Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Контрольная работа по материаловедению - файл 1.doc


Контрольная работа по материаловедению
скачать (313 kb.)

Доступные файлы (1):

1.doc313kb.18.12.2011 09:51скачать

Загрузка...

1.doc

Реклама MarketGid:
Загрузка...
1. Каким видом пластической деформации (холодной или горячей) является деформирование железа при температуре 500 °C. Объясните, как при этом изменяются структура и свойства железа.
В зависимости от соотношения температуры деформации и температуры рекристаллизации различают холодную и горячую деформации. Холодной деформацией называют такую, которую проводят при температуре ниже температуры рекристаллизации. Поэтому холодная деформация сопровождается упрочнением (наклепом) металла.

Деформацию называют горячей, если ее проводят при температуре выше температуры рекристаллизации для получения пол­ностью рекристаллизованной структуры.

При этих температурах деформация также вызывает упрочнение «горячий наклеп», которое полностью или частично снимается рекристаллизацией, протекающей при температурах обработки и при последующем охлаждении. В отличие от статической полигонизации и рекристаллизации, рассмотренных ранее, процессы полигонизации и рекристаллизации, происходящие в период деформации, называют динамическими.

По правилу А.А. Бочвара можно оценить в первом приближении температурный порог рекристаллизации по известной температуре плавления металла: .

Температура начала рекристаллизации железа:

°С.

Следовательно, деформирование железа при температуре 500 °C является горячей деформацией.

2. Вычертите диаграмму состояния железо-карбид железа, укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения (с применением правила фаз) для сплава, содержащего 4,3% С. Какова структура этого сплава при комнатной температуре и как такой сплав называется?

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидко­го раствора выделяются кристаллы твердого раствора углерода в α-железе (δ-раствор). Процесс кристаллиза­ции сплавов с содержанием углерода до 0,1 % заканчи­вается по линии АН с образованием α (δ)-твердого раст­вора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в γ-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3 % до 6,67 % углерода, при темпера­турах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристал­лизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3→Л[А2,146,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических – аустенит + ледебурит, эвтектических – ледебурит и заэвтектических – цементит (первичный) + ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении γ-железа в α-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% – структуру феррит + цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727ºС имеют структуру феррит + перлит и заэвтектоидные – перлит + цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147–727ºС при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода (линия ES). По достижении температуры 727ºС (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).

Структура эвтектических чугунов при температурах ниже 727ºС состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727ºС состоит из ледебурита превращенного и цементита первичного.

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 – Ф,

где С – число степеней свободы системы;

К – число компонентов, образующих систему;

1 – число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф – число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 4,3% С, называется эвтетическим чугуном. Его структура при комнатной температуре Ледебурит (П+Fe3C).




а) б)

Рисунок 1: а-диаграмма железо-цементит, б-кривая охлаждения для сплава, содержащего 4,3% углерода

3. Для изготовления некоторых деталей двигателей внутреннего сгорания выбран сплав АК4. Расшифруйте состав, укажите способ изго­товления деталей из данного сплава и приведите характеристики механи­ческих свойств сплава при повышенных температурах.


Сплав АК4 относится к системе Al–Cu–Mg–Ni–Fe. Он является одним из жаропрочных сплавов и вследствие этого в последнее время находит довольно широкое применение в конструкциях работающих при повышенных температурах. Сплав удовлетворительно деформируется в горячем состоянии, температурный интервал деформации 350–470°C. Сплав интенсивно упрочняется термической обработкой. Путем закалки и искусственного старения горячепрессованных профилей. Предел прочности может быть доведен до 43–45 кг/мм2 и предел текучести до 30–38 кг/мм2. Общая коррозионная стойкость сплава невысока. Поэтому профили из него желательно подвергать анодированию или окраске. Сплав удовлетворительно сваривается.

Химический состав и типичные механические свойства алюминиевого сплава АК4 после закалки и старения

Cu

Mg

Si

Другие элементы

σ0,2,

σВ,

δ, %

%

МПа

1,9–2,5

1,4–1,8

0,35

0,8–1,4 Fe

0,8–1,4 Ni

0,02–0,1 Ti

280

430

13


Термическая обработка: закалка с 525–540°С, охлаждение в воде, искусственное старение при 165–180°С в течение 10–16 ч.

Типичные механические свойства прессованных профилей из сплава АК4 после закалки и искусственного старения

Температура

испытаний, °С

σВ, МПа

σ0,2, МПа

δ, %

20

420

350

12

150

370

280

18

200

330

240

15

250

300

190

18

300

180

120

12


Сплав АК4 по назначению относятся к группе жаропрочных материалов. По своему химическому и фазовому составу они весьма близки к сплавам типа дуралюмин. Основными упрочняющими фазами при термической обработке этих сплавов, также как и у дуралюминов, служат фазы S и θ. Отличие заключается в том, что вместо марганца в качестве легирующих элементов в значительных количествах содержится железо, никель и кремний. Сплавы менее легированы по меди.

При добавке железа к сплаву 2%Al; 1,6%Mg прочностные свойства резко снижаются, железо образует с медью нерастворимое интерметаллическое соединение Cu2FeAl7, снижающее концентрацию меди в твердом растворе, тем самым уменьшая эффект упрочнения. Аналогичным образом влияют добавки никеля, который образует практически нерастворимую тройную с медью фазу Al6Cu3Ni. Однако при одновременном введении железа (до 2,5 %) и никеля (1,6 %) наблюдается резкое повышение прочностных свойств в закаленном и состаренном состоянии, при этом максимальные значения достигаются при содержании железа 1,6%. При других концентрациях железа и никеля максимальные значения прочностных свойств, обнаруживаются при соотношении железа и никеля, равном примерно 1:1. Железо и никель образуют тройное соединение FeNiAl9, которое уменьшает возможность образования нерастворимых соединений AlCuFe и AlCuNi, что увеличивает концентрацию меди в твердом растворе. С увеличением содержания фазы FeNiAl9 в сплаве повышается эффект термической обработки. Фаза FeNiAl9 улучшает обычные характеристики механических свойств и жаропрочность сплава.






Скачать файл (313 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации