S кипение 1 717,824 444,674
Эвт. CuAl плавление 821,41 548,26
Sb плавление 903,905 630,756
Al плавление 933,61 660,46
Cu плавление 1358,03 1084,88
Ni плавление 1728 1455
Co плавление 1768 1495
Pd плавление 1827 1554
Rh плавление 2236 1963
Al2O3 плавление 2327 2054
Ir плавление 2720 2447
Nb плавление 2750 2477
Mo плавление 2896 2623
W плавление 3695 3422
2.2. Внутренняя энергия системы. Работа и теплота.
В термодинамике под энергией понимают меру способности системы совершать работу, при этом полную энергию системы разделяют на внешнюю и внутреннюю. Внешняя энергия системы состоит из энергии движения системы как целого и потенциальной энергии системы в поле внешних сил, а энергия всех видов движения и взаимодействия частиц, входящих в систему, называется внутренней энергией и обозначается U.

Очевидно, что внутренняя энергия состоит из энергии поступательного и вращательного движения молекул, колебательного движения атомов, межмолекулярного взаимодействия, внутриатомной энергии заполнения электронных уровней, внутриядерной.
При росте температуры внутренняя энергия растет. При взаимодействии системы с окружающей средой происходит обмен энергией. Способ передачи энергии, связанный с изменением внешних параметров системы называется работой. Способ передачи без изменения внешних параметров называется теплотой, а процесс передачи теплообменом.
Количество энергии, переданное системой с изменением внешних параметров, называется работой А. Работа – способ передачи упорядоченного движения.
Работа и теплота Q не являются видами энергии, а характеризуют лишь способ передачи энергии, т.е. процесс. Состоянию системы не соответствует какое-либо значение А или Q. Мы будем считать, что A > 0, если система совершает работу против сил сопротивления внешней среды, и Q > 0, если энергия передается системе. Теплоту и работу измеряем в одних единицах.
2.3. I закон.
Любая термодинамическая система обладает функцией состояния – внутренней энергией. Эта функция состояния возрастает на величину сообщенного системе количества тепла dQ и уменьшается на величину совершенной системой внешней работы dA. Для замкнутой системы справедлив закон постоянства энергии.
dU = dQ – dA (1).
Если в наличии конечное изменение состояния, то имеем конечный процесс 1 → 2:







(2) превращается в

2.4. Работа расширения.
Пусть наша система характеризуется только одним внешним параметром объемом V. Давление Р характеризует взаимодействие системы с внешней средой и измеряется силой, отнесенной к единице поверхности. Если система находится в равновесии, то давление одинаково во всех частях системы и равняется внешнему давлению. Тогда работа изменения объема системы:





V = Const, то dV = 0, dA=0, то A=0, т.е. ΔU =


p = Const, то



Если система - идеальный газ, то


R = 0,082

Кроме того, при ^ Const для идеального газа U = Const, dU = 0, A = Q, т.е. все тепло, полученное идеальным газом, перешло в работу.
Для адиабатического процесса dQ = 0 (Q = 0), dU = -dA, -ΔU = A т.е. положительная работа совершается за счет уменьшения U.
2.5. Теплота и теплоемкость.
Теплоемкостью системы называется отношение количества тепла, сообщенного системе в каком-либо процессе, к соответствующему изменению температуры:

Поскольку Q-функция процесса, то




Связь между Ср и Сv для любых систем найдем следующим образом.
dQ = dU + pdV I закон.
Выберем в качестве независимых переменных объем и температуру, тогда внутренняя энергия:


а


Разделим правую и левую части на dT, получим:

Отношение

V = Const


Отсюда

Далее при p = Const

И для любых систем


Для идеальных газов

А поскольку pV = RT, то


Заметим, что


^
dQ = dU + pdV.
Для идеального газа dU = CVdT, следовательно, dQ = CvdT + pdV, и если процесс адиабатический dQ = 0, то



CV и Cp для идеального газа не зависят от температуры:



Поскольку


Для газов величину γ можно определить, измеряя скорость звука в газе:

Глава 3. Термохимия.
3.1 Энтальпия.
Если система характеризуется только одним внешним параметром V, т.е. может совершаться только работа расширения, тогда первый закон может быть записан в виде:

Если

d(pV) = pdV + Vdp и pdV = = d(pV) – Vdp, а подстановка в выражение для I закона дает:
dQ = dU + d(pV) – Vdp = d(U + pV) – Vdp = dH -Vdp
H ≡ U + pV | – функция состояния называется энтальпией. |



Выберем в качестве независимых переменных Т и р, тогда:






Очевидно, есть определенная симметрия между U и H:

3.2. Теплоты химических реакций. Закон Гесса.
При химических реакциях происходит изменение U, поскольку U продуктов реакции отличается от U исходных веществ. Пусть U2 – внутренняя энергия продуктов реакции, U1 – внутренняя энергия исходных веществ, ΔU = U2 –U1 - изменение U в результате химического процесса. Аналогично для энтальпии. Изучением теплот химических реакций занимается термохимия.
Q - теплота химической реакции, зависит от способа проведения химической реакции.






Т.о., в этих случаях Q равна изменению функции состояния и поэтому не зависит от пути процесса, а лишь от начального и конечного состояния.
Закон Гесса (1836). Если из данных исходных веществ можно получить заданные конечные продукты разными путями, то суммарная теплота процесса (при


3.3. Термохимические уравнения.
Для облегчения расчетов следует поступать так если p=Const, то




Уравнения химических реакций вместе с тепловыми эффектами называются термохимическими уравнениями и с ними можно оперировать как с алгебраическими уравнениями. Запомним, что если:


3.4. Связь между Qp и QV











CO + H2O = CO2 + H2 Δn = 0 Qp = Qv
N2 + 3H2 = 2NH3 Δn = -2 Qp < Qv
Zn (тв) + H2SO4 (ж) = ZnSO4 (p-p) + H2 (газ) Δn = +1 Qp > Qv
Но для реакции в конденсированной системе:
CuSO4 + 5H2O (ж) = CuSO4 5H2O (кр)


3.5. Теплота образования химических соединений.
Теплотой образования химического соединения называется тепловой эффект реакции образования одного моля данного соединения из соответствующих чисел молей простых веществ.
^

Замечания:
Стандартная теплота образования простого вещества равно нулю
Простое вещество имеет то агрегатное состояние, в котором оно находится в стандартных условиях.
^ (графит)

С (алмаз)

О2 (кислород)

О3 (озон)

Исключение: для фосфора – белый фосфор
Теплоты образования химических соединений обычно вычисляются по экспериментальным теплотам соответствующих химических реакций, например, для I2O5 :


1.


2.


3.


4.



5.



6.


7.


8.


9.


По закону Гесса:

Теплоты образования химических соединений приводятся в справочниках физико-химических величин и для вычисления теплового эффекта химических реакций необходимо из суммы теплот образования продуктов реакции вычесть сумму теплот образования исходных веществ:

Заметим, что в дальнейшем изложении мы введем еще ряд функций состояния и для них закон Гесса также справедлив.
3.6. Зависимость теплового эффекта химической реакции от температуры.
Если Hi мольная энтальпия химического соединения, то



Дифференцирование по температуре, разделение переменных и интегрирование в интервале от Т1 до Т2 дают (р = const):



и

Аналогично для ΔU и Cv.
Скачать файл (4084.4 kb.)