Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции - Кинематика - файл 1.rtf


Лекции - Кинематика
скачать (29267.3 kb.)

Доступные файлы (1):

1.rtf29268kb.16.11.2011 20:27скачать

содержание

1.rtf

Кинематика

тема 1 кинематика точки


1.1 предмет изучения


С самого рождения и на протяжении всей своей жизни мы встречаемся с движением материи. Простейшей формой движения материи является механика. В разделе «кинематика» мы будем изучать только одну сторону механического движения – геометрическую, т.е. мы будем изучать геометрию движения тела без учета его массы и сил, действующих на него. Механически движение в общем смысле будет изучаться в разделе «динамика».

Под движением в механике мы будем понимать перемещение данного тела в пространстве и времени по отношению к другим телам.

Для определения положения движущего тела вводится система отсчета, связанная с телом, условно принимаемым за неподвижное. Движение тела происходит в пространстве и времени. Мы будем рассматривать трехмерное эвклидо пространство. За единицу длины в нем принимается 1 метр. Время считается универсальным, т. е. не зависящим от выбранной системы отсчета. За единицу времени принимается 1 секунда. В задачах механики время принимается за независимую переменную. Все остальные кинематические величины (расстояния, скорости, ускорения и т.д.) являются функциями времени.

Прежде чем изучать движение его необходимо задать, т.е. описать каким-либо математическими формулами так, чтобы можно было узнать положение тела и все его кинематические характеристики в любой момент времени.

Основная задача кинематики заключается в том, чтобы по известному закону движения тела (или какой-либо его точки) найти все остальные

кинематические характеристики движения.

Изучение кинематики мы начнем с изучения движения простейшего тела – точки, т.е. такого тела, размерами которого можно пренебречь и рассматривать его как геометрическую точку.


^ 1.2 Способы задания движения точки


Мы будем рассматривать три способа задания движения: векторный, координатный и естественный.


1.2.1 Векторный способ

Положение движущейся точки М определяется с помощью радиуса вектора , проведенного из некоторого неподвижного центра О в эту точку (рис. 1.1). В процессе движения этот вектор изменяется по величине и направлению, т.е. является функцией времени. Зависимость


(1.1)


называется уравнением движения (или законом движения) в векторной форме. Линия, описываемая концом этого вектора называется траекторией движения.





^ 1.2.2 Координатный способ

С неподвижным центром О связывается неподвижная система координат ОХ у Z. Положение точки определяется тремя координатами: х, у, z (рис. 1.2). В процессе движения эти координаты изменяются, т.е. они являются функциями времени.




Зависимости


х=f1(t); у=f2(t); z=f3(t) (1.2)


называются уравнениями движения точки в координатной форме. Эти уравнения являются одновременно параметрическими уравнениями траектории движения (параметром является t).

Чтобы получить уравнение траектории в явной форме, надо из уравнений (1.2) исключить параметр t.


^ 1.2.3 Естественный способ

При естественном способе задания движения траектория заранее известна. На траектории выбирается начало отсчета (т. 0) и устанавливается положи-тельное и отрицательное направления отсчета.

Положение точки на траектории однозначно определяется криволинейной координатой S, измеряемой вдоль траектории. Зависимость

S = f(t) (1.3)


называется уравнением движения в естественной форме.





^ 1.2.4 Связь между способами задания движения

Координатный векторный способы связаны зависимостью:


(1.4)


где - единичные орты координатных осей.

Переход от координатного способа к естественному:





здесь: ;


(т.е. здесь и в дальнейшем производная по времени обозначается точкой над буквой).


^ 1.3 Определение скорости и ускорение точки при векторном задании движения


Пусть точка за время переходит из положения М в положение М1, двигаясь вдоль траектории (Рис. 1.4) называется вектором перемеще-ния. - средняя скорость.

Например, вектор по хорде М М1. если уменьшать промежуток времени , то хорда будет приближаться к касательной, а средняя скорость к мгновенной.




Рис. 1.4




(1.6)


Направлен вектор скорости по касательной к траектории.

Определение ускорения:

Пусть в положении М скорость , а в положении М1 (через время ) скорость . Приращение скорости (рис. 1.5).

Среднее ускорение:




Ускорение в данный момент




(1.7)


Лежит вектор ускорения в плоскости, проведенных через касательной к траектории в двух бесконечно близких точках. Эта плоскость называется соприкасающейся или плоскостью главной кривизны.


^ 1.4 Определение скорости и ускорения точки при координатном способе задания движения


при координатном способе задания движения:


(а)


с другой стороны:


(б)


Сравнивая (а) и (б) находим:


; ; (1.8)


т.е. проекция вектора скорости на оси координат равны первым производным по времени от соответствующих координат.

Величина скорости:


(1.9)


направление вектора скорости определяется с помощью направляющих косинусов, т.е. косинусов углов между вектором скорости и осями координат (рис. 1.6).





(1.10)


Аналогично ищем ускорения:





Сравнивая (в), (г), (д) находим:

(1.11)


Проекция ускорения равны первым производным по времени от соответствующих проекций скорости или вторым производным по времени от соответствующих координат.

Величина ускорения:


(1.12)


Направляющие косинусы:


; ; ; (1.13)


^ 1.5 Определение скорости и ускорения точки при естественном задании движения


Пусть за время точка переместилась из положения М в положение М1, совершив перемещение (рис. 1.17).





величина скорости точки:




(1.14)


Направлена скорость по касательной к траектории:

Найдем ускорение точки.

Пусть в положении М точка имеет скорость (рис. 1.8).

Полное ускорение точки будет:





Обозначим угол между касательными через (угол смежности). Спроецируем вектор ускорения на касательную и нормам п.










Найдем эти пределы, учитывая, что при одновременно и и .





где ρ – радиус кривизны траектории в данной точке.

Подставив эти значения в ап получим:





Т.о. величины касательного, нормального и полного ускорений определяется формулами:





Касательное ускорение направлено по касательной к траектории (в сторону скорости при ускоренном движении и противоположно скорости – при замедленном) и характеризует изменение величины скорости.

Нормальное ускорение направлено по нормам к траектории к центру кривизны и характеризует изменение направления скорости.


^ 1.6 Частные случаи движения точки


По виду траектории движение делится на прямолинейное и криволинейное. При прямолинейном движении ап = 0, т.к. ρ = ∞.

По изменению величины скорости движения делится на равномерные и неравномерные.

Движение называется равномерным, если величина скорости постоянна (^ V=const).

Закон равномерного движения:


S=S0+Vt (1.18)


Движение называется равномерным, если величина касательного ускорения постоянна.





Т.о. равномерное движение описывается двумя формулами:


(1.19)

Нормальное ускорение направлено от данной точки к оси вращения


Тема 2 Простейшие движения тела


К простейшим движениям твердого тела относятся поступательное движение и вращательное движение вокруг неподвижной оси.


^ 2.1 Поступательное движение твердого тела


Поступательным называется такое движение тела, при котором любой отрезок прямой проведенной в теле перемещается параллельно самому себе.

Это самое простое движение тела.

Оно описывается одной теоремой:

При поступательном движении тела все его точки описывают одинаковые, при наложении совпадающие траектории, и имеют одинаковые скорости и одинаковые ускорения.

Доказательство:

Проведем в теле произвольный отрезок АВ. При движении тела он остается параллельным самому себе (рис. 2.1). траектория точки А на величину АВ, т.е. они одинаковые.





Проведем из неподвижного центра О радиусы-векторы точек А и В (), а также вектор из точки А в точку В.

Очевидно, что




Продифференцируем это векторное равенство по времени, учитывая, что .


; но , значит

(2.1)


дифференцируя (2.1) по времени: , получаем:


(2.2)


Так как точки А и В взяты произвольно, то все выводы справедливы для всех точек тела.

Следовательно, при поступательном движении тела его можно считать точкой и пользоваться формулами кинематики точки.


^ 2.2 Вращение тела вокруг неподвижной оси


Вращательным называется такое движение тела, при котором хотя бы две точки, принадлежащие телу или жестко с ним связанные, во все время движения остаются неподвижными. Прямая, проходящая через эти две неподвижные точки называется осью вращения.

Проведем через ось вращения две полуплоскости: неподвижную І и подвижную II, жестко связанную с телом и вращающуюся вместе с ним (рис. 2.2).

Положением тела будет однозначно определяться углом φ между этими полуплоскостями. Угол φ называется углом поворота. Измеряется он в радианах. Положительное направление φ – против часовой стрелки, если смотреть навстречу оси Z.

Зависимость


φ = φ(t) (2.3)


называется уравнением вращательного движения.





Быстрота вращения характеризуется угловой скоростью ω. Средняя угловая скорость определяется как отношения приращения угла поворота φ к промежутку времени ∆t, за который оно произошло.





Угловая скорость в данный момент времени:


(2.3)


Вектор угловой скорости направлен по оси вращения в ту сторону, чтобы, глядя навстречу ему, мы видели вращение происходящей против часовой стрелки. Изменяется ω в радиан/сек. На производстве угловую скорость измеряют в об/мин. В этом случае она обозначается буквой «п».

Формула перехода:


(2.4)


Изменение угловой скорости характеризуется угловым ускорением ε, которая определяется как первая производная от угловой скорости или вторая производная от угла поворота по времени:


(2.5)


Направлен вектор также по оси вращения в сторону при ускоренном и противоположном при замедленном вращении. Единица измерения – 1Рад/с2.


^ 2.3 Равномерное и равнопеременное вращение


Вращение называется равномерным, если угловая скорость постоянна, т.е. ω = const.

Закон равномерного вращения:


φ=φ0+ωt (2.6)


Вращение называется равнопеременным, если угловое ускорение постоянно, т.е. ε = const.

Но . Разделяя переменные и интеграции находим, что


(2.7)


Подставив сюда и еще раз интегрируя , получим уравнение переменного вращения:


(2.8)


^ 2.4 Скорости и ускорение точек вращающегося тела


пусть за время dt тело повернулось на угол dφ, а точка М, находящаяся на расстоянии R от оси вращения, получила перемещение dS=ч* dφ (рис. 2.3).

Тогда скорость точки


(2.9)


Направлен вектор скорости по касательной к траекториям, т.е. по касательной к окружности радиуса R, центр которой лежит на оси вращения, а ее плоскость перпендикулярна оси вращения.

Найдем нормальное и касательное ускорение точки:










Нормальное ускорение направлено от данной точки к оси вращения.

Касательное ускорение направлено по касательной к округлости, которую описывает точка и совпадает с направлением скорости при ускоренном вращении, а при немедленном – противоположно скорости.

Рассмотрим векторное произведение (рис. 2.4). Его модуль , а направление совпадает с направлением скорости. Из этого делаем вывод, что вектор скорости:


(2.11)


взяв от этого выражения производную по времени, получим:





Первое произведение по величине и направлению совпадает с касательным, а вторая – с нормальным ускорением.

Таким образом, касательная и нормальная составляющие вектора полного ускорения при вращательном движении определяется формулами:


(2.12)




Отметим, что радиус-вектор точки М можно проводить из любой точки О1, лежащей на оси вращения (все точки оси вращения неподвижны) и что этот вектор постоянный по модулю (у него меняется только направление).


^ 2.5 Простейшие передаточные механизмы


Передаточными называют механизмы, служащие для передачи вращения с одного вала на другой. К простейшим из них относятся: зубчатые, ременные, цепные и фрикционные. Схематическое изображение зубчатых и фрикционных механизмов показано на рис. 2.5а, а ременных и цепных на рис. 2.5.б.

Найдем скорость точки а: на колесе І и на колесе ІІ. Так как проскальзывание отсутствует, то .

Отсюда:


(2.13)

т.е. угловые скорости обратно пропорциональны радиусом колес. Величина i1-2 называется передаточным отношением.

У зубчатых и цепных передач – передаточное отношение точное, у ременных и фрикционных – может быть проскальзывание. Ременные и цепные передачи позволяют передавать вращение на большие расстояния, чем зубчатые и фрикционные. С устройством передаточных механизмов, их изготовлением, расчетами и эксплуатацией вы познакомитесь в курсах «Теория механизмов и машин» и «Детали машин».


Тема 3 Сложное движение точки


^ 3.1 Основные определения


До сих пор мы рассматриваем движение точки в одной, неподвижной системе отсчета. Однако, часто встречаются случаи, когда точка движется по определенному закону в некоторой системе отсчета, которая, в свою очередь, перемещается относительно неподвижной системы отсчета. Такое движение точки называется сложным. Введем основные определения сложного движения точки.

Движение точки в подвижной системе отсчета называется относительным. Скорость и ускорение точки в этом движении называются относительными и обозначаются: (или ).

Движение точки вместе с подвижной системой называется переносным. Скорость и ускорение той точки М/ подвижной системы, в которой в данный момент находится движущаяся точка М, являются для данной точки переносной скоростью и переносным ускорением и обозначаются (или ).

Движение точки относительно неподвижной системы отсчета называется абсолютным. Скорость и ускорение точки в этом движении называются абсолютными и обозначаются (или ).

Пусть точка ^ М движется в подвижной системе отсчета охуz. Ее координаты х, у, z являются функциями времени, а координаты х/, у/, z/ точки М/ подвижной системы, в которой в данный момент находится движущая точка М, являются константами. Но в любой момент времени


х = х/, у = у/, z = z/ (3.1)


Введем в рассмотрение радиусы-векторы, определяющие положение точек М и М/ в подвижной и неподвижной системах отсчета (рис. 3.1).





- радиус-вектор, определяющий положение начала подвижной системы охуz в неподвижной системе отсчета о1х1у1z1.

=- радиус-вектор, определяющий положение движущейся точки М в подвижной системе отсчета. Он описывает относительное движение точки.

- радиус-вектор, определяющий положение точки М/ подвижной системы в этой же системе.

- радиус-вектор, определяющий положение точки М/ подвижной системы в неподвижной системе отсчета. Он описывает переносное движение точки.

- радиус-вектор, определяющий положение движущейся точки М в неподвижной системе отсчета. Он описывает абсолютное движение.


^ 3.2 Теоремы о схождении скоростей и ускорений


Скорости и ускорения точки в различных движениях будем определять как первую и вторую производные по времени от соответствующих радиусов-векторов.

  1. Относительную скорость и относительное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая единичные орты константами (в подвижной системе – они постоянны).





  1. Переносную скорость и переносное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая координаты х/, у/, z/ константами, а единичные орты – переменными.





так как дифференцирование проведено, то мы можем воспользоваться равенствами (3.1), т.е. заменить х/ на х, у/ на у, z/ на z:




  1. Абсолютную скорость и абсолютное ускорение находим как первую и вторую производные по времени от радиус-вектора , считая все величины переменными:





Таким образом доказана теорема сложения скоростей:

Абсолютная скорость равна геометрической сумме переносной и относительной скоростей.


(3.6)


находим абсолютное ускорение:





где введено обозначение:


(3.7)


Величина , определяемая равенством (3.7) называется поворотным ускорением или ускорением Кориолиса, по имени французского ученого, доказавшего теорему сложения ускорений:

Абсолютное ускорение точки равно геометрической сумме переносного, относительного и Кориолисов ускорений.

(3.8)


^ 3.3 Ускорение Кориолиса, его величина направление и физический смысл


Рассмотрим ускорение Кориолиса, определяемое равенством (3.7). Если подвижная система движется относительно неподвижной поступательно (т.е. переносное движение поступательное), то единичные орты будут постоянны и по модулю и по направлению и их производные по времени будут равны нулю, следовательно и ускорение Кориолиса равно нулю.

Теорема о сложении ускорений при поступательном переносном движении будет выражаться равенством:


(3.9)


Рассмотрим переносное вращательное движение. Пусть подвижная система вращается вокруг оси О3 с угловой скоростью (рис. 3.2). единичные орты можно рассматривать как радиус-векторы точек А, В и С соответственно. А производные по времени от радиус-векторов точек дают скорости точек.





Следовательно:


; ; (а)


с другой стороны, скорости точек А, В и С мы можем найти как во вращательном движении по формуле (2.11):


; ; (б)


сравнивая (а) и (б) находим, что:


; ; ; (в)


Подставим эти значения в формулу (3.7)





Таким образом ускорение Кориолиса равно удвоенному векторному произведению вектора угловой скорости переносного движения на вектор относительной скорости.


(3.10)


Его величина

(3.11)





В соответствии с правилом векторного произведения ускорения Кориолиса направлено перпендикулярно плоскости, в которой лежат векторы и , в ту сторону, чтобы, глядя навстречу ему, мы видим поворот вектора к вектору на меньший угол происходящим против часовой стрелки.

Другое правило: чтобы найти направление ускорения Кориолиса, надо вектор спроецировать на плоскость, перпендикулярно оси переносного вращения, и полученную проекцию повернуть на 90о в сторону вращения. Эти и будет направление вектора .

Физический смысл ускорения Кориолиса выясним на таком примере. Пусть круглая платформа вращается с постоянной угловой скоростью , а по радиусу платформы двигается точка ^ М с постоянной относительной скоростью Vч (рис. 3.3). В некоторый момент точка занимает положение Мо, а через промежуток времени положение М1. При этом произошло изменение относительной скорости за счет переносного движения (изменилось направление вектора ) и изменение переносной скорости за счет относительного движения (изменилась величина в результате удаления точки от оси вращения). Эти два изменения и характеризуются ускорением Кориолиса.

Таким образом, ускорение Кориолиса характеризует изменение относительной скорости в результате переносного движения и изменение переносной скорости в результате относительного движения.

В общем случае движения формулы (3.8) удобнее использовать в таком виде:


(3.12)


Задача кинематики плоского движения твердого тела - найти характеристики движения самого тела и отдельных его точек. В данном задании к таким характеристикам относятся векторы угловой скорости и углового ускорения тела.




Рис. 1


Основные формулы кинематики плоского движения твердого тела - векторные формулы, связывающие соответственно скорости и ускорения двух произвольных точек плоской фигуры, например, точек А и В (рис. 1)


B = A + BA = A + ´ ; (1)

B = A + + = A + × ( ´ ) + × ; (2)

где , , - векторы угловой скорости и углового ускорения вращения плоской фигуры вокруг любой оси, например Az' перпендикулярной плоскости движения Oxy относительно системы координат Ax'y'z', оси которой параллельны осям неподвижной системы координат Оxyz.На рис.1 оси Оz. и Аz' не изображены, так как считается, что они перпендикулярны к плоскости рисунка и направлены на наблюдателя, а плоскости Охy и Аx'y' совпадают с плоскостью рисунка.

Левые части выражений


BA = ´ ; = × ( ´ ) = × BA; = × ;


являются соответственно векторами скорости, нормального и касательного ускорения точки В относительно системы координат Ax'y'z' при вращении отрезка АВ в плоскости рисунка вокруг точки A, называемой в таком случае полюсом, с угловой скоростью и угловым ускорением . Индексы n и t, в выражениях и указывают, что эти векторы направлены соответственно по внутренней нормали и касательной в точке B к окружности радиуса r = AB с центром в точке А. Модули упомянутых векторов находятся по формулам


½BA½ = ´ AB; ½½ = = ´ AB; ½½ = ´ AB; (3)


Векторы BA, , лежат в плоскости движения плоской фигуры тела, причем ненулевые векторы BA, перпендикулярны отрезку AB, а ненулевой вектор направлен от точки В к точке А . Таким образом, для этих векторов всегда известны линии действия.

Поскольку модуль ускорения может быть вычислен по формуле (3) через угловую скорость тела , обычно известную к этапу нахождения ускорений, целесообразно в формуле (2) вектор записывать вслед за известным вектором А, т.е. перед вектором .

Векторы и параллельны оси Оz и поэтому полностью определяются своими проекциями на эту ось

Модуль проекции равен модулю вектора ; , а знак проекции указывает на направление вектора. Например, если проекции векторов положительны (, то векторы направлены так же, как и , или ось Oz. Таким образом, при плоском движении тела задача нахождения векторов сводится к задаче отыскания их проекций на ось Oz или Az'.

Если (рад) - угол между осью Ax' (Ох) и вектором (рис. 1) и за положительное направление отсчета угла для выбранной системы координат принято направление против хода часовой стрелки, то


рад/с; = = рад/с. (4)


О направлении векторов и судят по круговым стрелкам и согласно правилу: "круговая стрелка, направленная против хода стрелки часов, соответствует вектору, направленному так же, как ось Oz".

Из формул, использующих понятие МЦС (точка Р) на рис.2,


´ ; B = ; ;

; , (5)


следует, что в данный момент времени распределение скоростей точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Рz с угловой скоростью .



0100090000030202000002008a01000000008a01000026060f000a03574d4643010000000000010073140000000001000000e802000000000000e8020000010000006c00000000000000000000002c0000007100000000000000000000005c1100002104000020454d4600000100e80200000e0000000200000000000000000000000000000070120000781a0000c80000001f010000000000000000000000000000850c030082600400160000000c000000180000000a00000010000000000000000000000009000000100000001a040000fa000000250000000c0000000e000080120000000c000000010000005200000070010000010000009cffffff00000000000000000000000090010000000000cc04400012540069006d006500730020004e0065007700200052006f006d0061006e00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000122d093000000000040000000000ae304f2d09300000000047169001cc0002020603050405020304877a0020000000800800000000000000ff01000000000000540069006d00650073002000000065007700200052006f006d0061006e00000000000000c62b093050cbae30003314000100000000000000044811006ab40230044811004c4eaf301c4811006476000800000000250000000c00000001000000180000000c00000000000002540000005400000000000000000000002c0000007100000001000000dd97874085898740000000005a000000010000004c0000000400000000000000000000001a040000fa00000050000000200000002d00000046000000280000001c0000004744494302000000ffffffffffffffff1b040000fb000000000000004600000014000000080000004744494303000000250000000c0000000e0000800e000000140000000000000010000000140000000400000003010800050000000b0200000000050000000c022a00b200040000002e0118001c000000fb020300010000000000bc02000000cc0102022253797374656d0000000000000000000000000000000000000000000000000000040000002d01000004000000020101001c000000fb02efff0000000000009001000000cc0440001254696d6573204e657720526f6d616e0000000000000000000000000000000000040000002d010100050000000902000000020d000000320a0f0000000100040000000000b2002a0020c60800040000002d010000030000000000




0100090000030202000002008a01000000008a01000026060f000a03574d4643010000000000010073140000000001000000e802000000000000e8020000010000006c00000000000000000000002c0000007100000000000000000000005c1100002104000020454d4600000100e80200000e0000000200000000000000000000000000000070120000781a0000c80000001f010000000000000000000000000000850c030082600400160000000c000000180000000a00000010000000000000000000000009000000100000001a040000fa000000250000000c0000000e000080120000000c000000010000005200000070010000010000009cffffff00000000000000000000000090010000000000cc04400012540069006d006500730020004e0065007700200052006f006d0061006e00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000122d093000000000040000000000ae304f2d09300000000047169001cc0002020603050405020304877a0020000000800800000000000000ff01000000000000540069006d00650073002000000065007700200052006f006d0061006e00000000000000c62b093050cbae30003314000100000000000000044811006ab40230044811004c4eaf301c4811006476000800000000250000000c00000001000000180000000c00000000000002540000005400000000000000000000002c0000007100000001000000dd97874085898740000000005a000000010000004c0000000400000000000000000000001a040000fa00000050000000200000002d00000046000000280000001c0000004744494302000000ffffffffffffffff1b040000fb000000000000004600000014000000080000004744494303000000250000000c0000000e0000800e000000140000000000000010000000140000000400000003010800050000000b0200000000050000000c022a00b200040000002e0118001c000000fb020300010000000000bc02000000cc0102022253797374656d0000000000000000000000000000000000000000000000000000040000002d01000004000000020101001c000000fb02efff0000000000009001000000cc0440001254696d6573204e657720526f6d616e0000000000000000000000000000000000040000002d010100050000000902000000020d000000320a0f0000000100040000000000b2002a0020c60800040000002d010000030000000000


Если отсчитывать угол 90 от направления вектора скорости точки A к направлению АР от этой точки до МЦС, то направление отсчета угла совпадает с направлением круговой стрелки . Этот факт можно использовать для определения направления вектора .

Из формул, использующих понятие МЦУ (точка Q на рис. 3),



; ; (6)

,


следует, что в данный момент времени распределение ускорений точек тела при плоском движении таково, как если бы тело вращалось вокруг оси Qz с угловой скоростью и угловым ускорением .

Угол отсчитывается от вектора ускорения какой-либо точки в направлении круговой стрелки . При отыскании положения МЦУ по ускорениям двух точек, например по и , под углом к соответствующим ускорениям проводят лучи AQ и BQ. Точка пересечения лучей (точка Q) является МЦУ плоской фигуры в данный момент времени.

Направления векторов и помимо формул (4) могут быть найдены из отдельных векторных формул


; ; . (7)




Рис. 4


Чтобы избежать анализа расположения трех взаимно перпендикулярных векторов формул (7) при известных , , направления и находят аналогично случаю вращательного движения тела вокруг неподвижной оси (рис. 4).




Рис. 5


Кинематика плоского движения

катка радиуса R. при отсутствии скольжения по направляющей (в общем случае криволинейной), имеет некоторые особенности вследствие того, что мгновенный центр скоростей катка (точка Р ) совпадает с точкой окружности касающейся направляющей (рис. 5). Поэтому при движении катка расстояние от его центра (точки А) до МЦС является неизменным во времени и равным R.


AP(t) = const = R (8)


Свойство неизменности расстояния АР позволяет установить дополнительные соотношения, удобные для расчетов кинематических характеристик катка. Представим вектор скорости точки А с помощью:

а) формулы естественного способа задания движения точки

, где - единичный вектор естественного трехгранника, касательный в точке A к кривой ее движения; SA - криволинейная координата точки;

б) формулы (7) плоского движения тела

,

;


- орт оси Оz, перпендикулярной плоскости движения катка Qxy; j - угол, задающий направление какого-либо отрезка плоской фигуры катка. Ввиду произвольности выбора такого отрезка, обычно собственно отрезок, не указывают на рисунках, а изображают лишь круговую стрелку положительного направления отсчета угла j, называя его углом поворота катка.

Приравнивая правые части последних формул, имеем


.


Поскольку вектoр коллинеарен результату векторного произведения


(^, ^), то

.


Откуда, используя свойство (8), получим формулы


, или , (9)


справедливые для любого момента времени t.

В правой части формулы (9) берется знак "+", если при мысленном увеличении угла поворота катка j в направлении против хода стрелки часов наблюдается возрастание координаты SА центра движущегося катка в положительном направлении ее отсчета, иначе берется знак "-".

Так, например, для случая отсчетов SА и j, изображенном на рис.5, в формуле (9) необходимо брать знак "-".

Дифференцируя и интегрируя по времени соотношения (9), придем к выражениям


, или , (10),


а также ,

где С - некоторая константа, значение которой зависит от выбора начал отсчетов SА и j. Обычно принимают С=0, так как считают, что когда SА=0, j также равно нулю. Из произведения соответствующих частей формул (9), (10),


(11)


следует, что если векторы , сонаправлены, то сонаправлены и векторы , .

Таким образом, с помощью формул (1-4), (8-9) могут быть найдены характеристики векторов скоростей и ускорений точек, векторов угловых скоростей и ускорений звеньев механизма, а с помощью формул (5, 6), (11) осуществлена их проверка.

Нахождение кинематических характеристик движения (, , , ) при помощи векторных формул (1), (2) рекомендуется проводить следующим образом:

  1. написать формулу (1) или (2) применительно к конкретным точкам рассматриваемого звена механизма. При этом в качестве полюса следует взять точку с известными кинематическими характеристиками движения;

  2. установить, известны или неизвестны на данном этапе решения две независимые характеристики {проекции на две оси или модуль и направляющий угол) для каждого вектора, входящего в уравнение (1) или (2). Найти значения тех независимых характеристик векторов, которые могут быть установлены из условий движения звена без решения рассматриваемого векторного уравнения;

3) решить векторное уравнение графоаналитическим или аналитическим методом (метод проекций).


Скачать файл (29267.3 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации