Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Контрольная работа по материаловедению - файл 1.doc


Контрольная работа по материаловедению
скачать (418 kb.)

Доступные файлы (1):

1.doc418kb.18.12.2011 09:51скачать

Загрузка...

1.doc

Реклама MarketGid:
Загрузка...
1. От каких основных факторов зависит величина зерна закристаллизовавшегося металла и почему?

Величина зерна зависит от:

– степени переохлаждения;

– температура нагрева и разливки жидкого металла;

– химический состав и присутствие посторонних примесей.

Охлаждение жидкости ниже равновесной температуры кристаллизации называется переохлаждением, которое характеризуется степенью переохлаждения (ΔТ):



Процесс кристаллизации состоит из образования центров кристаллизации и роста кристаллов из этих центров.

В свою очередь, число центров кристаллизации (ч.ц.) и скорость роста кристаллов (с.р.) зависят от степени переохлаждения (рисунок 2).



Рисунок 1 – Зависимость числа центров кристаллизации (а)

и скорости роста кристаллов (б) от степени переохлаждения

 

При небольшой степени переохлаждения ΔТ (малой скорости охлаждения) число зародышей мало. В этих условиях будет получено крупное зерно. С увеличением степени переохлаждения скорость образования зародышей возрастает, количество их увеличивается и размер зерна в затвердевшем металле уменьшается.

Часто источником образования зародышей являются всевозможные твердые частицы, которые всегда присутствуют в расплаве. Структурное сходство между поверхностями сопряжения зародыша и частицы посторонней примеси приводит к уменьшению размера критического зародыша, работы его образования, и затвердевание жидкости начинается при меньшем переохлаждении, чем при самопроизвольном зарождении.

Чем больше примесей, тем больше центров кристаллизации, тем мельче зерно.

Размер зерна сильно влияет на его механические свойства. Эти свойства, особенно вязкость и пластичность, выше, если металл имеет мелкое зерно.
2. Вычертите диаграмму состояния железо – карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 1,9% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидко­го раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллиза­ции сплавов с содержанием углерода до 0,1 % заканчи­вается по линии АН с образованием α (δ)-твердого раст­вора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при темпера­турах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристал­лизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3 % образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,146,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит+ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,036,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит+цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит+перлит и заэвтектоидные – перлит+цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит+цементит).

Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.



а) б)

Рисунок 2: а – диаграмма железо-цементит,

б – кривая охлаждения для сплава, содержащего 1,9% углерода
Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 – Ф,

где С – число степеней свободы системы;

К – число компонентов, образующих систему;

1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф – число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 1,9 % С, называется заэвтектоидной сталью. Его структура при комнатной температуре – цементит (вторичный) + перлит.

3. В результате термической обработки пружины должны получить высокую упругость. Для их изготовления выбрана сталь 50ХГФА. Укажите состав, назначьте и обоснуйте режим термической обработки, объяснив влияние легирования на превращения, происходящие при термической обработке данной стали. Опишите структуру и свойства пружин после термической обработки.


Среднеуглеродистая высококачественная сталь 50ХГФА, рекомендуемая для изготовления весьма ответственных и тяжелонагруженных пружин и рессор, изготовляемых из круглых калиброванных заготовок, имеет следующих химический состав: 0,48-0,55% C; 0,8-1,0% Mn; 0,95-1,2% Cr; 0,15-0,25% V; не более 0,025% S, 0,025% P.

Сталь 50ХГФА обладает высокой закаливаемостью, прокаливаемостью и хорошей прочностью. Применяется для изготовления крупных деталей, работающих при повышенных температурах (до 300°С), подвергающихся в процессе работы многократным переменам нагрузок и требующих длительного цикла работы.

Для получения оптимальных эксплуатационных свойств рекомендуется выполнять следующую термическую обработку: закалка в масло с температуры 850°С и высокий отпуск при температуре 520°С. Указанная термообработка обеспечивает получение следующих механических свойств (не менее): σ-1= 550 МПа; σв=1300 МПа, σт=1200 МПа, δ=6%, ψ=35%, твердость не более 269 НВ. Структура после закалки – мартенсит, структура после отпуска – троостит.

Легирование стали небольшим количеством ванадия, образующего труднорастворимые в аустените карбиды, измельчает зерно, что понижает порог хладноломкости, повышает работу распространения трещины КСТ и уменьшает чувствительность к концентраторам напряжений.

Легирующие элементы повышают устойчивость мартенсита к отпуску и задерживают коагуляцию карбидов. Карбидообразующие элементы (хром, ванадий) сильно измельчают зерно. Легирование хромом повышает прочностные свойства и уменьшает склонность к хрупкому разрушению. Наличие ванадия в стали увеличивает твердость и износостойкость, повышает теплостойкость.


Скачать файл (418 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации