Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Васильев Д.А. Курс лекций по микробиологии молока и молокопродуктов - файл 1.doc


Васильев Д.А. Курс лекций по микробиологии молока и молокопродуктов
скачать (878.4 kb.)

Доступные файлы (1):

1.doc879kb.19.12.2011 09:08скачать

содержание

1.doc

  1   2   3   4   5   6
КУРС ЛЕКЦИЙ

ПО МИКРОБИОЛОГИИ МОЛОКА

И МОЛОКОПРОДУКТОВ


УДК…637.1:579

Курс лекций по микробиологии молока и молокопродуктов подготовлен профессором кафедры микробиологии, вирусологии, эпизоотологии и ветеринарно – санитарной экспертизы Ульяновской ГСХА, д б н Васильевым Д.А.
ВСТУПЛЕНИЕ.

В данном лекционном курсе, в отличие от лекций по микробиологии мяса и мясопродуктов, значительное внимание уделено характеристике бактерий находящихся в молоке и молочных продуктах. Это обусловлено тем, что микроорганизмы контаминирующие мясо и мясопродукты студенты изучают достаточно детально по курсу микробиологии. Молочнокислые микроорганизмы приходится изучать в данном разделе учебной дисциплины – “Микробиология продуктов животноводства”.

Первые научные исследования молочнокислых бактерий были проведены Л. Пастером, результаты он опубликовал в 1857 г. С тех пор молочнокислые бактерии привлекают к себе внимание специалистов. На основе использования этих микроорганизмов создаются и развиваются крупные отрасли пищевой промышленности.

В начале 90 – х годов вышел новый Международный стандарт по номенклатуре молочнокислых бактерий. Однако, учитывая, что за последние 10 лет в стране практически не выходила справочная литература по микробиологии молока в предлагаемом лекционном курсе сохранены названия микроорганизмов применяемых в нашей стране до 90-х годов, что позволит студентам пользоваться сопоставимыми названиями бактерий в основной литературе по данному вопросу. Ниже приводится переводная таблица названий основных молочнокислых бактерий в соответствии с Между­народным стандартом по номенклатуре.

^ Номенклатура молочнокислых бактерий

Названия по Международному стандарту Старые названия

Lac. lactis subsp. lactis Str. lactis, Str. Lactis subsp. lactis

Lac. lactis subsp. cremoris Str. cremoris

Lac. lactis subsp. lactis Str. diacetylactis, Str. acetoinicus

(biovar diacetylactis)

Leuconostoc mesenteriodes Str. citrovorus, Leu.citrovoriim

subsp. cremoris

Leuconostoc mesenteriodes Str. paracitrovorus,

subsp. dextranicum Leuconostoc lactis

Lactobacillus delbrueckii . Lactobacillus lactis

subsp. lactis

Lactobacillus delbrueckii Lactobacillus bulgaricus

subsp. bulgaricus

Lactobacillus rhamnosus Lactobacillus casei,

Lactobacillus casei subsp. Rhamnosus

Лекция 1. МИКРОФЛОРА ПИТЬЕВОГО МОЛОКА

^ ИСТОЧНИКИ ОБСЕМЕНЕНИЯ МОЛОКА МИКРООРГАНИЗМАМИ

Содержание микроорганизмов в сыром молоке отражает уро­вень гигиены получения молока, особенно степень чистоты до­ильных установок, условия его хранения и транспортирования. Известны два пути обсеменения молока микроорганизмами: эндогенный и экзогенный. При эндогенном пути молоко обсе­меняется микроорганизмами непосредственно в вымени живот­ного. Экзогенное обсеменение происходит из внешних источни­ков: кожи животного, подстилочных материалов, кормов, возду­ха, воды, доильной аппаратуры и посуды, рук и одежды работников молочной фермы.

^ Эндогенное обсеменение. В молоке вымени всегда содержится определенное количество микроорганизмов. В железистой части вымени микроорганизмы могут находиться непостоянно и в еди­ничном количестве клеток. В выводных протоках и молочной цистерне количество бактерий может достигать нескольких десят­ков или сотен клеток в 1 см. Это микроорганизмы — комменсалы вымени. К ним относятся энтерококки, мик­рококки, иногда маститные стрептококки, коринебактерии и др.

Молоко вымени, получаемое стерильно не через сосковый канал, называют асептическим. Оно содержит незначительное количество микроорганизмов — десятки-сотни клеток в 1 см3. У старых коров больше содержится в вымени микробов, чем у молодых.

Здоровый сосковый канал защищает вымя от внешней среды благодаря его анатомическому строению. Кроме того, свободные жирные кислоты, синтезируемые слизистой оболочкой соскового канала, оказывают бактерицидное воздействие. Секрет соскового канала содержит также фосфолипиды, убивающие маститные стрептококки и другие микроорганизмы. При нарушении защит­ных функций соскового барьера микроорганизмы, постоянно на­ходящиеся в сосковом канале, могут попадать в вымя и там размножаться.

У входа в сосковый канал, в каплях молока, оставшихся от предыдущей дойки, постоянно размножаются микроорганизмы, образуя так называемую бактериальную пробку, в которой коли­чество бактерий достигает сотен тысяч клеток в 1 см3 молока. Поэтому перед дойкой первые струйки молока необходимо сдаи­вать в отдельную посуду, т. е. бактериальные пробки не должны попадать в общую массу молока.

Эндогенное обсеменение молока вымени может происходить также при маститах, септических инфекционных болезнях, трав­мах и воспалительных процессах соскового канала и вымени.

^ Экзогенное обсеменение. Важнейшим источником бактерий сырого молока является кожа животного и особенно кожа выме­ни и сосков, на которые надевают доильные стаканы. Молочная пленка, образующаяся в процессе доения между кожей сосков и доильными стаканами, наличие на коже грубых и мелких складок, а также относительно высокая температура создают благоприятные условия для развития микрофлоры. Она состоит из микрококков, энтерококков, кишечных палочек и других сапрофитов, а также патогенных и нежелательных для производства молока микроорганизмов.

Следует стремиться к тому, чтобы после обмывания и дезин­фекции перед доением концентрация микробов на коже вымени была не выше 103 микробов на 1 см2.

Подстилочные материалы из соломы и сена являются сущест­венным источником загрязнения кожного покрова животного, а затем и молока кишечными палочками, маслянокислыми бакте­риями, энтерококками, гнилостными спорообразующими дрож­жами, плесенями, молочнокислыми бактериями и др. Нельзя использовать в качестве подстилки торфяную крошку.

В кормах также содержится много разнообразных микроорга­низмов. В свежескошенной траве больше молочнокислых бакте­рий, в грубых кормах — гнилостных спорообразующих аэробных бацилл. В кормах содержатся пропионовокислые, уксуснокислые бактерии, актиномицеты, дрожжи и др.

Кормление коров прокисшим или смешанным с землей кор­мом, плохим силосом или кислой бардой в сочетании с имею­щимися недостатками в гигиене содержания животных ведет к загрязнению молока маслянокислыми и другими бактериями.

Недоброкачественный корм вызывает у коров понос, а моло­ко загрязняется бактериями через содержимое кишечника, в 0,1 г которого содержится от 10 до 100 тыс. бактерий. В содер­жимом кишечника возможно наличие патогенных и нежелатель­ных для молочного производства микроорганизмов.

Часто выделяющиеся у коров сальмонеллы имеются только в сыром молоке, так как энтеробактерии уничтожаются при пасте­ризации.

Поскольку молоко в настоящее время получают и хранят преимущественно в замкнутых системах, сырое молоко загрязня­ется в основном при ручном доении. Однако при смене молокопроводов всегда подсасывается наружный воздух.

Общее количество микроорганизмов в воздухе составляет 300—1500 клеток в 1 м3.

Содержание микробов в воздухе в течение одного дня сильно меняется. Во время операций раздачи и приема корма количест­во микробов воздуха достигает максимальной величины. Качест­венный состав микрофлоры воздуха представлен чаще микрокок­ками, сарцинами, клетками дрожжей и спорами плесеней.

Вода, отвечающая требованием ГОСТа на питьевую воду и применяемая для мытья молочной посуды и аппаратуры, содер­жит незначительное количество микроорганизмов. Вода открытых водоемов или загрязненная вода содержит флюоресцирую­щие палочки, кокковую микрофлору, кишечные палочки, гни­лостные бактерии и др. Доильные установки и резервуары для хранения молока явля­ются основным источником заражения молока психротрофными бактериями, преимущественно псевдомонадами. Психрофильные микробы размножаются в молочно-водной среде на плохо вымы­тых и дезинфицированных установках, находясь в активной фазе размножения. У них отсутствует период адаптации — лагфаза. В плохо вымытой и непросушенной аппаратуре размножаются также молочнокислые бактерии, кишечные палочки, микрокок­ки, гнилостные микроорганизмы и др.

Руки и одежда работников ферм могут стать источником об­семенения молока возбудителями (кишечными палочками, ста­филококками, стрептококками и др.) различных болезней. Ра­ботники ферм, соприкасающиеся с молоком, обязаны строго выполнять правила личной гигиены, предупреждающие обсеме­нение молока микроорганизмами.

^ ИЗМЕНЕНИЕ МИКРОФЛОРЫ МОЛОКА ПРИ ХРАНЕНИИ

Общий ход молочнокислого процесса в молоке. В зависимости от формы клеток молочнокислые бактерии делят на две группы: молочнокислые стрептококки и молочнокислые палоч­ки. Эти микроорганизмы имеют также и неодинаковые физиологиче­ские признаки. По отношению к температуре различают мезофильные и термофильные молочнокислые бактерии; по характеру сбраживания молочного сахара — гомоферментативные (образуют почти одну молочную кислоту) и гетероферментативные (наряду с молоч­ной кислотой образуют значительное количество побочных продук­тов). После внесения небольшого количества молочнокислых стрептококков (петлей) в молоке при оптимальной температуре их развития (30° С) начинают размножаться бактерии. Если культура находится в состоянии полной активности (молодая), уже в самом начале процесса наблюдается максимальная скорость ее размноже­ния. Если культура менее активная (старая), потребуется некоторое время, прежде чем бактерии начнут размножаться с максимальной скоростью.

Во время хранения молока изменяется количество содержа­щихся в нем микроорганизмов, а также соотношение между отдельными группами и видами бактерий. Характер этих измене­ний зависит от температуры и продолжительности хранения мо­лока, а также от степени обсеменения и состава микрофлоры. Размножающаяся и накапливающаяся в процессе хранения мо­лока микрофлора называется вторичной. Изменение вторичной микрофлоры происходит по определенным закономерностям, т. е. проходит через определенные естественные фазы развития, изученные С. А. Королевым: бактерицидная фаза, фаза смешан­ной микрофлоры, фаза молочнокислых бактерий, фаза дрожжей и плесеней.

^ Бактерицидная фаза. Время, в течение которого микроорга­низмы не развиваются в свежевыдоенном молоке и даже частич­но отмирают, называют бактерицидной фазой. Бактерицидные свойства молока обусловлены присутствием в нем лизоцимов, нормальных антител, лейкоцитов и др.

Лизоцимы (лактенины) представляют собой вещества белковой природы (ферменты), образующиеся в организме жи­вотного и обладающие бактерицидным и бактериостатическим действием по отношению ко многим видам бактерий. Большое количество лизоцимов находится в различных жидкостях орга­низма: слезной жидкости, слюне, спинно-мозговой жидкости, молоке и особенно в молозиве и околоплодной жидкости.

В молоке коров находятся четыре группы лизоцимов: лизоцим М (молока), лизоцим В (вымени), лизоцим О (основной), лизоцим Т (термостабильный). Они вырабатываются молочной железой или поступают в молоко из крови. При пастеризации молока лизоцимы (кроме термостабильного) инактивируются.

Наибольшей бактерицидной активностью отличается лизоцим М. Он действует губительно на патогенных стафилококков, маститного стрептококка, сальмонелл, кишечных палочек, возбудителя сибирской язвы и других, особенно грамположительных, микроорганизмов. Отсутствие лизоцима М в свежевыдоенном! молоке свидетельствует о заболевании молочной железы; такое молоко является биологически неполноценным, так как в нем! беспрепятственно могут размножаться многие виды микроорга­низмов.

В молоке, содержащем большое количество микроорганизмов” лизоцимы быстро расходуются и довольно скоро утрачивают! свое антибактериальное действие.

Антитела— гамма-глобулины, образующиеся в макроорганизме в ответ на введение в него микроорганизмов, их продуктов обмена или других чужеродных белковых веществ. Антител являются термолабильными, т. е. они разрушаются при пастери­зации молока.

Лейкоциты (фагоциты) — клеточные элементы крови макроорганизма, способные активно поглощать и растворять живые и убитые микроорганизмы. Они всегда содержатся в не­большом количестве в молоке, выполняя защитную антибакте­риальную функцию. При воспалении молочной железы количество лейкоцитов в молоке увеличивается в сотни раз, что является диагностическим признаком ранних форм маститов. При тепловой обработке молока лейкоциты уничтожаются.

Таким образом, наличие бактерицидной фазы молока обусловлено присутствием биологических защитных факторов, со­зданных самой природой.

Продолжительность бактерицидной фазы имеет большое зна­чение в сохранении хорошего качества молока. Она зависит от температуры хранения молока, степени его обсеменения, состава микрофлоры и индивидуальных особенностей дойных животных. Особенно большое влияние на продолжительность бактерицидной фазы оказывает температура хранения молока. Чем она выше, тем короче бактерицидная фаза. Зависимость продолжительности бактерицидной фазы от сте­пени обсеменения молока тоже обратная: чем больше микроор­ганизмов в молоке, тем менее продолжительна бактерицидная фаза. С увеличением концентрации бактерий в молоке на не­сколько тысяч при одной и той же температуре хранения про­должительность бактерицидной фазы сокращается в два раза.

Таким образом, существует два пути увеличения продолжи­тельности бактерицидной фазы: получение бактериально чистого молока и его немедленное охлаждение до низких плюсовых тем­ператур.

^ Фаза смешанной микрофлоры. По окончании бактерицидной фазы начинается ничем не задерживаемое размножение всех групп микроорганизмов, находящихся в молоке и способных в нем размножаться при данных условиях. Интенсивность их раз­множения будет различна. Эта фаза является периодом наиболее быстрого размножения микрофлоры. Она продолжается от 12 ч, до 1—2 сут. В течение этого периода микрофлора молока возрас­тает от немногих тысяч, которые оно имеет к концу бактериаль­ной фазы, до сотен миллионов. В остальных фазах развития концентрация микробов может увеличиться до З млрд. Такой быстрый темп размножения объясняется тем, что в молоке в это время еще не накопились продукты жизнедеятельности микро­организмов, задерживающие их дальнейшее развитие. Лишь к концу фазы продукты обмена в виде повышения кислотности будут задерживать развитие многих групп микроорганизмов, чем и определяется граница между фазой смешанной микрофлоры и следующей.

Качественный состав микрофлоры в фазе определяется соста­вом первичной микрофлоры молока, скоростью размножения различных видов микроорганизмов и температурными условиями хранения молока. В зависимости от температуры хранения в данной фазе в молоке может развиваться микрофлора трех типов: криофлора (флора низких температур), мезофлора (флора средних темпера­тур), термофлора (флора высоких температур). Криофлора развивается при хранении молока в охлаж­денном состоянии при температуре от 0 до 10 "С. В этих услови­ях микроорганизмы размножаются очень медленно. Например, при температуре 4,5 "С накопление биомассы за 24 ч составляет 9 %. Молочнокислые бактерии практически не размножаются. Если молоко хранят и далее при низких температурах, то микро­флора не выходит за пределы фазы смешанной микрофлоры, которая может продолжаться довольно долго, не давая резких видимых изменений молока.

Однако количество микрофлоры в молоке неуклонно нарастает, и постепенно накапливаются про­дукты ее жизнедеятельности. Даже при температуре около О °С в течение двух недель количество бактерий в молоке может увели­чиваться в десятки тысяч раз и составлять сотни миллионов клеток в 1 см3. При этом характер изменений молока обусловлен Развитием сначала микрококков, затем палочек Вас. meqatherium, Вас. subtilis и других гнилостных микроор­ганизмов, т. е. процессы идут в направлении гнилостного разло­жения белков и отчасти разложения жира.

Мезофлора развивается при хранении молока в темпера­турных пределах от 10 до 35 °С, т. е. при хранении молока без охлаждения. При этом характерны быстрое размножение микро­организмов и неуклонное нарастание количества молочнокислой микрофлоры, которая, в конце концов, получает решительный перевес над остальными микроорганизмами, чем и обусловлен переход к следующей фазе — фазе молочнокислых бактерий. Од­нако в составе микрофлоры, особенно в начальной стадии фазы смешанной микрофлоры, развиваются бактерии группы кишеч­ных палочек, флюоресцирующие и другие гнилостные бактерии, ухудшающие качество молока. Поэтому надо стремиться к тому, чтобы молоко вообще не находилось в фазе смешанной микро­флоры. В неконтролируемых условиях фаза смешанной микрофлоры продолжается одни сутки, реже — двое.

Термофлора развивается при температуре 40—45 'С. Такие условия наблюдаются в сыроделии при производстве твердых сыров с высокой температурой второго нагревания.

Во время хранения молока при искусственно созданных высоких температурах (в термостате) развитие микрофлоры идет в сторону обогащения молочнокислыми термофильными палочками и стрептококками.

^ Фаза молочнокислых бактерий. Эта фаза начинается с момен­та заметного нарастания кислотности и преобладания молочно­кислых бактерий в молоке (кислотность около 60 °Т и свыше 50 % молочнокислых стрептококков от общего количества бакте­рий). В дальнейшем с накоплением молочной кислоты молочно­кислые бактерии замедляют темп своего размножения, а осталь­ные группы микроорганизмов постепенно отмирают.

Наиболее чувствительными к повышению кислотности явля­ются флюоресцирующие бактерии, за ними погибают гнилостные микроорганизмы, далее — микрококки, а также бактерий группы кишечных палочек, дольше всех выдерживающие нарастание кислотности среди немолочнокислых бактерий. Молочная кислота не является губительным фактором для спор дрожжей и плесеней, находящихся в молоке.

Следовательно, в течение молочнокислой фазы происходит как бы самоочищение молока почти от всех групп микроорга­низмов, кроме молочнокислых бактерий, количество которых к концу фазы приближается к 100 % всей микрофлоры.

Количество молочнокислых бактерий в первичной микрофло­ре оказывает некоторое влияние на скорость вытеснения осталь­ных микроорганизмов, но на конечный результат почти не влияет. Первоначально в фазе молочнокислых Бактерии преобладают молочнокислые стрептококки, максимальное количество кото­рых (до 2 млрд в 1 см3) накапливается через 1—2 сут. При этом предельная кислотность достигает 120 "Т и наблюдается массо­вое отмирание стрептококков. Молочнокислые палочки как более кислотоустойчивые продолжают размножаться, и уже на 4-е сутки их количество превышает количество стрептококков, а через 7 сут увеличение достигает почти 100 %. В дальнейшем после возрастания кислотности до 250—300 °Т происходит отми­рание и молочнокислых палочек. Продолжительность молочнокислой фазы очень велика, она может длиться месяцами без каких-либо заметных изменений в микрофлоре, кроме только что рассмотренных. Это объясняется наличием молочной кислоты, которая подавляет развитие мик­роорганизмов. В этот период времени не могут размножаться и дрожжи с плесенями. Молочнокислую фазу можно назвать также фазой консервирования молока, хотя оно не является абсолют­ным, так как по истечении некоторого времени возникают новые микробиологические процессы — развиваются дрожжи и плесени.

Фаза молочнокислых бактерий охватывает то состояние моло­ка, в котором оно перестает быть собственно молоком, а являет­ся кисломолочным продуктом. Молоко в начале этой стадии можно иногда использовать в производстве сыра или масла.

Закономерности кисломолочного процесса, обусловленные развитием молочнокислых бактерий, учитывают при производст­ве кисломолочных продуктов, кислосливочного масла и сыра.

^ Фаза развития дрожжей и плесеней. Эта фаза является заклю­чительной во всем процессе микробиологических изменений мо­лока. После полного ее завершения органическое вещество мо­лока претерпевает почти полную минерализацию (разложение на неорганические вещества). Начальные стадии фазы могут наблю­даться в масле, сыре, твороге и сметане. Внешняя картина развития этой фазы выражается в том, что еще во время молочнокислой фазы на поверхности сгустка (если он не подвергается перемешиванию) образуются отдельные ост­ровки молочной плесени (Oidium lactis), постепенно смыкаю­щиеся в сплошную белую пушистую пленку. В это же время появляются дрожжи рода Mycoderma, участвующие в образова­нии пленки. Позже появляются плесени родов Fenicillium и Aspergillus.

Внешний вид и качество молока в это время изменяются сравнительно слабо. Появляется прогорклый вкус, обусловлен­ный продуктами разложения жира, что особенно бывает заметно в кислых сливках (сметане). Появляются плесневый и дрожже­вой привкусы. Через некоторое время под пленкой начинают появляться признаки пептонизации в виде слоя полупрозрачной жидкости светло-желтого или темно-бурого цвета. Слой быстро увеличивается за счет исчезающего сгустка, который в дальней­шем полностью растворяется, превращаясь в буроватую жид­кость, закрытую сверху, как пробкой, толстой пленкой плесени. По мере распада белка реакция среды становится щелочной, в результате чего создаются условия для развития гнилостных бак­терий.

Интересно отметить, что плесени, развиваясь во время про­должения молочнокислой фазы, разлагают белки и подщелачива­ют субстрат, что на время активизирует развитие отмирающих молочнокислых бактерий. Поэтому правильнее было бы сказать, что фаза плесеней “налагается” на молочнокислую, а не заменяет ее, как это имеет место между фазой смешанной микрофлоры и фазой молочнокислых бактерий.

^ ВЛИЯНИЕ ПАСТЕРИЗАЦИИ НА МИКРОФЛОРУ МОЛОКА И СЛИВОК

При выборе и уточнении режимов пастеризации молока, проводив­шемся на протяжении последних десятилетий за рубежом и в нашей стране, исходили из необходимости обеспечения стойкости молока, с обязательным учетом сохранения его питательной ценности

^ Обеспечение гигиенической надежности пастеризации.

. На основании экспериментальных данных для молока, полу­ченного от здорового стада, был выбран режим при 72° С с выдерж­кой 15 с (Гигиена молока, ВОЗ, 1963, П. Кэстли, 1957). Разрушение фосфата­зы происходит при несколько более жестких режимах тепловой обра­ботки, чем гибель патогенных бактерий. Поэтому в мировой прак­тике принято определять гигиеническую надежность пастеризации по отсутствию в молоке щелочной фосфатазы. Этот принцип принят и в нашей стране. Для инактивации фосфатазы в сливках жирностью 20 и 40% требуется температура только на 1°С выше, чем для инак­тивации фосфатазы в цельном молоке, при той же продолжитель­ности пастеризации (Г. П. Сандерс и Д. С. Загер, 1948). В. М. Бог­данов, В. Г. Геймберг и др. (1961) показали, что при режиме пасте­ризации 72° С с выдержкой 19—20 с в молоке остается значительно большая часть микрофлоры сырого молока, чем это установлено клас­сическими исследованиями (эффективность пастеризации 99,99%). Поэтому они рекомендовали повышать температуру пастеризации; с учетом указанной рекомендации при производстве пастеризованного молока установлен режим 74—76° С с выдержкой 15—20 с. Необходи­мо отметить, что это ужесточение режима пастеризации связано не с повышением гигиенической надежности молока, а с улучшением его микробиологических показателей по общей бактериальной контаминации.

Однако в последнее время некоторыми гигиенистами в нашей стране высказываются опасения в отношении надежности не только режи­мов пастеризации, рекомендованных Всемирной организацией здра­воохранения (ВОЗ), но и установленных на основании вышеприве­денной работы, особенно в отношении дизентерийных микробов, вы­живаемость которых не исследовалась в работах Кэстли и других авторов.

Работа, проведенная ВНИМИ, ВНИИВС и ВНИИДиС (В.Г.Заруцкая и др.). показала, что ди­зентерийный микроб типа Зонне полностью погибает при ре­жиме 76° С с выдержкой 20 с при внесении его в сырое моло­ко в количестве 20 млн./мл. Для молока с такой высокой обсемененностью дизентерийными микробами авторы считают це­лесообразным установить га­рантийный режим 78±2° С. По-видимому, этот режим мож­но рекомендовать для обработ­ки молока в эпидемиологически опасных зонах, для промыш­ленности же должны быть со­хранены режимы предусмотрен­ные действующей технологиче­ской инструкцией. Решающее значение в получе­нии гигиенически доброкачест­венного молока имеет правиль­ная эксплуатация пастеризационно-охладительных установок. Если после секции пастеризации на них установлен автоматический возвратный клапан, работают термозаписывающие устройства, ведется запись начала, конца работы и даются объяснения о снижении температуры в процессе пастериза­ции, надежность ее можно считать гарантированной.

^ Снижение бактериальной обсемененности и повышение стойкости мо­лока. Эффективность снижения общей бактериальной обсемененности зависит прежде всего от состава микрофлоры сырого молока, кото­рый в свою очередь определяется условиями его получения, первич­ной обработки и транспортировки.

Если молоко получают в условиях строгого соблюдения санитарно-гигиенических требований, быстро охлаждают и хранят при низких температурах, то в первый день в нем содержится около 10% психротрофных бактерий, на второй — 25%. Преобладающими типами психротрофных бактерий являются Pseudomonas и Achromobacter. Количество термостойких бактерий в таком молоке не превышает 50 тыс./мл, причем термостойкие молочнокислые бактерии состав­ляют не более 1—5% (И. фон Боккельман, 1970а,б). Психротроф-ные бактерии полностью погибают при пастеризации (Э. М. Фостер и др., 1961). Значительно снижается и общее количество бактерий, в результате чего эффективность пастеризации достигает 99,99%. Если же молоко получают п плохих санитарно-гигиенических условиях и хранят при температуре выше 7° С, в нем содержится значительное количество термостойких бактерий (Э. М. Фостер1961). В сыром молоке, подвер­гавшемся длительному (до 2— 3 дней) хранению при 10° С, количество термостойких бак­терий достигало сотен тысяч — миллионов в 1 мл (Н. С. Коро­лева, В. Ф. Семенихина и др., 1971). Содержание их в сыром молоке было сравнительно по­стоянным и составляло от 0,5 до 50% общей микрофлоры. Широкие колебания в содержа­нии термостойких бактерий по отношению к общему количе­ству бактерий в сыром молоке свидетельствуют об отсутствии корреляции между этими дву­мя показателями: общее коли­чество бактерий колеблется в большей мере, чем количество термостойких бактерий. Общее количество бактерий в сыром молоке составляло в среднем 1,5-107 в 1 мл. При посеве молока сразу после пастеризации обнаруживалось в среднем 1,4-104—1,1 —105 бактерий в 1 мл. Эффективность пастеризации та­кого молока при режиме 75—76° С с выдержкой 15—20 с составляла 99,49%—98,9%. Абсолютное количество бактерий, выдержавших пастеризацию, и процент оставшихся клеток по отношению к содер­жанию термостойких бактерий в сыром молоке по мере повышения температуры пастеризации несколько понижались, но сравнительно медленно. Это, несомненно, обусловлено тем, что именно термо­стойкие бактерии выживают в процессе пастеризации молока. Содержание кишечной палочки в сыром молоке колебалось в пре­делах от 103 до 106 в 1 мл, в среднем оно составляло 104 в 1 мл. Во всех пробах молока после пастеризации кишечная палочка не была обнаружена в 10 мл. Фосфатазная проба дала отрицательный ре­зультат, что свидетельствовало о гигиенической надежности иссле­дуемого режима пастеризации.

Содержание энтерококков в сыром молоке колебалось от 7,9-103 до 9,8-105, в среднем было 4,0-104. Учитывая, что темп размножения энтерококков в молоке значительно ниже, чем кишечной палочки, содержание энтерококков может, по-видимому, в большей степени свидетельствовать об истинном фекальном загрязнении его. В про­цессе пастеризации содержание энтерококков в молоке снижалось довольно значительно. В 22 пробах титр энтерококков был 0,1 мл, в 2 — 0,01 мл и в 6 — 0,001 мл. Приведенные данные свидетельству­ют о том, что при принятых в промышленности режимах пастеризации энтерококки полностью не погибают и, как правило, обнаружи­ваются в молоке сразу после пастеризации.

Проведенные нами исследования показали, что при холодильном хранении молока, отобранного в стерильную посуду сразу после па­стеризации, в течение 2 суток практически количество бактерий не увеличивалось. То же самое наблюдалось в процессе хранения мо­лока при комнатных условиях. Даже при таких неблагоприятных режимах хранения свертывание молока наступало только на 5—6 день. Следовательно, микрофлора, оставшаяся в молоке после пастеризации, сравнительно инертна в биохимическом отношении и не влияет существенным образом на его стойкость при хранении. Об этом имеются указания и американских исследователей (Э. М. Фостер и др., 1961).

^ ВТОРИЧНОЕ ОБСЕМЕНЕНИЕ МОЛОКА ПОСЛЕ ПАСТЕРИЗАЦИИ

Основными группами бактерий, влияющими на стойкость молока и его микробиологические показатели, являются молочнокислые, нсихротрофные бактерии, бактерии группы кишечной палочки, энте­рококки. Психротрофные бактерии не обнаруживались в молоке из краника пастеризатора; после розлива в 1 мл молока содержалось 10—100 клеток этих микроорганизмов (М. Огава, К. Такемура и др., 1968). Основными источниками обсеменения молока психротрофны-ми бактериями являются воздух, оборудование, одежда и руки ра­ботников. В остатках молока и смывных водах могут развиваться и остальные вышеупомянутые группы микроорганизмов. Проведенные нами в производственных условиях исследования (Н. С. Королева, В. Ф. Семенихина и др., 1971) показали, что коли­чество бактерий, попавших в молоко после пастеризации, составляло 84,5%—94,9% от общей микрофлоры молока в бутылке. Данные, характеризующие изменение микрофлоры молока на от­дельных этапах технологического процесса, приведены на рис. 46. Соприкасаясь с технологическим оборудованием, пастеризованное молоко, не содержавшее кишечной палочки в 10 мл, обсеменялось ею, в результате чего бродильный титр достигал 10 -1, 10 -2 и даже 10 -3 мл. В случае непрерывной работы разливочно-укупорочных автоматов не происходит существенного бактериального обсеменения молока. В основном бактериальное обсеменение молока после пасте­ризации происходит в молокохранилищах танках и молокопроводах, если их заполнение чередуется с периодами, когда они остаются не­заполненными, но не вымытыми. На ряде предприятии сложилась практика многоразового заполнения танков молоком; считается, что если из танка молоко поступает на розлив, а затем танк вновь запол­няется молоком, создается непрерывный процесс. На самом деле это далеко не так. Освобождение танков емкостью 5 —10—20 т занимает значительное время, за которое на стенках танка, не соприкасаю­щихся с молоком, остается молочная пленка, в которой активно размножаются микроорганизмы. Если танк после розлива остается какое-то время незаполненным, накопление микроорганизмов про­исходит на всей его поверхности.

Наличие сложных коммуникаций и большой объем перерабатывае­мого молока затрудняют обеспечение непрерывного прохождения его по ходу технологического процесса. В результате на некоторых уча­стках (в трубах, кранах) молоко задерживается, температура его повышается, происходит развитие бактерий. При каждом последующем заполнении танков наблюдается резкое повышение общей бактериальной обсемененности и снижение бродильного титра.

В наименьшей степени обсеменяется молоко за счет тары, если мой­ка или иная обработка проводится надлежащим образом. Так, если на всю внутреннюю поверхность бутылки допускается не более 10 клеток бактерий, то при поступлении 500 мл молока на каждый миллилитр его придется 0,02 клетки, что составляет ничтожную не­личину по сравнению с обсемененностью молока. Исследования Л. Лили (1969) показали, что число стерильных образ­цов наибольшее при использовании стеклянных бутылок, при исполь­зовании пакетов тетра-пак — наименьшее.

^ ВЛИЯНИЕ УСЛОВИЙ ХРАНЕНИЯ НА МИКРОФЛОРУ ПАСТЕРИЗОВАННОГО МОЛОКА

Длительность хранения пастеризованного молока определяется его первоначальной обсемененностью и температурой. Органолептические свойства молока начинают изменяться при бактериальной обсемененности 5—10 млн./мл (Дж. Д. Пунч, Дж. С. Ольсон и др., 1965; Л. Лили, 1969; Л. Лили и Кварони, 1969). Стойкость молока с низким первоначальным бактериальным обсеме­нением сохранялась при 5° С до 21 дня, при 7—15°—8—12 дней, при 22—24° — 24 ч и при 27—28° — 8 ч (Л. Лили, Е. Кварони, 1969). Органолептические свойства молока в упаковке полп-пак и блок-пак начинали изменяться через 8 дней, в тетра-пак — через 10 дней. Сливки 18, 44 и 48%-ной жирности, хранившиеся при 5° С, через 6 дней были еще годны к употреблению; при 15° С они становились пригодными к употреблению уже через 2 дня (Дж. Г. Дэвис, 1969). Исследования, проведенные во ВНИМИ (Н. С. Королева, В. Ф. Семенихина, А. П. Патратий, В. П. Шидловская и др.), подтвердили, что при хранении питьевого молока микробиологические показатели ухудшаются значительно раньше, чем химические и органолептические. Молоко кислотностью 20° Т уже в момент заполнения танков по мик­робиологическим показателям не удовлетворяло требованиям ГОСТа. Во время хранения молока в танке при 4—6° С существенных изме­нений в содержании бактерий не отмечалось в течение 4—6 ч. Пос­ле розлива молоко, содержащее бактерий не более 10 тыс./мл и хра­нившееся при температуре 2—4° С, сохраняло свои микробиологиче­ские показатели в пределах нормы после 48 ч, при температуре 8° С через 32 ч его показатели уже не соответствовали норме. При более высоком обсеменении молока его микробиологические показатели изменялись значительно быстрее.

Результаты проведенной работы показывают, что стойкость питьево­го молока можно повысить, приняв соответствующие меры по сни­жению его бактериальной обсемененности на всех этапах технологи­ческого процесса и по поддержанию температуры хранения не вы­ше 2-4° С.

Некоторые специалисты считают, что, применяя ужесточенные ре­жимы пастеризации можно повысить качество и гигиеническую на­дежность питьевого молока. Анализ приведенных выше данных по­казывает, что этот способ нельзя считать оправданным и целесооб­разным по следующим соображениям:

снижается питательная ценность молока;

эксплуатируемые в промышленности пастеризационно-охладительные установки не могут работать при повышенных температурах, в противном случае снижаются их эксплуатационные характеристики и долговечность работы;

с повышением температуры пастеризации изменяется режим работы установки, в результате чего не достигается требуемого охлаждения, что имеет решающее значение для сохранения качества молока в процессе его последующего хранения;

но объему микрофлора, обсеменяющая молоко после пастеризации при прохождении оборудования, значительно превышает остаточную микрофлору, поэтому ужесточение режимов пастеризации не может привести к существенному улучшению микробиологических показа­телей и повышению стойкости питьевого молока.

^ СТЕРИЛИЗОВАННОЕ МОЛОКО

Стерилизованное молоко вырабатывают тремя способами: автоклавированием в стеклянных бутылках, комбинированным способом (первая стерилизация в потоке, вторая — в бутылках), одноразовой стерилизацией с последующим розливом в асептических условиях. С микробиологической точки зрения понятие “стерилизованное мо­локо” не означает, что оно должно быть полностью стерильно. Что­бы при обработке большого количества молока обеспечить его абсо­лютную стерильность, требуется применить температуры, при кото­рых существенно меняется химический состав и питательная ценность продукта.

Эффективность стерилизации зависит от содержания термостойких спор в сыром молоке. При искусственном обсеменении молока спо­рами Вас. subtilis на установке ВТИС было достигнуто логарифми­ческое снижение в 9 раз (Е. Г. Самуэльсон, С. Холм, 1966). Учиты­вая, что обычно в сыром молоке содержится не более 10— 100 спор/мл, практически удовлетворительной считают эффектив­ность стерилизации между 7 и 8. Это значит, что после стерилиза­ции остается 1 спора на 1 т молока, т. е. при розливе в 0,5-литровые бутылки в одну из 2000 емкостей попадает 1 спора. Выживание от­дельных спор далеко не всегда приводит к порче продукта, так что фактически число емкостей с нестерильным продуктом крайне мало. В соответствии с современными представлениями (Г. Бартоп, Дж. Пиен, Г. Тиеулин, 1972) стерилизованное молоко должно удов­летворять следующим требованиям: достаточно долго храниться; не содержать вредных для здоровья человека микроорганизмов (пато­генных и токсигенных) 'и токсинов; не содержать микроорганизмов, способных размножаться после стерилизации и вызывать порчу.

^ МИКРОФЛОРА СТЕРИЛИЗОВАННОГО МОЛОКА, ВЫРАБОТАННОГО КОМБИНИРОВАННЫМ СПОСОБОМ

При производстве стерилизованного молока комбинированным спо­собом молоко стерилизуют при 135° С с выдержкой 15—20 с, охлаж­дают до 20—30° С, затем подогревают до 65—70° С, разливают в узко­горлые бутылки, укупоривают их кронен-корками и повторно стери­лизуют в башенном стерилизаторе при 114° С. При освоении и эксплуатации линии производства стерилизованного молока может возникнуть два порока микробиологического происхождения: прокисание и образование горечи. Порок прокисания характеризуется следующими признаками: в отдельных бутылках одной партии молоко свертывается, при этом часто образовывался неровный сгусток с признаками газообразования. Бутылки с испорченным молоком мож­но легко обнаружить и отсортировать. При микроскопировании обнаруживаются стрептококки и палочки типа молочнокислых, кислотность сгустка была 70° Т и выше. Порок возникает в результате нарушения герметичности укупорки, обуслов­ленной плохим качеством кронен-корок и их загрязнением перед укупоркой. Посторонняя микрофлора попадает в бутылку в послед­ней секции башни, где бутылки обмываются водой при температуре, допускающей развитие микроорганизмов.

^ Порок горечь не сопровождается какими-либо заметными изменени­ями внешнего вида молока. Порок можно обнаружить лишь при употреблении молока в пищу. Исследуя причины возникновения порока, установлено, что возбу­дителем его являются термофильные анаэробные споровые палочки типа Вас. stearothermophilus с оптимальной температурой развития 55—60° С. Условия для их размножения создавались в промежуточ­ной емкости, куда молоко поступало после первой стерилизации пе­ред розливом. Споры этих микроорганизмов, оставшиеся после вто­рой стерилизации, прорастали после того, как молоко в ящиках уста­навливали плотными штабелями на складе с не регулируемой температурой. Порок проявляется летом, так как в этот период на­чальная температура молока в бутылках, равная примерно 50° С, сохранялась на этом уровне в течение 6—8 ч. При быстром охлаж­дении молока перед складированием порок не развивается, так как при этих условиях споры термофильных бактерий не могли про­расти. Исследуя причины возникновения горечи, проведён кон­троль большого числа проб молока путем термостатирования при 55° С. И было установлено, что при такой температуре более 50% проб молока были нестерильными. Этот метод позволял обнаружить видимые изменения в 14,8% образцов молока (Г. Бартон, Дж. Пиен и Г. Тиеулин, 1972). Фактически же при умеренных температурах хранения продукта не наблюдается изменений внешнего вида, вкуса и рН. Это обстоятельство подтверждает высказанное ранее мнение, что при производстве стерилизованного молока важно не только соблюдать условия абсолютной стерильности, но и не допустить раз­вития оставшихся бактерий или их спор при последующем хранении.

^ МИКРОФЛОРА СТЕРИЛИЗОВАННОГО МОЛОКА, ВЫРАБОТАННОГО ОДНОСТУПЕНЧАТЫМ СПОСОБОМ С ПОСЛЕДУЮЩИМ РОЗЛИВОМ В АСЕПТИЧЕСКИХ УСЛОВИЯХ

При этом способе молоко стерилизуют непосредственным введением пара при 140—150° С или в стерилизаторах с поверхностным обогро-вом при 130—140° С. Затем молоко охлаждают до 20° С и разливают на линии асептического розлива в бумажные пакеты. Причины возникновения пороков микробиологического происхожде­ния на линиях производства стерилизованного молока, укомплектованных установками ВТИС (пароконтактный метод стерилизации) и автоматами “Тетра-Пак-Асептик” для асептического розлива, были подробно изучены В. С. Лешиной (1971). Продукты с по­роками характеризовались повышенной кислотностью (60—70° Т) и наличием плотного сгустка, иногда горьким вкусом, отсутствием сгустка или наличием признаков пептонизации молока. В первом случае при микроскопировании в препаратах обнаруживалась сме­шанная микрофлора с преобладанием молочнокислых стрептококков, во втором — наличие споровых палочек. Пороки чаще наблюдались весной и летом. В результате системати­ческого контроля производства путем отбора молока из буферного танка в контрольную колбу и через каждые 30 мин работы по 2 па­кета с каждого упаковочного автомата с последующим термостатиро-ванием образцов при 37° С были выявлены следующие наиболее ти­пичные нарушения: режимов стерилизации; режимов мойки и дезин­фекции оборудования на линии асептического розлива; герметично­сти в асептической части установки ВТИС или на линии асептиче­ского розлива до упаковочных автоматов; условий асептики на упа­ковочных автоматах, некачественная обработка бумаги. На основании данных повседневного контроля нельзя определять средний процент брака стерилизованного молока, вырабатываемого на конкретной линии, так как в этом случае количество отбираемых проб слишком мало для статистической обработки. При инкубировании 35310 образцов асептически упакованного моло­ка свертывание его наблюдалось в 36 пакетах, еще в 2 пакетах было обнаружено изменение вкуса и запаха (Г. -Ромагноли, Г. Брецци, 1970). Органолептические результаты согласовывались с микро­биологическими, на основании чего был сделан вывод о нецелесооб­разности микробиологического контроля стерилизованного молока. Делаются попытки повысить стойкость питьевого молока путем его стерилизации, но с последующим розливом в неасептических усло­виях. По данным Энона (1969), молоко, подвергнутое УВТ-стерилизации, хранили в танках при 0°С в течение 3—4 недель, затем по­вторно пастеризовали, упаковывали и хранили при О, 1, 4,5 и 5° С. При этом качество большинства образцов сохранялось более 10 не­дель, отдельных — до 23 недель. В Японии молоко обрабатывают при 120—135° С и упаковывают в обычные бутылки без соблюдения асептики (Р. Ханзен, 1970). Однако при использовании такой тех­нологии требуется исключительно высокая санитарная культура производства, при которой вторичное обсеменение молока после па­стеризации сводится к минимуму.

Работа, проведенная А. Эйрардом и Т. Одэт (1966), показала, что разница в сроках хранения молока, пастеризованного и стерилизо­ванного, разлитого на обычных линиях, сравнительно невелика и не позволяет создать новый вид питьевого молока. Стерилизация ока­зывается совершенно неэффективной при низком уровне санитарно-гигиенической обработки оборудования и недостаточном охлажде­нии молока.

Лекция 2. ХАРАКТЕРИСТИКА ОСНОВНЫХ ПРЕДСТАВИТЕЛЕЙ МИКРОФЛОРЫ МОЛОЧНЫХ ПРОДУКТОВ

^ МОЛОЧНОКИСЛЫЕ СТРЕПТОКОККИ

ГОМОФЕРМЕНТАТИВНЫЕ МОЛОЧНОКИСЛЫЕ СТРЕПТОКОККИ

Молочный стрептококк. Str. lactis. Форма клеток в молоке — оваль­ные кокки величиной от 0,5 до 1 мк, соединенные попарно или в ви­де коротких цепочек . Хорошо окрашиваются обычными крас­ками, красятся по Граму, неподвижны, спор не образуют. На плот­ных питательных средах образуют колонии: поверхностные — мел­кие (диаметром до 1 мм), круглые, светлые, глубинные — чечевице-образные. Оптимальная температура развития 25—30° С, максимальная 40° С, минимальная 10° С и иногда несколько ниже. При внесении культуры петлей в 10 мл молока и при оптималь­ной температуре активные штаммы свертывают молоко за 10—12 ч, образуя плотный ровный сгусток. Через 18 ч кислотность сгустка до­стигает 80—90° Т, а через 5—7 дней — 100—125° Т. Str. lactis — основной компонент микрофлоры заквасок для тво­рога, сметаны, простокваши. Он входит также в состав микрофлоры кефирного грибка. Str lactis восстанавливают и свертывают лакмусовое молоко, не образуют ацетоина, растут при 39° С и при наличии 4% NaCl обра­зуют значительное количество кислоты, разлагают аргинин с выде­лением аммиака; не развиваются в среде, в которой содержится 6,5% NaCl и в щелочной среде (при рН 9,5). Str. lactis используют в заквасках как активный кислотообразователь в начале процесса сквашпвания. Благодаря относительно низ­кому конечному пределу кислотообразования можно получить про­дукт со сравнительно невысокой кислотностью. Развитие Str lactis, попадающих в пастеризованное молоко с обору­дования, является основной причиной снижения стойкости питьево­го молока..

Разновидностью Str. lactis является Sir. lactis var. maltigenes, вызывающий образование в молоке и сливках солодового, хлебного запаха. Установлено, что хлебный запах обусловлен образованием 3-метилбутанола. Г. А. Харрисон, Е. А. Капрала и др. (1969) выявили наличие у этих микроорганизмов дегидрогеназы, обусловливающей образование 3-метилбутанола и 2-метилпропанола. Реакция эта оказалась необра­тимой, она ускорялась при добавлении лактозы и альдегидов.

^ Сливочный стрептококк Str. cremoris. Многие штаммы Str. сгеmoris отличаются от Str. lactis по морфологии клеток — они часто дают в молоке сочетание в виде цепочек. Форма колоний такая же, как и у Str. Lactis. Оптимальная температура развития 25—30° С. максимальная 36° С, предельная кислотность молока 110—115° С. При пониженных температурах культивирования (15—20° С) некоторые штаммы Str. cremoris образуют значительное количество летучих кислот; восста­навливают и свертывают (иногда только частично) лакмусовое мо­локо, дают отрицательную или лишь слабоположительную пробу на ацетон, не расщепляют аргинина, при 39° С не растут и в среде с 4% NaCl не развиваются или развиваются слабо. Развиваясь в молоке, Str. cremoris образует сгусток, напоминаю­щий по консистенции сметану. Это свойство Str. cremoris можно использовать при подборе заквасок для продуктов, характеризую­щихся густой консистенцией (сметана).

^ Термофильный молочнокислый стрептококк Str. thermophilus. Форма клеток в молоке — кокки, часто соединенные в длинные цепочки. По величине клетки не­сколько крупнее, чем клетки Str. lactis , что позволяет при­близительно разграничивать (по микроскопическому препарату) эти два вида при совместном раз­витии их в культуре. На агаре с гидролизованным молоком тер­мофильные молочнокислые стреп­тококки развиваются медленнее, чем мезофильные (через 48ч), и дают более мелкие колонии - темные, зернистые, иногда локопообразные (В. М. Богданов, 1959). Оптимальная температура развития 40—45° С; свертывает моло­ко при 50° С. При внесении культуры петлей в 10 мл молока и при оптимальной температуре активные штаммы свертывают молоко за 12—14 ч. Предел кислотообразования отдельных штаммов Str. ther­mophilus - 100-115° Т.

Str. thermophilus не развивается при наличии в молоке 0,1% метиленового голубого, не обесцвечивает лакмусовое молоко, образует ацетон в небольшом количестве (В. М. Богданов, 1959.б, Р. Любенау-Нестле н X. Маир-Вальдбург, 1966). В бульоне с глюкозой и 4% NaCl кислотообразование не наблюдается, а с 2% оно наблюдается только у некоторых штаммов.

Термофильные стрептококки применяют при производстве южной п мечниковской простокваши, йогурта, ряженки, варенца. Многие культуры отличаются способностью образовывать вязкие, иногда тягучие сгустки, но встречаются штаммы, образующие колющиеся сгустки.

Из-за сравнительно низкой энергии кислотообразования Str. thermophilus редко используют в чистой культуре, чаще их при­меняют в комбинации с молочнокислыми палочками — болгарской и ацидофильной или мезофильными молочнокислыми стрептокок­ками. Термофильные стрептококки могут попадать в молоко и не с за­квасками. По данным В. М. Богданова, В. Г. Геймберг и др. (1961), в молоке, пастеризованном при 73—76° С, значительную часть оста­точной микрофлоры составляют термофильные стрептококки. Вслед­ствие довольно низкой биохимической активности термофильный стрептококк, содержащийся в пастеризованном молоке, по-видимо­му, не играет большой роли в снижении стойкости питьевого молока, а также в формировании качества ряда кисломолочных продуктов. Однако в таких продуктах, как ацидофильное молоко, при производ­стве которого сквашивание осуществляют при высоких температу­рах с участием чистых культур ацидофильной палочки, нередко воз­никает порок, выражающийся в потере типичности вкуса и конси­стенции, обусловленный развитием стрептококков. По-видимому, в данном случае причиной порока является именно термофильный стрептококк .

Энтерококки.

В группу энтерококков входят Str. faecalis, Str. faecium, Str. liquefaciens, Str. zymogenes, Str. durans. К ним относятся также два вида стрептококков, составляющих нормальную микро­флору кишечника крупного рогатого скота — Str. bovis — и лоша­дей — Str. equinus (Г.П. Калина и А. П. Калина, 1969). Форма клеток — диплококки, реже короткие цепочки, коло­нии — прозрачные, голубоватые, иногда мутноватые с ровными краями. Эти бактерии развиваются как при 10° С, так и при 45° С. Выдерживают нагревание до 63° С в течение 30 мин, гибнут при 85° С с кратковременной выдержкой при этой температуре. При ми­нимальном обсеменении и оптимальной температуре свертывают мо­локо в течение 20—24 ч, иногда и более. Предельная кислотность 80—100°Т (В. М. Богданов, 1959). Лакмусовое молоко восстанав­ливают и свертывают. Развиваются при наличии в молоке 0,1% метиленового голубого, 6,5% NaCl и при рН 9,6, образуют из аргинина аммиак.. Str. liquenfaciens (маммококк) выделяет сычужный фер­мент, в результате чего, молоко свертывается при сравнительно низ­кой кислотности, при этом образуются пептиды, придающие продук­ту горький вкус. В большом количестве энтерококки находятся в сыром молоке, часть из них выдерживает пастеризацию, поэтому они всег­да обнаруживаются в пастеризованном молоке и молочных про­дуктах. При оценке качества питьевой воды и некоторых пищевых про­дуктов наличие энтерококков рассматривается как показатель фе­кального загрязнения (Г. П. Калина, А. П. Калина, 1969). Не исклю­чена возможность применения этого теста и для характеристики санитарно-гигиенического качества молочных продуктов (Э. С. Дербинова. 1969, П. К. Полищук, 1971). Однако ценность его снижается из-за высокой термостойкости энтерококков и их способ­ности размножаться в молоке (Н. С. Королева, В. Ф. Семенихина, 1972). Многие авторы пытались использовать энтерококки для приго­товления молочных продуктов — сыров, а также лечебных кисломолочных продуктов (Л. А. Банникова и И. Н. Пятницына, 1960). За рубежом разработаны сухие молочные препараты, в состав микро­флоры которых входят энтерококки (релактон в ЧР, лактобацпллин в Англии). Н. Н. Седова (1969) установила, что энтерококки безвредны для человека и оказывают определенное профилактиче­ское действие па работу кишечника. Исключение составляли лишь культуры Str. faecalis var. liquefaciens, при употреблении которых до 70% случаев (для отдельных штаммов) наблюдались пищевые токсикоинфекции.

Наиболее надежным признаком дифференциации является серо­логическая реакция. По классификации Ленсфильда все истинные молочнокислые стрептококки относятся к серологической группе N, энтерококки — к группе D.

^ ГЕТЕРОФЕРМЕНТАТИВНЫЕ МОЛОЧНОКИСЛЫЕ СТРЕПТОКОККИ

Str. diacetilactis. Клетки расположены чаще всего в виде диплококков и коротких цепочек. На питательных средах образуют колонии: поверхностные, крупные, каплевидные, глубинные—чечевицеобразные. Установлено (Л. А. Луковникова, 1962), что при росте на плот­ной питательной среде, содержащей 3% агара, Str. diacetilactis обра­зуют глубинные колонии в виде паучков или комочков ваты, напоми­нающие колонии молочнокислых палочек. Этим можно пользоваться для дифференциации Str. diacetilactis от молочнокислых стрептокок­ков других видов. Оптимальная температура развития в молоке 25—30° С. Str. diacetilac­tis растет при 39—40° С, при температуре 45° С рост отсутствует. Предельная кислотность 90—100° Т.

При внесении петлей 10 мл молока активные штаммы свертывают молоко через 16—18 ч, менее активные — через 24—48 ч. Сгусток молока плотный, часто с наличием пузырьков газа. Вкус чистый, кисловатый, слегка щиплющий, иногда сладковатый. Аромат специ­фический, обусловленный накоплением диацетила. Лакмусовое мо­локо свертывают и восстанавливают.Реакция может быть нетипич­ной: сначала наступает порозовение и свертывание, затем более или менее быстрое обесцвечивание. Штаммы Str. diacetilactis сбраживают лактозу, соли лимонной кислоты с образованием С02, а также и диацетила и ацетоина. Большей частью разлагают аргинин с вы­делением аммиака, устойчивы к наличию в среде 4% NaCl. Str. diace­tilactis вводят в закваску для творога, сметаны, простокваши. До сих пор нет единого мнения о том, относятся ли Str. diacetilactis к группе гетсроферментативных или гомоферментативных стрепто­кокков. По способности образовывать значительное количество мо­лочной кислоты они приближаются к Str. lactis, а по способности образовывать побочные продукты брожения — к гетероферментативным стрептококкам. Ц. А. Е. Бриггсом (1952) установлена серологиче­ская идентичность их со Str. lactis и Str. cremoris. На близость Str. diacetilactis к Str. lactis указывают также получаемые из них му­танты, не способные сбраживать цитраты (Дж. М. Шерман, 1955). Однако В. Коллинз и Харвей (1962) установили, что в расщеплении цитратов участвуют два фермента — цитратаза и цитратпермеаза. Первый фермент превращает цитрат в уксусную и щавелевоуксусную кислоты, а второй — осуществляет транспортировку цитрата в клет­ку через клеточный барьер. Мутанты Str. diacetilactis, не расщепля­ющие цитрат, содержат цитратазу, но не продуцируют цитратпермеа-зу. Str. lactis и Str. cremoris не продуцируют ни одного из этих фер­ментов. Таким образом, по ферментным системам Str. diacetilactis существенно отличаются от гомофермеитативиых стрептококков. И. И. Климовский с соавторами (1969) выявил также отличия в протеолитичсской активности и характере продуктов протеолпза у Str. diacetilactis и Str. lactis. У штаммов Str. diacetilactis была от­мечена разница в способности образовывать диацетил. Многие штам­мы не продуцируют диацетила, но продуцируют много ацетоипа. М. И. Пнменова (1957) предложила такие штаммы объединить в от­дельный вид — Str. acetoinicns. Введение в закваски Str. acetoinicus позволяет улучшить их вкус. В СССР этот микроорганизм широко исполь­зуют при составлении заквасок для творога, сметаны, простокваши.

^ Leuc. citrovorum ( Str. citrovorus (Хаммер, 1928) и Leuc. Dextranicum Sir. paracitrovorus (Хаммер, 1928). Клетки шарообразные, соединены в пары и цепочки. Величина клеток — как у Str. lactis, редко — меньше. На агаре образуют мелкие сероватые колонии, на среде с лимоннокислым кальцием — более крупные, каплевидные, окруженные зоной просветления в результате сбраживания лимонно­кислого кальция. Оптимальная температура роста 25—30° С, хорошо растут и при 20—21° С; при температуре 45° С не развиваются. Молоко свертыва­ют редко, обычно максимальная кислотность не превышает 40— 50° Т. Не образуют аммиака из аргинина. Сбраживают лимонную кислоту и ее соли с образованием ацетоина, диацетила, 2-3-бутилен-гликоля, уксусной кислоты, углекислого газа.

Входя в состав микрофлоры естественной кефирной закваски. Leuc. citrovorum и Lenc. dextranicnra играют большую роль в образовании вкуса и аромата кефира. В случае излишнего их развития наблюда­ется вспучивание.

^ МОЛОЧНОКИСЛЫЕ ПАЛОЧКИ

ГОМОФЕРМЕНТАТИВНЫЕ МОЛОЧНОКИСЛЫЕ ПАЛОЧКИ.

Lbm. Bulgaricum ( Bacillus (Lactobacillus) bulgaricus, Thertnobacterhim bulgaricum (Orla—Jensen, 1936) Bacterium bulgaricum.

Болгарская палочка выделена Григоровым и Коэндп из болгарского кислого молока в 1905 г. Форма клеток в молоке — длинные и короткие палочки от 5 до 20 мк, толщиной1—1,5 мк. Красятся по Граму, спор не образуют. При окрашивании препаратов из молока метиленовым голубым в клетках часто наблюдаются четко выраженные метахроматические зерна, иногда неравномерно окрашенные участки протоплазмы. На плотных питательных средах образуют колонии: поверхностные — более или менее крупные (диаметром 1,5—3 мм), локонообразные, светлые; глубинпые — в виде кусочков ваты (“паучки”). Оптимальная температура развития 40—45° С, максимальная 60— 62° С, минимальная 20° С. При внесении петлей в пробирку с моло­ком свертывают его при оптимальной температуре за 8—12 ч. Уже через 12—14 ч после заквашивания кислотность нередко достигает 120—160° Т, через 7 суток 200—350° Т. В молоке образуют преиму­щественно D (—) или DL молочную кислоту, иногда в небольшом ко­личестве летучие кислоты.

Некоторые штаммы болгарской палочки образуют также ацетальдегид, который придает продуктам специфический вкус и аромат и антибиотические вещества, подавляющие нежелательную микрофлору (П. Риттер, 1964, Л. Начев, Ц. Никоевска, 1969, В. Боттацци, М. Бескове, 1969. Е. В. Мельникова, 1973). Болгарскую палочку в сочетании с термофильным стрептококком применяют в качестве энергичного кислотообразователя для улучше­ния вкуса и аромата при производстве южной и мечниковской про­стокваши, а также йогурта и ряженки.

^ Lbm. acidophilum—ацидофильная палочка. Синонимы Bacillus (Lactobacillus) acidophilus Moro (1900) Thermobacterium intestinale Orla—Jensen a. Winter (1936), Bacterium acidophilum.

В мировой литературе нет единого мнения о морфолого-культуральных и биохимическпх свойствах этого микроба. Впервые микроб под названием Bacillus acidophilus был выделен Моро из faeces грудного ребенка в 1900 г. Если описание, данное Григоровым выделенной им болгар­ской палочке, более или менее соответствует современной характе­ристике этого микроорганизма, то микроб, выделенный Моро, не име­ет ничего общего с применяемыми в настоящее время ацидофильны­ми бактериями. Об этом свидетельствует прежде всего анализ дан­ных об энергии кислотообразования этих микроорганизмов. Не менее разнообразны описания и других свойств ацидофильных бактерий: размеров клеток (короткие, тонкие или длинные, более толстые), формы колоний (R- или S-форма), сбраживание сахаров (способность сбраживать мальтозу или отсутствие этой способности). Такое разнообразие взглядов, как нам кажется, можно объяснить следующими обстоятельствами.

Применение молочнокислых бактерий для приготовления кисломо­лочных продуктов возможно только в том случае, если они более или менее активно свертывают молоко. Бактерии, выделенные Моро и другими ранними исследователями, были не пригодны для указан­ной цели. Поэтому дальнейшие усилия были направлены на выде­ление из кишечника более активных в отношении кислотообразова­ния микробов. Впервые такие микроорганизмы, свертывавшие моло­ко за 24 ч, были выделены Ретжером в 1922 г. и успеш­но применены ими и Н. Копеловым в клинических испытаниях. За рубежом не делалось попыток выделить более активные по энергии кислотообразования бактерии; в современной литературе они также характеризуются как сравнительно слабые кислотообразователи — свертывают молоко за 24 ч при внесении 0,5% закваски (X. И. Клушп, 1968).

В СССР еще в довоенные годы велись настойчивые поиски ацидо­фильных бактерий — энергичных кислотоообразователей.. Такие куль­туры были выделены они свертывали молоко при внесении петлей за 9—15 ч, а при внесении 3—5% —за 5—6 ч. Исследования, проведенные в 1951—1953 гг., показали, что культуры ацидофильных бактерий, активно свертывающие молоко, существенно отличаются по морфолого-культуральным и биохимическим свойст­вам от слабых кислотообразователей, характеристика которых почти полностью совпадает с описаниями зарубежных авторов: тонкие па­лочки (4—5 мк), колонии S-формы, способность к сбраживанию мальтозы и сахарозы.

В СССР из широкой группы ацидофильных бактерий, имеющих об­щий источник происхождения — кишечник, выделена подгруппа микроорганизмов, характеризующихся довольно определенными при­знаками (В. И. Верещагина, 1946; Н. С. Королева, 1960): форма клеток в молоке — длинные и короткие палочки, от 3 до 40 мк, тол­щиной 1 —1,5 мк, красятся по Граму; у некоторых штам­мов так же, как и у болгарской палочки, наблюдаются метахроматические зерна при окрашивании препаратов метиленовым голубым: на плотных питательных средах образуют колонии: поверхностные — более или менее крупные (диаметром 1,5—3 мм), светлые, локонообразные; глубинные — в виде “паучков”. Оптимальная температура развития 37—38°С, максимальная 60— 62° С, минимальная около 20° С.

При внесении петлей в пробирку с молоком сквашивание при опти­мальной температуре наступает через 10—12 ч. Предельная кислот­ность в молоке 180—300° Т. В молоке образуют молочную кис­лоту. Основным отличительным свойством ацидофильных бактерий явля­ется их антибиотическая активность. Ацидофильные бактерии спо­собны подавлять развитие ряда микроорганизмов, в том числе бакте­рий группы кишечной палочки, дизентерийной, паратифозной и дру­гих. Считалось, что бактерицидным началом молочнокислых бакте­рий, в том число н ацидофильных, является молочная кислота. Од­нако И. И. Мечников еще в 1907 г. на основании работ Г. Д. Белоновского отмечал, что положительное действие болгарской палочки обусловлено не только молочной кислотой, но и особыми вещества­ми, выделяемыми ею (И. И. Мечников, 1964).

Антибиотические свойства у ацидофильных бактерий впервые были обнаружены М. С. Полонской (1952). Она установила, что культуры ацидофильной палочки наряду с молочной кислотой образуют спе­цифические вещества, оказывающие антибиотическое действие на кишечную палочку. Эти вещества термостабильны: не разрушаются даже при кипячении и проходят через бактериальные (мембранные) фильтры. В дальнейшем эти исследователи и М. II. Бибердиева (1958) выявили, что антибиотические вещества, выделяемые ацидофильной палочкой, угнетающе действуют на ряд штаммов кишечной палочки, патогенных представителей бактерий группы кишечной палочки и дизентерийных палочек, гнилостных бакте­рий и ряд других микроорганизмов

Ацидофильные бактерии устойчивы к неблагоприятным воздействи­ям внешней среды — щелочной реакции (рН 8), наличию в среде фенола, солей желчи (20%), NaCl (2% ).

Несмотря на такое кажущееся обилие отличительных признаков, на практике трудно дифференцировать имеющиеся штаммы. Это объясняется тем, что свойства, характерные для аци­дофильной палочки, связаны с приспособлением к условиям ее по­стоянного места обитания — кишечнику. На протяжении многих лет существовало мнение, что в результате культивирования ацидофильной палочки в молоке — среде, не свой­ственной для ее обитания, часть ее признаков может утрачиваться и штаммы нельзя отличить от коллекционных культур болгарской палочки. Поэтому некоторые авторы (А. Ф. Войткевич, 1948; С А. Королев, 1932; Н. Копелов, 1926; Б. Менерт, 1960) считали болгарскую палочку разновидностью ацидофильной, утратившей в результате длительного развития в молоке признаки, обусловливаю­щие возможность развития ее в кишечнике. В то же время среди штаммов, выделенных из молочных продуктов и идентифицирован­ных как болгарская палочка, обнаруживают культуры с достаточно высокой антибиотической активностью, устойчивые к неблагоприят­ным условиям (М. С. Полонская, 1964; В. М. Богданов, 1957 и др.). Имеются данные, что ацидофильные бактерии, утратившие часть свойств в результате лабораторного культивирования, попав в ки­шечник, могут вновь их восстановить (Н. Копелов, 1926; К. И. Кудзин, 1936; А. Шмидт-Бурбах, 1956 и др.). Производственно ценные штаммы ацидофильных бактерий применя­ют для приготовления ацидофиль­ных кисломолочных продуктов, кумыса из коровьего молока.

^ Термоустойчивые молочнокислые палочки. Наряду с термофильны­ми молочнокислыми палочками, вводимыми с заквасками, в кисло­молочных продуктах встречаются термофильные молочнокислые бактерии незаквасочного проис­хождения (Н. С. Королева, 1960, 1961). Их легко обнаружить в та­ких продуктах, как творог и сметана, закваски для которых состоят только из молочнокислых стрептококков. Они имеют следующие морфологические, культурные и биохимические особенности. Клетки — палочковидные, размером 4—10-0,7—0,9 мк, одиночные, часто с резко выраженными зернами внутри; молодые клетки могут быть темноокрашенные, одиночные или в цепочках. Грам-положительны, спор не образуют, неподвижны, микроаэрофилы. Рас­тут на молоке и агаре с гидролизованным молоком; на МПА роста нет. Глубинные колонии темные, желтовато-бурые, иногда с корот­кими отходящими нитями. При поверхностном росте колонии более крупные, локонообразные или зернистые с темным центром. При внесении петлей молоко свертывают за 8—10 ч, образуют пре­дельную кислотность 150—220° Т. Сгусток неслизистый и слизистый, ровный, без газа. В молоке образуют в небольшом количестве лету­чие кислоты. Сбраживают глюкозу, галактозу, лактозу, сахарозу, мальтозу, левулезу, раффинозу, декстрин с образованием молочной кислоты. Выдерживают кратковременное нагревание в молоке до 85—90° С, иногда выше, что является одним из наиболее важных признаков, отличающих эти микроорганизмы от других видов термофильных мо­лочнокислых палочек. Устойчивы к NaCl (до 2—3%) и желчи (до 30—40%). Некоторые штаммы отличаются значительной антибиотической активностью по отношению к кишечной палочке.

Применяемые в промышленности концентрации дезинфицирующих средств, например активного хлора, малоэффективны по отношению к термоустойчивым палочкам, что затрудняет борьбу с ними. Как нерегулируемая часть микрофлоры кисломолочных продуктов термоустойчивые молочнокислые палочки должны быть отнесены к группе технически вредных бактерий. В результате их жизнедея­тельности происходит интенсивное кислотообразование, приводящее к развитию порока, — излишне кислый вкус. Иногда отдельные штам­мы термоустойчивой палочки могут вызывать тягучесть и нечистый неприятный вкус кисломолочных продуктов.

Термоустойчивые молочнокислые палочки были обнаружены в сыром молоке, поступающем на предприятия, в молоке, пастеризо­ванном при 75° С с выдержкой 15—20 с и при 80—85° С с выдерж­кой 5—10 мин, на технологическом оборудовании, а также в различ­ных кисломолочных продуктах и заквасках.

Результаты микроскопического исследования кисломолочных продук­тов и заквасок свидетельствуют об обильном обсеменении их термо­устойчивыми молочнокислыми палочками. Следует учесть, что методом микроскопирования удается обнаружить палочки лишь в количестве, превышающем десятки тысяч клеток в 1 мл.

^ УКСУСНОКИСЛЫЕ БАКТЕРИИ

В литературе много лет назад появились сообщения о том, что в мо­лочных продуктах обнаружены бактерии, морфологически похожие на Str. lactis, но отличающиеся от них резко аэробным характером роста, подвижностью и способностью к интенсивному протеолизу мо­лока. Долгое время эта группа микроорганиз­мов упоминалась как подвижные стрептококки (С. А. Королев, 1932), подвижные диплококки (В. М. Богданов, 1937), протеолитические молочнокислые бактерии (М. Р. Гибшман, 1945), 0-мукоидные фор­мы молочнокислых бактерий (О. К. Палладина, 1941).

М. Р. Гибшман (1952), исследуя физиологические особенности этой группы микроорганизмов, пришла к выводу о принадлежности ее к уксуснокислым бактериям Acetobacter aceti. Уксуснокислые бактерии — подвижные перетрихп - клетки палочковидные, часто овальные, одиночные пли соединенные па­рами либо в цепочки ; при окрашивании препаратов культур, выращенных в молоке, метиленовым голубым, клетки по морфо­логическим признакам часто не отличаются от молочнокислых стреп­тококков. Размеры клеток колеблются в пределах 0,6—2,5-0,4—0,6мк. По Граму не окрашиваются. Колонии на МПЛ и сусло-агаре масля­нистые, блестящие, бесцветные или желтоватые. На жидких подкис­ленных средах уксуснокислые бактерии образуют пленку, слабую или более плотную, опускающуюся на дно пробирок. Аэробны, но при посеве уколом в МПЖ дают гвоздевидный рост (могут быть от­несены к факультативным аэробам). Желатин не разжижают, обра­зуют каталазу и перекись водорода. Оптимальная температура раз­вития 30° С. Хорошо растут при 20° С и слабо при 37—38° С. Окисля­ют этиловый спирт в уксусную кислоту, образуя от 5 до 9,6% уксусной кислоты. Устойчивы к спирту и уксусной кислоте. Ацидофильны. В молоке в чистой культуре практически не развиваются, так как не получают доступного источника углеводов. Совместно с молочнокислыми бактериями, которые образуют молочную кислоту, развиваются очень быстро.

По данным Л. А. Мелузотюй, и др. (1958), уксуснокислые бактерии молока способны синтезировать флавин, в результате чего на поверхности свернувшегося молока при совместном развитии в нем уксуснокислых и молочнокислых бакте­рий появляется оранжевое кольцо. Это является наиболее характерными признаками, позволяющими установить присутствие уксуснокислых бактерий в продуктах, а так же наличие на поверхности жидких подкисленных сред пленки, в которой при помощи микроскопирования обнаружи­ваются подвижные бактерии.

М. Р. Гибшман (1952) установила, что эти бактерии широко распро­странены среди микрофлоры молочных продуктов. В. М. Богданов и И. Н. Пятницына (1959), работая над получением кефирной закваски на чистых культурах, пришли к выводу, что уксуснокислые бактерии должны быть непременным компонентом микрофлоры кефирной закваски, так как в результате применения закваски, не содержащей уксуснокислых бактерий, вкус кефира был нетипичным. Установлена способность уксуснокислых бактерий син­тезировать витамин B12 (B.M. Богданов, 19626). А. К. Максимова и Э. Е. Грудзинская (1959) отметили, что уксуснокислые бактерии угнетают развитие дрожжей в кефире и резко снижают количество образующегося спирта.

Отмечаемые многими авторами симбиотические взаимоотношения между уксуснокислыми и молочнокислыми бактериями (В. М. Бог­данов, 1962, М. Р. Гибшман, 1952, Л. А. Банникова, 1953, и др.) заставляют рассматривать уксуснокислые бактерии не как случай­ную редкую часть микрофлоры молочных продуктов, а как постоян­ный компонент ее. В. Н. Апульциной (1965), а впоследствии Н. А. Бавиной и И. В. Рожковой (1973) были проведены сравнительные исследования по определению количества уксуснокислых бакте­рий в кефирной закваске, кефире и твороге методом посевов на пре­дельные разведения в гидролизованное молоко с рН 4,0—4,5 и обез­жиренное молоко (учет по образованию оранжевого кольца на поверхности сгустка).

Наибольшее количество уксуснокислых бактерий содержится в грибковой кефирной закваске (сотни тысяч — млн./мл), в производственной закваске и в готовом кефире содержание уксуснокислых бактерий постепенно снижается (до 100—10 тыс./мл). По-видимому, это объясняется тем, что продолжительность приготовления произ­водственной закваски и кефира недостаточна для интенсивного раз­вития уксуснокислых бактерий.

Результаты исследований творога свидетельствуют о связи меж­ду его качеством и количеством в нем уксуснокислых бактерий. Сравнительно немного уксуснокислых бактерий обнаруживалось в твороге из пастеризованного молока высшего сорта. В некоторых образцах творога первого сорта, выработанного из пастеризованного молока, и творога из сырого молока количество уксуснокислых бак­терий достигало 6 млн/г.
  1   2   3   4   5   6



Скачать файл (878.4 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации