Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лабораторная работа №1 - Основы криптографической защиты информации - файл 1.doc


Лабораторная работа №1 - Основы криптографической защиты информации
скачать (120.5 kb.)

Доступные файлы (1):

1.doc121kb.20.12.2011 10:32скачать

содержание
Загрузка...

1.doc

Реклама MarketGid:
Загрузка...
Защита информации

Лабораторная работа №1

Основы криптографической защиты информации

Введение

Для обеспечения защиты информации в настоящее время не существует какого-то одного технического приема или средства, однако общим в решении многих проблем безопасности является использование криптографии и криптоподобных преобразований информации.

1. Цель работы

Исследование основных методов криптографической зашиты информации.

2. Краткие сведения из теории

Криптография – обеспечивает сокрытие смысла сообщения с помощью шифрования и открытия его расшифрованием, которые выполняются по специальным алгоритмам с помощью ключей.

Ключ – конкретное секретное состояние некоторых параметров алгоритма криптографического преобразования данных, обеспечивающее выбор только одного варианта из всех возможных для данного алгоритма.

Криптоанализ – занимается вскрытием шифра без знания ключа (проверка устойчивости шифра).

Кодирование – (не относится к криптографии) – система условных обозначений, применяемых при передаче информации. Применяется для увеличения качества передачи информации, сжатия информации и для уменьшения стоимости хранения и передачи.

Криптографические преобразования имеют цель обеспечить недоступность информации для лиц, не имеющих ключа, и поддержание с требуемой надежностью обнаружения несанкционированных искажений.

Большинство средств защиты информации базируется на использовании криптографических шифров и процедур шифрования-расшифрования. В соответствии со стандартом ГОСТ 28147-89 под шифром понимают совокупность обратимых преобразований множества открытых данных на множество зашифрованных данных, задаваемых ключом и алгоритмом преобразования.

В криптографии используются следующие основные алгоритмы шифрования:

  • алгоритм замены (подстановки) – символы шифруемого текста заменяются символами того же или другого алфавита в соответствии с заранее обусловленной схемой замены;

  • алгоритм перестановки – символы шифруемого текста переставляются по определенному правилу в пределах некоторого блока этого текста;

  • гаммирование – символы шифруемого текста складываются с символами некоторой случайной последовательности;

  • аналитическое преобразование – преобразование шифруемого текста по некоторому аналитическому правилу (формуле).

Процессы шифрования и расшифрования осуществляются в рамках некоторой криптосистемы. Для симметричной криптосистемы характерно применение одного и того же ключа как при шифровании, так и при расшифровании сообщений. В асимметричных криптосистемах для зашифрования данных используется один (общедоступный) ключ, а для расшифрования – другой (секретный) ключ.

^ Симметричные криптосистемы

Шифры перестановки

В шифрах средних веков часто использовались таблицы, с помощью которых выполнялись простые процедуры шифрования, основанные на перестановке букв в сообщении. Ключем в данном случае является размеры таблицы. Например, сообщение “Неясное становится еще более непонятным” записывается в таблицу из 5 строк и 7 столбцов по столбцам.

Н

О

Н

С

Б

Н

Я

Е

Е

О

Я

О

Е

Т

Я

С

В

Е

Л

П

Н

С

Т

И

Щ

Е

О

Ы

Н

А

Т

Е

Е

Н

М

Для получения шифрованного сообщения текст считывается по строкам и группируется по 5 букв:

^ НОНСБ НЯЕЕО ЯОЕТЯ СВЕЛП НСТИЩ ЕОЫНА ТЕЕНМ

Несколько большей стойкостью к раскрытию обладает метод одиночной перестановки по ключу. Он отличается от предыдущего тем, что столбцы таблицы переставляются по ключевому слову, фразе или набору чисел длиной в строку таблицы. Используя в качестве ключа слово ЛУНАТИК, получим следующую таблицу

Л

У

Н

А

Т

И

К

 

 

А

И

К

Л

Н

Т

У

4

7

5

1

6

2

3

 

 

1

2

3

4

5

6

7

Н

О

Н

С

Б

Н

Я

 

 

С

Н

Я

Н

Н

Б

О

Е

Е

О

Я

О

Е

Т

 

 

Я

Е

Т

Е

О

О

Е

Я

С

В

Е

Л

П

Н

 

 

Е

П

Н

Я

В

Л

С

С

Т

И

Щ

Е

О

Ы

 

 

Щ

О

Ы

С

И

Е

Т

Н

А

Т

Е

Е

Н

М

 

 

Е

Н

М

Н

Т

Е

А

До перестановки После перестановки

В верхней строке левой таблицы записан ключ, а номера под буквами ключа определены в соответствии с естественным порядком соответствующих букв ключа в алфавите. Если в ключе встретились бы одинаковые буквы, они бы нумеровались слева направо. Получается шифровка: СНЯНН БОЯЕТ ЕООЕЕ ПНЯВЛ СЩОЫС ИЕТЕН МНТЕА. Для обеспечения дополнительной скрытности можно повторно шифровать сообщение, которое уже было зашифровано. Для этого размер второй таблицы подбирают так, чтобы длины ее строк и столбцов отличались от длин строк и столбцов первой таблицы. Лучше всего, если они будут взаимно простыми.

Кроме алгоритмов одиночных перестановок применяются алгоритмы двойных перестановок. Сначала в таблицу записывается текст сообщения, а потом поочередно переставляются столбцы, а затем строки. При расшифровке порядок перестановок был обратный. Пример данного метода шифрования показан в следующих таблицах:




2

4

1

3

 

 

1

2

3

4

 

 

1

2

3

4

4

П

Р

И

Е

 

4

И

П

Е

Р

 

1

А

З

Ю

Ж

1

З

Ж

А

Ю

 

1

А

3

Ю

Ж

 

2

Е

_

С

Ш

2

_

Ш

Е

С

 

2

Е.

_

С

Ш

 

3

Г

Т

О

О

3

Т

О

Г

О

 

3

Г

Т

О

О

 

4

И

П

Е

Р

Двойная перестановка столбцов и строк

В результате перестановки получена шифровка АЗЮЖЕ_СШГТООИПЕР. Ключом к шифру служат номера столбцов 2413 и номера строк 4123 исходной таблицы.

Число вариантов двойной перестановки достаточно быстро возрастает с увеличением размера таблицы: для таблицы 3 х 3 их 36, для 4 х 4 их 576, а для 5*5 их 14400.

В средние века для шифрования применялись и магические квадраты. Магическими квадратами называются квадратные таблицы с вписанными в их клетки последовательными натуральными числами, начиная с единицы, которые дают в сумме по каждому столбцу, каждой строке и каждой диагонали одно и то же число. Для шифрования необходимо вписать исходный текст по приведенной в квадрате нумерации и затем переписать содержимое таблицы по строкам. В результате получается шифротекст, сформированный благодаря перестановке букв исходного сообщения.

16

3

2

13

 

 

О

И

Р

Т

5

10

11

8

 

 

З

Ш

Е

Ю

9

6

7

12

 

 

_

Ж

А

С

4

15

14

1

 

 

Е

Г

О

П




П

Р

И

Е

З

Ж

А

Ю

_

Ш

Е

С

Т

О

Г

О

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Число магических квадратов очень резко возрастает с увеличением размера его сторон: для таблицы 3*3 таких квадратов -1; для таблицы 4*4 - 880; а для таблицы 5*5-250000.

^ Шифры простой замены

Система шифрования Цезаря - частный случай шифра простой замены. Метод основан на замене каждой буквы сообщения на другую букву того же алфавита, путем смещения от исходной буквы на K букв.

Известная фраза Юлия Цезаря VENI VINI VICI – пришел, увидел, победил, зашифрованная с помощью данного метода, преобразуется в SBKF SFAF SFZF (при смещении на 4 символа).

Греческим писателем Полибием за 100 лет до н.э. был изобретен так называемый полибианский квадрат размером 5*5, заполненный алфавитом в случайном порядке. Греческий алфавит имеет 24 буквы, а 25-м символом является пробел. Для шифрования на квадрате находили букву текста и записывали в шифротекст букву, расположенную ниже ее в том же столбце. Если буква оказывалась в нижней строке таблицы, то брали верхнюю букву из того же столбца.

^ Шифры сложной замены

Шифр Гронсфельда состоит в модификации шифра Цезаря числовым ключом. Для этого под буквами сообщения записывают цифры числового ключа. Если ключ короче сообщения, то его запись циклически повторяют. Шифротекст получают примерно также, как в шифре Цезаря, но отсчитывают не третью букву по алфавиту (как в шифре Цезаря), а ту, которая смещена по алфавиту на соответствующую цифру ключа.

Пусть в качестве ключа используется группа из трех цифр – 314, тогда

Сообщение СОВЕРШЕННО СЕКРЕТНО

Ключ 3143143143143143143

Шифровка ФПИСЬИОССАХИЛФИУСС

В шифрах многоалфавитной замены для шифрования каждого символа исходного сообщения применяется свой шифр простой замены (свой алфавит).

 

АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ_

А

АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ_

Б

_АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ

В

Я_АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮ

Г

ЮЯ_АБВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭ

.

…………

Я

ВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ_АБ

_

БВГДЕЁЖЗИКЛМНОПРСТУФХЧШЩЪЫЬЭЮЯ_А

Каждая строка в этой таблице соответствует одному шифру замены аналогично шифру Цезаря для алфавита, дополненного пробелом. При шифровании сообщения его выписывают в строку, а под ним ключ. Если ключ оказался короче сообщения, то его циклически повторяют. Шифротекст получают, находя символ в колонке таблицы по букве текста и строке, соответствующей букве ключа. Например, используя ключ АГАВА, из сообщения ПРИЕЗЖАЮ ШЕСТОГО получаем следующую шифровку:

Сообщение

ПРИЕЗЖАЮ_ШЕСТОГО

Ключ

АГАВААГАВААГАВАА

Шифровка

ПНИГЗЖЮЮЮАЕОТМГО

В компьютере такая операция соответствует сложению кодов ASCII символов сообщения и ключа по модулю 256.

Гаммирование

Процесс зашифрования заключается в генерации гаммы шифра и наложении этой гаммы на исходный открытый текст. Перед шифрованием открытые данные разбиваются на блоки Т(0)i одинаковой длины (по 64 бита). Гамма шифра вырабатывается в виде последовательности блоков Г(ш)i аналогичной длины (Т(ш)i=Г(ш)i+Т(0)i, где + - побитовое сложение, i =1-m).

Процесс расшифрования сводится к повторной генерации шифра текста и наложение этой гаммы на зашифрованные данные T(0)i=Г(ш)i+Т(ш)i.

Асимметричные криптосистемы

Схема шифрования Эль Гамаля

Алгоритм шифрования Эль Гамаля основан на применении больших чисел для генерации открытого и закрытого ключа, криптостойкость же обусловлена сложностью вычисления дискретных логарифмов.

Последовательность действий пользователя:

  1. Получатель сообщения выбирает два больших числа P и G, причем P > G.

  2. Получатель выбирает секретный ключ - случайное целое число X < P.

  3. Вычисляется открытый ключ Y= G x mod P.

  4. Получатель выбирает целое число K, 1< K< P-1.

  5. Шифрование сообщения (M): a= GK mod P, b=Y K M mod P, где пара чисел (a,b) является шифротекстом.

Криптосистема шифрования данных RSA

Предложена в 1978 году авторами Rivest, Shamir и Aldeman и основана на трудности разложения больших целых чисел на простые сомножители.

Последовательность действий пользователя:

  1. Получатель выбирает 2 больших простых целых числа p и q, на основе которых вычисляет N=pq; M=(p-1)(q-1).

  2. Получатель выбирает целое случайное число d, которое является взаимопростым со значением М, и вычисляет значение е из условия ed=1(mod M).

  3. d и N публикуются как открытый ключ, е и М являются закрытым ключом.

  4. Если S –сообщение и его длина: 1<Len(S)<N, то зашифровать этот текст можно как S’=Sd(mod N), то есть шифруется открытым ключом.

  5. Получатель расшифровывает с помощью закрытого ключа: S=Se(mod N).

^ 3. Задание к работе

Зашифровать любыми пятью методами свои данные: Фамилию, Имя, Отчество.

Содержание отчета

  1. Название работы.

  2. Цель работы.

  3. Алгоритм шифрования.

  4. Проверка. Ответ.

^ 4. Вопросы для самопроверки

  1. Цель и задачи криптографии.

  2. Шифры одиночной перестановки и перестановки по ключевому слову. Шифр Гронфельда.

  3. Шифры двойной перестановки. Шифрование с помощью магического квадрата.

  4. Шифр многоалфавитной замены и алгоритм его реализации.

  5. Алгоритм шифрации двойным квадратом.

  6. Алгоритм шифрования ГОСТ 28147-89.

  7. Алгоритм шифрования RSA.

  8. Алгоритм шифрования Эль Гамаля.

  9. Задачи и алгоритмы электронной подписи.

  10. Задачи распределения ключей.



Скачать файл (120.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации