Лекция. Понятие
скачать (256 kb.)
Доступные файлы (1):
1.doc | 256kb. | 18.12.2011 17:37 | ![]() |
содержание
- Смотрите также:
- МЭСИ - Студент в среде e-Learning [ лекция ]
- Информационно-измерительная техника и электроника [ документ ]
- И.Жеребкина Гендерная проблематика в парадигме культурных исследований [ лекция ]
- Понятие коммуникации [ лекция ]
- Щипков А.В. Во что верит Россия. Религиозные процессы в постперестроечной России [ документ ]
- Вводная лекция по информатике [ документ ]
- по курсу ВСТИ [ лекция ]
- Понятие одаренности в возрастной психологии [ лекция ]
- Основы медицинских знаний [ лекция ]
- Правовые основы гражданской защиты [ лекция ]
- Конспекты лекций по мировой экономике [ лекция ]
- Понятие, предмет регулирования, система международного права [ лекция ]
1.doc
ПОНЯТИЕ
1. Понятие как форма мышления
Свойства отдельных предметов или явлений люди отражают с помощью форм эмпирического познания - ощущений, восприятий, представлений. Например, в конкретной, единичной дыне мы ощущаем ее свойства - продолговатая, гладкая, сладкая, ароматная. Совокупность этих и других свойств дает нам восприятие (конкретный образ единичного предмета) данной дыни, при этом мы отражаем как ее существенные свойства, так и несущественные. Восприятие есть целостное отражение внешнего материального предмета, непосредственно воздействующего на органы чувств. В понятии же отражаются существенные признаки предметов. Что является признаком?
Признаки - это то, в чем предметы сходны друг с другом или отличны друг от друга. Признаками являются свойства и отношения. Предметы могут быть тождественными по своим свойствам (например, сахар и мед сладкие), но могут и отличаться ими (мед сладкий, а полынь горькая).
Признаки бывают существенные и несущественные. В понятии отражается совокупность существенных признаков, т.е. таких, каждый из которых, взятый отдельно, необходим, а все вместе взятые достаточны, чтобы с их помощью можно было отличить (выделить) данный предмет от всех остальных и обобщить однородные предметы в класс.
Понятие - это форма мышления, в которой отражаются существенные признаки одноэлементного класса или класса однородных предметов.
В языке понятия выражаются посредством слов или словосочетаний (групп слов). Например, “ягода”, “строение”, “добросовестный человек”, “полезное человеку растение”. Существуют слова-омонимы, имеющие различное значение, выражающие различные понятия, но одинаково звучащие (например, слово “коса” в смысле девичья коса, или как орудие труда, или как песчаная отмель). В суждении “Миру - мир!” - два значения у слова “мир”. Ученики пятого класса на уроке по логике для слова “ключ” привели 7 различных значений, а для слова “сеть” - более 10 значений. Учащиеся же десятого класса, изучающие логику, для слова “сеть” приводили 50, 60, 70 и более значений (некоторые из них нашли до сотни значений). Например, рыболовная сеть, телефонная сеть, компьютерная сеть, паучья сеть, электрическая сеть, агентурная сеть, сеть связи, волейбольная сеть, электронная сеть, транспортная сеть, информационная сеть, высоковольтная сеть, водопроводная сеть, газопроводная сеть, банковская сеть, торговая сеть, сеть мостов через Москву-реку и многие другие. Это различные понятия, включающие одно и то же слово “сеть”.
Существуют слова-синонимы, имеющие одинаковое значение, т. е. выражающие одно и то же понятие, но различно звучащие (например, око - глаз, враг - недруг, хворь - болезнь и др.). Для понятия “множество” (в смысле много) синонимами являются: “масса”, “тьма”, “уйма”, “бездна”, “пропасть”. Например: “Собралось множество людей; много цветов на лугу;
тьма-тьмущая птиц в небе; масса муравьев...”; “Из комнаты пришлось вымести пропасть мусору и вытереть повсюду пыль” (А. Н. Толстой); “Народу сбежалось бездна, все кричали, все говорили” (Л. Толстой)'.
Основными логическими приемами формирования понятий являются анализ, синтез, сравнение, абстрагирование, обобщение.
Понятие формируется на основе обобщения существенных признаков (т. е. свойств и отношений), присущих ряду однородных предметов.
Для выделения существенных признаков необходимо абстрагироваться (отвлечься) от несущественных, которых в любом предмете очень много. Этому помогает сравнение, сопоставление предметов. Для выделения ряда признаков требуется произвести анализ, т. е. мысленно расчленить целый предмет на его составные части, элементы, стороны, отдельные признаки. Обратная операция - синтез (мысленное объединение) частей предмета, отдельных признаков, притом признаков существенных, в единое целое. Мысленному анализу как приему, используемому при образовании понятий, часто предшествует анализ практический, т. е. разложение, расчленение предмета на его составные части. Мысленному синтезу предшествует практический сбор частей предмета в единое целое с учетом правильного взаимного расположения частей при сборке.
Анализ - мысленное расчленение предметов на их составные части, мысленное выделение в них признаков.
Синтез - мысленное соединение в единое целое частей предмета или его признаков, полученных в процессе анализа.
Сравнение - мысленное установление сходства или различия предметов по существенным или несущественным признакам.
Абстрагирование - мысленное выделение одних признаков предмета и отвлечение от других. Часто задача состоит в выделении существенных признаков и в отвлечении от несущественных, второстепенных.
Обобщение - мысленное объединение однородных предметов в некоторый класс.
Перечисленные выше логические приемы используются при формировании понятий как в научной деятельности, так и при овладении знаниями в процессе обучения (в школе, вузе и других учебных заведениях).
^
Всякое понятие имеет содержание и объем. Содержанием понятия называется совокупность существенных признаков одноэлементного класса или класса однородных предметов, отраженных в этом понятии. Содержанием понятия “квадрат” является совокупность двух существенных признаков: “быть прямоугольником” и “иметь равные стороны”.
Объемом понятия называют совокупность (класс) предметов, которая мыслится в понятии. Объективно, т. е. вне сознания человека, существуют различные предметы, например, школьники. Под объемом понятия “школьник” подразумевается множество всех школьников, которые существуют сейчас, существовали ранее и будут существовать в будущем. Класс (или множество) состоит из отдельных объектов, которые называются его элементами. В зависимости от их числа множества делятся на конечные и бесконечные. Например, множество столиц государств конечно, а множество натуральных чисел бесконечно. Множество (класс) А называется подмножеством (подклассом) множества (класса) В, если каждый элемент А является элементом В. Такое отношение между подмножеством А и множеством В называется отношением включения класса А в класс В и записывается так: А c. В. Читается: класс А входит в класс В. Это отношение вида и рода (например, класс “стол” входит в класс “мебель”).
Отношение принадлежности элемента а классу А записывается так: а є А. Читается: элемент а принадлежит классу А. Например, а - “Нева” и А - “река”.
Классы А и В являются тождественными (совпадающими), если А c В и В c А, что записывается как А=В.
^
В этом законе речь идет о понятиях, находящихся в родовидовых отношениях. Объем одного понятия может входить в объем другого понятия и составлять при этом лишь его часть. Например, объем понятия “хищная рыба” целиком входит в объем другого, более широкого по объему понятия “рыба” (составляет часть объема понятия “рыба”). При этом содержание первого понятия оказывается шире, богаче (содержит больше признаков), чем содержание второго. На основе обобщения такого рода примеров можно сформулировать следующий закон: чем шире объем понятия, тем уже его содержание, и наоборот. Этот закон называется законом обратнох-о отношения между объемами и содержаниями понятий. Он указывает на то, что чем меньше информации о предметах, заключенной в понятии, тем шире класс предметов и неопределеннее его состав (например, “водопад”), и наоборот, чем больше информации в понятии (например, “крупный водопад” или “крупный водопад в Канаде”), тем уже и определеннее круг его предметов, или даже мыслится только один предмет.
^
Предметы мира находятся друг с другом во взаимосвязи и взаимообусловленности. Поэтому и понятия, отражающие эти предметы, также находятся в определенных отношениях. Далекие друг от друга по своему содержанию понятия, не имеющие общих признаков, называются несравнимыми (например, “поэма” и “колодец”; “невоспитанность” и “радуга”), остальные понятия называются сравнимыми.
Сравнимые понятия делятся по объему на совместимые (объемы этих понятий совпадают полностью или частично) и несовместимые (их объемы не имеют общих элементов).
^
Отношения между понятиями изображают с помощью круговых схем (кругов Эйлера)', где каждый круг обозначает объем понятия. Кругом изображается и единичное понятие.
Равнозначными, или тождественными, называются понятия, которые, различаясь содержанием, имеют равные объемы. В них мыслится или одноэлементный класс, или один и тот же класс предметов, состоящий более чем из одного элемента. Примеры равнозначных понятий: 1) “река Нил” и “самая длинная река в мире”; 2) “автор романа “Красное и черное”, “автор романа “Пармская обитель”; 3) “равносторонний прямоугольник”: “ квадрат”; “равноугольный ромб”. Объемы тождественных понятий изображаются кругами, полностью совпадающими.
Понятия, объемы которых совпадают частично, т. е. содержат общие элементы, находятся в отношении перекрещивания. Примерами их являются следующие пары: “горожанин” и “садовод”; “студент” и “нумизмат”; “спортсмен” и “учащийся педагогического колледжа”. Они изображаются пересекающимися кругами (рис. 3). В заштрихованной части двух кругов мыслятся учащиеся педагогического колледжа, являющиеся спортсменами или (что одно и то же) спортсмены, являющиеся учащимися педагогического колледжа, в левой части круга А мыслятся учащиеся педагогического колледжа, не являющиеся спортсменами. В правой части круга В мыслятся спортсмены, которые не являются учащимися педагогического колледжа.
Отношение подчинения (субординации) характеризуется тем, что объем одного понятия целиком включается (входит) в объем другого понятия, но не исчерпывает его. Это отношение вида и рода; А - подчиняющее понятие (“цветок”), В - подчиненное понятие (“чайная роза”) (рис. 3).
^
Соподчинение (координация) - это отношение между объемами двух или нескольких понятий, исключающих, друг друга, но принадлежащих некоторому более общему (родовому) понятию (например, “пианино”, “скрипка”, “виолончель” принадлежат объему понятия “музыкальный инструмент”). Они изображаются отдельными неперекрещивающимися кругами внутри более обширного круга (рис. 3). Это виды одного и того же рода.
В отношении противоположности (контрарности) находятся объемы таких двух понятий, которые являются видами одного и того же рода, и притом одно из них содержит какие-то признаки, а другое эти признаки не только отрицает, но и заменяет их другими, исключающими (т. е. противоположными признаками). Слова, выражающие противоположные понятия, являются антонимами. Антонимы широко используются в обучении. Примеры противоположных понятий: “великан” - “карлик”; “белые туфли” - “черные туфли”. Объемы последних двух понятий

разделены объемом некоторого третьего понятия, куда, например, входит понятие “коричневые туфли”.
В отношении противоречия (контрадикторности) находятся такие два понятия, которые являются видами одного и того же рода, и при этом одно понятие указывает на некоторые признаки, а другое эти признаки отрицает, исключает, не заменяя их никакими другими признаками. Если одно понятие обозначить А (например, “глубокое озеро”), то другое понятие, находящееся с ним в отношении противоречия, следует обозначить не-А (т. е. “неглубокое озеро”). Круг Эйлера, выражающий объем таких понятий, делится на две части (А и не-А), и между ними не существует третьего понятия. Например, товар может быть либо дорогой, либо недорогой; комната бывает светлой или несветлой; животное -позвоночным или беспозвоночным и т. д. Понятие А является положительным, а понятие не-А - отрицательным. Понятия А и не-А также являются антонимами.
Задачи. Определить отношения между данными понятиями и изобразить эти отношения кругами Эйлера.
1. Игрушка, заводная игрушка, кукла, заводной автомобиль, пистолет

Рис. 4
2. Стихийное бедствие, землетрясение, явление при ды, наводнение, гроза

Рис.5
^
Определение (дефиниция) (от лат. definitio- определение) понятия - логическая операция раскрытия содержания понятия или значения термина.
С помощью определения понятий мы в явной форме раскрываем содержание понятия и тем самым отличаем круг определяемых предметов от других предметов.
Примеры: “Информатика - наука, предметом которой являются процессы и системы получения, хранения, передачи, распространения, использования и преобразования информации”
Понятие, содержание которого надо раскрыть, называется определяемым понятием (definiendит, сокращенно Dfd), а то понятие, посредством которого оно определяется, называется определяющим понятием (definiепсе, сокращенно Dfп), Правильное определение устанавливает между ними отношение равенства (эквивалентности).
Определения делятся на явные и неявные. В явных определениях даны определяемое понятие и определяющее, объемы которых равны, т. е. Dfd = Dfп. К их числу относится самый распространенный способ определения через ближайший род и видовое отличие, где формулируются существенные признаки определяемого понятия. Например: “Барометр - прибор для измерения атмосферного давления”; “Треугольник - многоугольник с тремя сторонами”.
Признак, указывающий на тот круг предметов, из числа которых нужно выделить определяемое множество предметов, называется родовым признаком, или родом. В приведенных выше примерах это “прибор”, “многоугольник”,
Признаки, при помощи которых выделяется определяемое множество предметов из числа предметов, соответствующих родовому понятию, называется видовым отличием (их может быть один или несколько).
Разновидностью определения через род и видовое отличие является генетическое определение, в котором указывается способ образования только данного предмета. Например: “Кислотами называются сложные вещества, образующиеся из кислотных остатков и атомов водорода, способных замещаться атомами металлов или обмениваться на них”; “Коррозия металлов - это окислительно-восстановительный процесс, образующийся в результате окисления атомов металла”.
Определения через ближайший род и видовое отличие и генетические определения входят в класс реальных определений, ибо они определяют само понятие, например, “информатика”, “треугольник”, “кислота” и др. К явным относятся и номинальные определения. Последние дают определение термина, который обозначает понятие, или вводят знаки, заменяющие понятие (обычно в свой состав они включают слово “называется”. Они часто встречаются в математике. Например: “Конус называется круговым, если основание его - круг”; “Прямая, соединяющая вершину конуса и центр основания, называется осью конуса”. Номинальными определениями, вводящими знаки, являются следующие: “g-ускорение свободно падающего тела”, “т - масса тела”, “знак u обозначает строгую дизъюнкцию” и т. п. В приведенных выше примерах определения (1), (3) - реальные, а определения (2), (4) и (5) - номинальные.
Чтобы определение было правильным, надо соблюдать следующие правила.
^
1. Определение должно быть соразмерным, т. е. объём определяющего понятия должен быть равен объему определяемого понятия. Dfd. = Dfп,.
^ Круг возникает тогда, когда определяемое понятие и определяющее понятие выражаются одно через другое.
3. Определение должно быть четким, ясным. Это правило означает, что смысл и объем понятий, входящих в Dfnдолжен быть ясным и определенным. Определения понятий должны быть свободными от двусмысленности; не допускается подмена их метафорами, сравнениями и т. д.
^
В отличие от явных определений, имеющих структуру Dfd= Dfn, в неявных определениях на место Dfп просто подставляется контекст, или набор аксиом, или описание способа построения определяемого объекта. Выделяют, по крайней мере, три вида.
Контекстуальное определение позволяет выяснить содержание незнакомого слова, выражающего понятие, через контекст, не прибегая к словарю для перевода (если текст на иностранном языке) или к толковому словарю (если текст дан на родном языке). Так, контекст помогает выяснить, что “заткнуть за пояс” означает “превзойти кого-либо”:
Индуктивные определения - такие, в которых определяемый термин используется в выражении понятия, которое ему приписывается в качестве его смысла. Примером индуктивного определения является определение понятия “натуральное число”
^
Если с помощью определения понятия раскрывается его содержание, то с помощью деления - его объем.
Деление понятия - это логическая операция, позволяющая с помощью избранного основания деления (признака, по которому осуществляется деление) распределить объем делимого понятия (множество) на ряд членов деления (подмножеств). При делении понятия объем делимого (родового) понятия раскрывается путем перечисления его видов. Например, делимое (родовое) понятие “инертный газ” делится на следующие члены деления (виды): “гелий”, “неон”, “аргон”, “криптон”, “ксенон”, “радон”. В зависимости от цели, практических потребностей одно понятие можно разделить по различным основаниям деления (например, по функционированию во времени вулканы делятся на действующие, уснувшие и потухшие; по форме - на центральные и трещинные).
Правила деления понятий
Правильное деление понятия предполагает соблюдение определенных правил:
^ т. е. сумма объемов видовых понятий должна быть равна объему (делимого) родового понятия. Например: “Материки в современную геологическую эпоху делятся на Евразию, Африку, Австралию, Северную Америку, Южную Америку и Антарктиду”. Если ряд членов деления исчисляется десятками, то для соблюдения правила соразмерности после перечисления некоторых членов деления пишут “и др.”, “и т. п. ” или “и т. д.”: “Личные документы - это заявления, автобиографии, расписки, доверенности, завещания, удостоверения, паспорта, свидетельства и др.”
Нарушение этого правила ведет к ошибкам двух видов:
а) неполное деление, когда перечисляются не все виды данного родового понятия. Ошибочными будут такие деления: “Энергия делится на механическую и химическую” (здесь нет, например, указания на электрическую энергию, атомную энергию). “Арифметические действия делятся на сложение, вычитание, умножение, деление, возведение в степень” (не указано “извлечение корня”);
б) деление с лишними членами. Примером такого ошибочного деления служит: “Углы делятся на прямые, тупые, острые и накрест лежащие”. Здесь лишний член (“накрест лежащие углы”).
^ В противном случае произойдет перекрещивание объемов понятий, выражающих члены деления. Правильные деления: “Рефлексы делятся на условные и безусловные”; “Семенные растения делятся на голосемянные и покрытосемянные” Неправильное деление: “Растения делятся на съедобные и несъедобные, однолетние и многолетние”, т. к. здесь не одно, а два основания деления.
^ т. е. не должны иметь общих элементов (пересекаться). Например: “Основные компоненты ЭВМ делятся на: процессор, память, устройства ввода - вывода”.
Это правило тесно связано с предыдущим, так как если деление осуществляется не по одному основанию, то члены деления не будут исключать друг друга. Примеры ошибочных делений: “Часы делятся на наручные, настенные, башенные, настольные, золотые, анодированные, песочные”; “Птицы делятся на перелетные, зимующие и хищные”. В этих примерах члены деления не исключают друг друга. Это следствие допущение ошибки смешения различных оснований деления.
^ т. е. нельзя делать скачки в делении. Например, нельзя делить члены предложения на подлежащее, сказуемое и второстепенные члены, а надо сначала разделить на главные и второстепенные, а уже потом главные члены предложения делить на подлежащее и сказуемое.
Будет допущена ошибка, если мы разделим удобрения на органические, азотные, фосфорные и калийные. Следует сначала разделить удобрения на органические и минеральные, а затем уже минеральные удобрения разделить на азотные, фосфорные и калийные.
^
и дихотомическое деление
Приведенные примеры деления понятия иллюстрировали деление по видообразующему признаку, когда основанием деления служит признак, по которому образуются видовые понятия. Примеры деления по видообразующему признаку: “Ядерные взрывы бывают в космосе, воздушными, наземными, подводными, подземными” (в зависимости от вида среды, где произошел взрыв); “Водоемы делятся на пресные и соленые”.
Другим видом деления понятия является дихотомическое (двучленное) деление, или дихотомия.
Дихотомия (от греч. dichotomiа - сечение на две части). Объем цедимого понятия делится на два противоречащих понятия (А и не-А). Например: “Внимание делится на произвольное и непроизвольное”; “Животные делятся на позвоночных и беспозвоночных”;
“Почвы делятся на черноземные и нечерноземные”; “Грибы делятся на съедобные и несъедобные”. Иногда понятие не-А снова целится на В и не-В, затем не-В делится на С и не-С и т. д. Схема и пример дихотомического деления даны на рис. 6, 7.
Дихотомическое деление удобно: оно всегда соразмерно, члены деления исключают другу друга, деление производится только по одному основанию. Однако дихотомия применима не всегда. Например, нельзя делить науки на точные и неточные, а художественные произведения на хорошие и нехорошие, ибо четко указать критерий в этих случаях весьма трудно: это понятия с “размытым” объемом.

Рис. 6 Рис. 7
Отважная и талантливая американская исследовательница Дайан Фосси, 13 лет наблюдавшая за особенностями жизни горилл, буквально вписавшись в их сообщество, приводит пример дихотомического деления понятия “гнездо горилл”: “Нам удалось увидеть несколько гнезд горилл - наземных и древесных. Наземное гнездо не что иное, как обычная для наземных млекопитающих лежка, устланная заломанными ветками кустарника и травы. Зато древесное гнездо - заметное издалека сооружение на высоте 3-5 метров на крупных ветвях у ствола дерева”'.
Операция деления понятия применяется тогда, когда надо установить, из каких видов состоит родовое понятие. От деления следует отличать мысленное расчленение целого на части. Например, “Год делится на январь, февраль, март, ..., декабрь”;
“Дом делится (расчленяется) на комнаты, коридоры, крышу, крыльцо”; “Обед состоял из трех блюд” и др. Части целого не являются видами рода, т. е. делимого понятия. Мы не можем сказать: “Комната есть дом”, а можем сказать: “Комната есть часть дома”.
Прием расчленения целого на части широко используется в обучении. Он применяется тогда, когда надо показать, из каких частей (отделов, членов) состоит предмет. Приведем примеры из учебника по анатомии и физиологии. Понятие “скелет человека” позволяет четко проиллюстрировать прием расчленения целого на части. “В скелете человека различаются следующие части: скелет головы, туловища и конечностей”.
Примеры мысленного расчленения целого на части из области ботаники: “Строение цветка ржи: цветочная чешуя, тычинки, рыльце, завязь”; “Строение клетки кожицы лука: ядро, цитоплазма, оболочка, вакуоли”. Этот прием широко применяется и в начальной школе. В учебнике “Природоведение” (2 класс) читаем: “Части растения: корень, стебель, лист, цветок, плод с семенами”.
Классификация
Классификация является разновидностью деления понятия, представляет собой вид последовательного деления и образует развернутую систему, в которой каждый ее член (вид) делится на подвиды и т. д. Классификация сохраняется весьма длительное время, если она имеет научный характер. Например, постоянно уточняется и дополняется классификация элементарных частиц. От обычного деления классификация отличается относительно устойчивым характером. Вот три примера классификации: “В организме животных и человека существуют четыре группы тканей: покровная, соединительная, мышечная и нервная. Организм высших растений построен из пяти основных типов тканей: образовательной, покровной, основной, механической и проводящей”; “Простейшие подразделяются на четыре группы (класса): жгутиковые, корненожки, споровики, инфузории”'.
Чтобы классификация была правильной, необходимо выполнять все правила операции деления.
Существуют классификация по видообразующему признаку и дихотомическая классификация. Вышеприведенные три примера представляют классификацию по видообразующему признаку. “Зеркала классифицируются на плоские и сферические; сферические зеркала классифицируются на вогнутые и выпуклые” - пример дихотомической классификации.
Очень важен выбор основания классификации. Разные основания дают различные классификации одного и того же понятия, например, понятия “рефлекс”'.
Классификация может производиться по существенным признакам (естественная) и по несущественным признакам (вспомогательная) .
^ это распределение предметов по группам (классам) на основании их существенных признаков. Зная, к какой группе принадлежит предмет, мы можем судить о его свойствах. Д. И. Менделеев, расположив химические элементы в зависимости от их атомного веса, вскрыл закономерности в их свойствах, создав Периодическую систему элементов, позволившую предсказать свойства не открытых еще химических элементов.
Естественная классификация животных охватывает до 1,5 млн. видов, а классификация растений включает около 500 тыс. Однако каждая классификация относительна, приблизительна, ибо существуют переходные формы. Иногда переходная форма составляет самостоятельную группу (вид). Например, при классификации наук возникают такие переходные формы, как биохимия, геохимия, физическая химия, космическая медицина, астрофизика и др. Переходные случаи мы встретим и при классификации частей речи.
^
В ходе изучения любого учебного предмета учащимся приходится иметь дело с классификацией. Проанализируем некоторые из естественных классификаций, имеющихся в русском языке, в котором различаются следующие части речи: самостоятельные, служебные и междометия. Далее классифицируются самостоятельные части речи - это имя существительное, имя прилагательное, имя числительное, глагол, наречие, местоимение. Классификация служебных частей речи такая: предлоги, союзы, частицы, модальные слова. Отдельную группу составляют междометия. Итак, классификация включает 11 видов частей речи. В учебнике по русскому языку, кроме этих видов, предусматриваются и переходные случаи. Границы между отдельными разрядами слов очень подвижны: при изучении отдельных частей речи могут возникнуть различные случаи перехода из одной части речи в другую. Хорошим средством наглядного представления классификации являются древовидные графы (или деревья).
Примерами естественных классификаций, используемых при обучении, могут быть следующие: классификация зон растительности, защитных окрасок животных, групп крови, типов воздушных масс и климатических поясов на территории России; геохронологическая таблица эр (кайнозойская, мезозойская и др.) и периодов в каждой эре; видов и жанров искусства; типов ЭВМ;
классификация природных зон (тундра, тайга, лесостепь и др.);
классификация направлений в литературе конца XIX - начала XX в.; классификация систем нумераций; классификация неравенств, видов плоских фигур, сферических тел (в математике);
классификация отраслей педагогики и методов обучения; классификация видов умозаключений, суждений, понятий, гипотез, способов опровержения (в логике) и многие другие.
Ни один учебный предмет не может обойтись без соответствующих классификаций. При этом как учителя, так и учащиеся должны знать общие правила, соблюдение которых поможет избежать ошибок в конкретных классификациях.
^ служит для более легкого отыскания предмета (или термина), поэтому осуществляется на основании их несущественных признаков. Они не позволяют судить о свойствах предметов (например, список фамилий, расположенных по алфавиту, алфавитный каталог книг, журнальных статей). Примерами вспомогательных классификаций являются: предметные или предметно-именные указатели в словарях, справочниках, учебниках и т. д.; справочники лекарственных препаратов, расположенные в алфавитном порядке; алфавитный список наиболее употребительных названий ярких звезд.
^
Ограничение - логическая операция перехода от родового понятия к видовому (например, “поэт”, “великий поэт”, “великий английский поэт”, “великий английский поэт Джордж Ноэл Гордон Байрон”). При ограничении мы переходим от понятия с большим объемом к понятию с меньшим объемом. Пределом ограничения является единичное понятие (в данном примере это “великий английский поэт Джордж Ноэл Гордон Байрон”).
Обобщение — логическая операция, обратная ограничению, когда осуществляется переход от видового понятия к родовому путем отбрасывания от первого его видообразующего признака или признаков. Пример обобщения: “Опера П. И. Чайковского “Евгений Онегин”, “опера П. И. Чайковского”, “опера русского композитора XIX в.”, “опера русского композитора”, “опера”, “произведение музыкального искусства”, “произведение искусства”. При обобщении мы переходим от понятия с меньшим объемом к понятию с большим объемом. Обобщение применяется во всех определениях понятий, которые даются через род и видовое отличие. Пределом обобщения являются категории (философские, общенаучные, категории конкретных наук). С помощью кругов Эйлера (см. § 2. Отношения между понятиями) изобразим графически обобщение и ограничение понятий.
Обобщение и ограничение понятий схематически можно изобразить так:

Рис. 8 Рис. 9
При обобщении отбрасываются признаки, при этом содержание уменьшается, а объем увеличивается. При ограничении, наоборот, к родовому понятию А добавляются все новые и новые видовые признаки (а, b, с и т. д.), поэтому объем уменьшается, а содержание увеличивается.
Произведем обобщение и ограничение понятий: “волк” и “река” (второе понятие обобщали и ограничивали учащиеся десятого класса педагогического колледжа на уроке логики).
В педучилищах, педколледжах логическая операция обобщения понятия применяется буквально во всех случаях, когда даются те или иные определения через род и видовое отличие. Например: “Имя существительное - это часть речи...”; “Натрий - это химический элемент” или лучше (через ближайший род) “Натрий-это металл...”
Приведем примеры из русского языка. Ограничением понятия “предложение” будут следующие понятия: “простое предложение”, “односоставное предложение”, “односоставное предложение с главным членом сказуемым”, “безличное предложение”. На этом примере видна некоторая взаимосвязь операции ограничения с операцией классификации понятия “предложение”.
Волк
Обобщение | Ограничение |
1. Хищное млекопитающее семейства собачьих (Сатйае) | 1. Североамериканский капот (Саnis latrans) |
2. Хищное млекопитающее | 2. Североамериканский кайот, обитающий в североамериканских прериях |
3. Млекопитающее | 3. Североамериканский кайот, живущий в настоящее время в североамериканских прериях |
4. Позвоночное животное | |
5. Животное | |
б. Организм | |
Река
Ограничение | Обобщение |
1. Река в Африке | 1. Большой пресный проточный водоем |
2. Река в Африке, впадающая в Средиземное море | 2. Пресный проточный водоем |
3. Большая река в Африке, впадающая в Средиземное море | 3. Пресный водоем |
4. Большая река в Египте | 4. Водоем |
5. Река Нил | |
Операции обобщения и ограничения понятий следует отличать от отношений целого к части (и наоборот). Например, неправильно обобщать понятие “городская улица” до понятия “город” или ограничивать понятие “педагогический институт” до понятия “факультет педагогического института”, так как в обоих случаях речь идет не об отношении рода и вида, а об отношении части и целого.
Скачать файл (256 kb.)