Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Конспект лекцій (Кучеров С.Ф., Кухарець С.М.) - Гідравліка - файл Лекции гидравлика.rtf


Конспект лекцій (Кучеров С.Ф., Кухарець С.М.) - Гідравліка
скачать (3884.6 kb.)

Доступные файлы (1):

Лекции гидравлика.rtf64211kb.17.09.2010 20:28скачать

Лекции гидравлика.rtf

1   2   3   4   5   6
6 Гідравлічний розрахунок напірних трубопроводів


^ 6.1 Класифікація трубопроводів


Всі трубопроводи поділяють на прості і складні. До простих відносять трубопроводи сталого чи змінного поперечного перерізу без бакових відгалужень, до складних – трубопроводи з відгалуженнями, складеними з послідовно і паралельно з’єднаних простих трубопроводів.

При гідравлічних розрахунках розрізняють трубопроводи короткі і довгі. Короткими визнаються трубопроводи, при розрахунку яких необхідно враховувати як місцеві втрати, так і втрати напору по довжині. До коротких трубопроводів звичайно відносять масло - і паливопроводи ДВЗ, системи рідинного охолодження, внутрішньобудинкову теплофікаційну мережу і т. д.

Довгими називаються трубопроводи, при розрахунку яких нехтують місцевими втратами напору, або враховують їх як частину (5...10%) поздовжніх втрат напору. До них відносять магістральні трубопроводи, водопровідну мережу тощо.


^ 6.2 Розрахунок простих трубопроводів


6.2.1 Розрахункові рівняння

Для простого трубопроводу сталого перерізу довжиною l, (рис.6.1) що має ряд місцевих опорів (наприклад, вентиль1, фільтр 2, зворотній клапан 3 і т.д. ), основним розрахунковим рівнянням є рівняння Бернуллі для початкового І і кінцевого ІІ-го перерізів трубопроводу. При α12 і υ12 воно має вигляд:


.

(6.1)




Рис. 6.1


Сумарну втрату напору в загальному випадку виражають формулою:




(6.2)


де А – опір трубопроводу, т – показник, величина якого для ламінарного режиму течії дорівнює 1, для турбулентного режиму – 2.

При ламінарній течії, якщо нехтувати місцевими втратами, з формули Пуайзеля /3.26/ знаходимо:




(6.3)


При турбулентній течії в автомодельній області, де т = 2, на підставі формули Дарсі-Вейсбаха маємо:


.

(6.4)


Для довгих трубопроводів в області квадратичного спору


.

(6.5)

Якщо простий трубопровід складається з „п” послідовно з’єднаних ділянок різних діаметрівто рівняння Бернуллі для початкового і кінцевого перерізів набуває форми


,

(6.6)


де сумарні витрати .

Оскільки трубопровід простий, то і тоді


.





^ 6.2.2 Характеристика трубопроводу. Потрібний напір

Характеристикою трубопроводу називають графічну залежність сумарних втрат напору в трубопроводі від витрати рідини, тобто залежність




Рис.6.2

При ламінарному режимі течії і є характеристика трубопроводу лінійна /рис.6.2 а/; при турбулентному режимі і її будують як параболу другого ступеня/рис.6.2 б/.

Замість характеристики трубопроводу в певних випадках доцільно будувати криву потрібного напору. Потрібним напором Hпотр для простого трубопроводу називається п’єзометричний напір в початковому перерізі, який забезпечує задану витрату рідини в трубопроводі. Якщо цей напір відомий, то його називають заданим напором.

З рівняння /6.1/ для трубопроводу сталого перерізу визначаємо


.

(6.7)


В цій формулі статистичний напір .

Для трубопроводу змінного перерізу з (6.6) при α12=…1будемо мати


,

(6.8)


або

,

(6.9)


де







При турбулентному режимі коли m=2, другий і третій члени правої частини рівняння (6.9) об’єднують, а при ламінарному режимі другим членом як правило нехтують.

Крива потрібного напору – це характеристика трубопроводу, зміщена вздовж осі ординат на величину Hcm (рис.6.3а – при ламінарній течії, рис. 6.3б – при турбулентній).

З наведених вище формул виходить, що потрібний напір – це той напір, який необхідно створити на початку трубопроводу для долання геометричної висоти , тиску в кінцевому перерізі і всіх гідравлічних опорів в трубопроводі.


а) б)

Рис.6.3


^ 6.3 З’єднання трубопроводів


6.3.1 Послідовне з’єднання

Декілька послідовно з’єднаних трубопроводів, що мають різні довжини і діаметри можна розглядати як простий трубопровід змінного перерізу (рис.6.4) . На основі рівняння нерозривності витрата рідини на кожній з ділянок буде однаковою, а загальні витрати напору визначаються сумою втрат напору на окремих ділянках, тобто


.

(6.10)



Рис.6.4


Якщо побудовані характеристики кожного з послідовно з’єднаних трубопроводів , то сумарну характеристику всього з’єднання можна стримати шляхом додаванням ординат /втрат напору/ окремих характеристик при однакових абсцисах /витратах/.


^ 6.3.2 Паралельне з’єднання

Таке з’єднання трьох простих трубопроводів між вузловими точками M і N показано на рис. 6.5. Очевидно, що витрата в основній магістралі (тобто до точки М і після точки N)


.

(6.11)




Рис.6.5


Втрати напору в будь-якому з простих трубопроводів будуть дорівнювати різниці повних напорів вузлових точок M і N

.

(6.12)


З урахуванням формули (6.2) для турбулентного режиму течії будемо мати




(6.13)


і загальні втрати напору для даного трубопроводу

.

(6.14)


^ 6.3.3 Розгалужений трубопровід



Рис. 6.6


Розглянемо методику розрахунку розгалуженого трубопроводу , який складається з трьох віток : 1, 2, 3 (рис.6.6).

При умові, що рідина від точки розгалуження М подається до трьох віток отримаємо:


.

(6.15)


Рівняння Бернуллі, складені для переріза в точці М і кінцевих перерізів відгалужень без урахування швидкісних напорів, мають вигляд:


;

;

.

(6.16)


Таким чином, для розв’язання задачі маємо чотири рівняння.

Основною задачею розрахунку розгалуженого трубопроводу є така:

відомі витрата в точці М, всі розміри віток, геометричні висоти Z , тиски в кінцевих перерізах і всі місцеві опори; потрібно визначити Q1, , Q2, Q3 , а також потрібний напір в точці розгалуження М – . Можливі і інші варіанти постановки задачі, які розв’язуються на основі наведеної системи рівнянь.


7 Водопостачання


Вода – це необхідний компонент, без якого неможливі існування і розвиток органічного світу: рослин, тварин і людей. Без достатньої її кількості і відповідної якості неможлива діяльність жодної галузі промисловості і сільського господарства. А ця кількість у зв’язку зі зростанням населення, розвитком промислового і сільськогосподарського виробництва неперервно і надзвичайно швидкими темпами збільшується.

За розрахунками вчених з загальної кількості водних ресурсів на Землі в 1386млн.км3 тільки 35млн.км3 (2,5%) припадає на долю прісних вод. На перший погляд це не так вже і мало але справа в тому, що основна частина прісної води знаходиться в такому стані, який робить її важкодоступною. для людини. Майже 70% прісних вод – льодовики, близько 30% знаходиться в водоносних шарах під землею і лише 0,006% її одночасно містять в собі русла всіх річок.

Обмежені ресурси прісних вод вже сьогодні є фактором, що стримує економічний розвиток людства, тому тільки раціональне використовування запасів води і дбайливе відношення до них як до природного багатства дасть можливість подальшого задоволення зростаючих потреб сучасного суспільства.


^ 7.1 Джерела водопостачання


Природні джерела води поділяють на дві основні групи: поверхневі джерела – річки, озера, водоймища, канали і підземні джерела – різні типи підземних вод.

Характерними особливостями вод поверхневих джерел є їх значна мутність, високий вміст органічних речовин, бактерій, відносно малий солевміст і невелика жорсткість.

Підземні води не містять зовсім або містять дуже мало змулених речовин. Вони, як правило, безкольорові, але часто мають підвищену жорсткість, відрізняються значним вмістом солей заліза та інших елементів.


^ 7.2 Системи водопостачання


Системою водопостачання називають комплекс споруд, які призначені для забезпечення споживачів водою в необхідній кількості, потрібної якості і під певним напором.

В залежності від споживача системи водопостачання виконують функції господарсько-питних, виробничих, протипожежних, поливальних водопроводів.

Забирання води з метою водопостачання можливо з поверхневих і підземних джерел. Для господарсько-питного водопостачання доцільно використовувати підземні води, які мають більш високі показники якості порівняно з поверхневими. Якщо потужність водоносних пластів підземних вод недостатня, або вони не придатні для водопостачання, то використовують поверхневі джерела. Вибір джерела є одним з важливих питань при проектуванні систем водопостачання різноманітних об’єктів. Від джерела в значній мірі залежить тип всієї системи, спосіб водопідготовки, наявність тих чи інших споруд і в кінцевому підсумку вартість її будівництва і експлуатації.

В загальному випадку до системи водопостачання входять такі споруди. (рис. 7.1.).




Рис.7.1. Загальний вигляд системи водопостачання з забиранням води з відкритого джерела (а) і з забиранням підземних вод (б):

1 – водозабірні споруди; 2 і 5 – споруди для підйому і перекачування води; 3 – споруди для очищення води; 4 – збірні резервуари; 6 – водоводи; 7 – водонапірна башта; 8 – водонапірна мережа


1. Водозабірні споруди 1. В залежності від характеру джерела водопостачання споруди для приймання води можуть бути різними. При відкритих джерелах (рис. 7.1а) забирання води здійснюється береговими і русловими водоприймачами різноманітних конструкцій . Забирання підземних вод (рис.7.1б) здійснюють шляхом улаштування колодязів, свердловин, підземних водозбиральних галерей, тощо.

2. Споруди для підйому і перекачування води – насосні станції. Взагалі, коли вода з джерела підлягає очищенню, вона перекачується на очисні споруди насосною станцією І-го підйому 2, а після очищення подається споживачам насосною станцією ІІ-го підйому 5.

3. Споруди для очищення води 3 – необхідні для доведення вихідної якості води до вимог, які висувають до неї споживачі.

4. Збірні резервуари (резервуари чистої води) 4 потрібні для вирівнювання нерівномірності режиму роботи насосних станцій І-го і ІІ-го підйомів і зберігання протипожежних і аварійних об’ємів води.

5. Споруди для транспортування води до місць її розподілу – водоводи 6. Вони являють собою лінії труб чи каналів, по яким вода подається до споживача (місто, селище, промислове підприємство).

6. Споруди для розподілу води по території об’єкта і роздачі її споживачам – водопровідна мережа 8.

7. Споруди для зберігання і акумулювання води – водонапірна башта 7, яка виконує ту ж роль, що і резервуар чистої води. При розташуванні башти за схемою рис. 7.1а систему називають системою водопостачання з баштою на початку мережі; при розташуванні за схемою рис. 7.1б – системою водопостачання з контррезервуара.

Розглянутий варіант загальної схеми водопостачання може бути значно спрощений, якщо якість води джерела відповідає вимогам споживачів. Тоді очисні споруди 3, а іноді і резервуари чистої води 4 і насосна станція ІІ-го підйому 5 можуть бути відсутніми. Можливі також випадки відмови від водонапірних башт.

Але обов’язковими елементами будь – якої системи водопостачання є водозабірні споруди, водоводи і водопровідна мережа.


^ 7.3 Водозабірні споруди


Водозабірні споруди або водозабори призначені для забирання вод з джерела водопостачання.

В залежності від виду природного джерела, яке використовується для водопостачання, водозабірні споруди поділяють на дві групи: споруди для забирання поверхневих вод і споруди для забирання підземних вод.


^ 7.3.1 Споруди для забирання поверхневих вод

Річкові водозабірні споруди улаштовують в місцях, де течія води повільна, глибина достатня для забирання води, а берег стійкий. Місце забирання води повинно бути погоджене з органами санітарного нагляду.

З урахуванням особливостей джерела і умов забирання води спорудження поділяють на берегові та руслові.

Водозаборні споруди берегового типу використовують при відносно крутих берегах і наявності глибин, які забезпечують умови забирання води. Їх розташовують на схилі берега з прийманням води безпосередньо з русла річки. Водоприймачі цих водозаборів бувають двох видів: роздільні (рис.7.2а) і суміщенні з насосною станцією І підйому (рис. 7.2б).

Водоприймачі суміщеного типу складаються з водоприймального колодязя 1 з вхідними вікнами 2, які обладнані гратами для затримання відносно великих предметів. Водоприймальне відділення поділене стінкою на дві камери: приймальну 3 і всмоктуючу 4. У стінці є вікна 8 перекриті сітками з дрібними чарунками, призначеними для затримання планктону, водоростей, дрібного сміття тощо. Вода, яка пройшла через стінки, забирається насосами 5, що установлені в насосному залі 6, і через всмоктуючі труби 7 подається на очищення або до споживача.

Суміщення берегового сітчастого колодязя і насосної станції в одній споруді спрощує обслуговування водозабору, підвищує надійність його роботи і є практично необхідним у випадках використання насосів з малою висотою всмоктування.


0100090000037800000002001c00000000000400000003010800050000000b0200000000050000000c022505090b040000002e0118001c000000fb021000070000000000bc02000000cc0102022253797374656d0005090b0000d8c71100c7d4e330c0bb1b000c020000090b0000040000002d01000004000000020101001c000000fb029cff0000000000009001000000cc0440001254696d6573204e657720526f6d616e0000000000000000000000000000000000040000002d010100050000000902000000020d000000320a5a00000001000400000000000f0b270520002d00040000002d010000030000000000

Рис.7.2. Водоприймачі берегового типу:

а – роздільний; б – суміщений; 1 – водоприймальний колодязь; 2 – вхідні вікна; 3 – приймальна камера; 4 – всмоктувальна камера; 5 – насоси; 6 – машинний зал; 7 – всмоктувальні трубопроводи; 8 – сітки


Водозабірні споруди руслового типу (рис. 7.3) використовують при відносно положистих берегах, коли необхідні для збирання води глибини знаходяться на великій відстані від берега. Водозабір складається: з оголовка (водоприймального пристрою) 1, самопливних водоводів 2, берегового колодязя 3, і насосної станції 4.



Рис.7.3. Водоприймач руслового типу:

1 – оголовок; 2 – самопливна лінія; 3 – береговий колодязь; 4 – насосна станція


^ 7.3.2 Споруди для забирання підземних вод

Більша частина централізованих систем сільськогосподарського водопостачання використовує підземні води.

Склад споруд і схеми їх розташування при забиранні підземних вод залежать від глибини залягання водоносного пласта, його потужності, багатоводності, умов залягання, геологічної будови і гідравлічних характеристик, підземного потоку (його напору, швидкості і напряму руху). Крім того потрібно враховувати фізико–хімічні показники води, необхідність її підготовки і знезаражування, а також масштаби водоспоживання. Принципові схеми водозабірних вузлів показані на рис.7.4.

Самою загальною схемою водозабірного вузла по прийманню підземних вод є схема, що включає групу водоприймальних споруд, очисні споруди для їх обробки і знезаражування і подальшої подачі в мережу водоспоживачу (рис.7.4б).

У більшості випадків підземні води не потребують додаткового очищення і тому дуже часто використовують найпростішу схему з подачею води безпосередньо в мережу (рис.7.4а). Природно, в практиці зустрічаються і проміжні схеми, в яких виключені деякі споруди з загальної схеми, або додаються споруди до найпростішої схеми (рис. 7.4 – в,г).



Рис. 7.4. Схеми водозабірних вузлів для приймання підземних вод:

а – з насосною станцією 1-го підйому; б – з очисними спорудженнями і насосною станцією 2-го підйому; в – з водозбиральним резервуаром; г – зі штучними поповненням підземних вод; 1 – водоприймальна споруда; 2 – насосна станція (водопідйомний пристрій); 3 – напірні трубопроводи; 4 – збірний колектор; 5 – водопровідні очисні споруди; 6 – резервуари чистої води; 7 – насосна станція 2-го підйому; 8 – напірні водоводи; 9 – самопливні чи сифонні водоводи; 10 – водозбірний резервуар; 11 – всмоктуючі трубопроводи; 12 – напірний водовод сирої води; 13 – поглинаючі колодязі


Для забирання підземних вод використовують три основних види споруд: вертикальні і горизонтальні водозабори і каптажі.

Водозабірні споруди можуть бути досконалими і недосконалими. Водозабори, які прорізають водоносний пласт повністю і досягають водонепроникного шару, називають досконалими. Ті водозабори, що прорізають водоносний пласт частково, називають недосконалими.

До вертикальних водозаборів відносяться бурові свердловини і шахтні колодязі.

Свердловини (трубчасті колодязі) – найбільш розповсюджений тип водозабірних споруд підземних вод. Їх використовують при відносно глибокому заляганні (більше 30 метрів) водоносних пластів. Основними конструктивними частинами свердловини є кондуктор, технічна колона труб, експлуатаційна колона, захист цементний, водоприймальна частина (фільтр), відстійник, надфільтрова колона (рис.7.5).





Кондуктор – першу колону обсадних труб – установлюють для запобігання попаданню в свердловину забруднених поверхневих вод. В межах водоносного горизонту розташовують фільтрувальну колону, яка складається з водоприймальної – фільтруючої – частини, над фільтрової труби і відстійника. Останній звичайно виконують з глухої труби довжиною 2....5 метрів.

Експлуатаційний (внутрішній) діаметр колони труб, в якому встановлюють корпус насоса і кінцевий діаметр свердловини залежать від типу водопідйомного пристрою, конструкції водоприймальної частини свердловини, а також від необхідності її чищення.

Шахтні колодязі використовують для забирання води з перших від поверхні водоносних пластів, що залягають на глибині до 30 метрів. На відміну від свердловин шахтні колодязі являють собою вертикальну виробку з великими розмірами поперечного перерізу (1...3м). Вони призначені для водопостачання дрібних водоспоживачів – невеликих населених пунктів, промислових підприємств, польових станів, пасовищ, а також для індивідуального водопостачання.



Складається шахтний колодязь з водоприймальної частини 1, ствола 2 і надземної частини (оголовка) 3 (рис. 7.6). Часто для створення запасів води і її відстоювання він може мати водозбірну чи відстійну частину, а для вентиляції – вентиляційну трубу, яка виводиться вище поверхні землі не менше ніж на 2 метри.

Водоприймальною частиною шахтного колодязя в залежності від його конструкції, потужності водоносного пласта і властивостей водоносної породи може бути його дно, бокова поверхня або те і інше одночасно.

Будуються шахтні колодязі з цегли, каменю, дерева, бетону і залізобетону з таким розрахунком, щоб ствол і надземна частина були достатньо міцними і водонепроникними для запобігання потрапляння поверхневих вод і забруднених вод зони аерації.

Горизонтальні водозабори улаштовують в межах водоносного пласта на глибині 6...8м. при незначній його потужності. Водозабір розташовують перпендикулярно до напряму руху ґрунтового потоку з похилом у бік збірного колодязя, звідкіля вода забирається насосами. (рис. 7.7).




Рис. 7.7. Горизонтальний водозабір:

1 – водозабірна галерея; 2 – водоприймальні отвори; 3 – оглядовий колодязь; 4 – водозабірний колодязь; 5 – водопідйомні труби


Для цих водозабірних споруд використовують перфоровані бетонні труби. Навколо труб роблять гравійно–піщану обсипку, яка запобігає попаданню у воду частинок ґрунту. При значній довжині водозаборів улаштовують оглядові колодязі, призначені для огляду, очищення і вентиляції трубопроводів.

Для приймання джерельних вод, що виходять на поверхню землі, будують спеціальні водозабірні споруди – каптажі. На відміну від інших водозаборів підземних вод каптажі створюють не тільки для приймання, але і для концентрованого збирання концентрованої води у вигляді джерел, які виходять на поверхню на значній території.

В залежності від типу джерела каптажні споруди будують по двом принципово відмінним одна від одної схемам.




Споруди по каптажу висхідних джерел принципово однакові. Вони являють собою водозбірну камеру, призначену для приймання джерельної води і створення її об’єму, що потрібний для нормальної роботи водопідйомного обладнання (рис. 7.8 а). Вода в таких каптажах приймається тільки через дно, яке виконано у вигляді зворотного фільтра.

Каптажні споруди низхідних джерел – це водозбірні камери з боковою водоприймальною поверхнею, яка також виконується у вигляді зворотного фільтра (рис.7.8 б).


7.4 Фільтрація


7.4.1 Фільтрація ґрунтових вод

Рух грунтових вод є частинним випадком руху рідин в пористому середовищі , який називають фільтрацією.

Фільтрація відбувається через шпари (пори) грунту і може бути обмежена знизу і зверху водонепроникними шарами грунту. Така фільтрація називається напірною (рис. 7.9 а). Якщо водонепроникний шар обмежує потік тільки знизу то така фільтрація називається безнапірною (рис. 7.9 б).




Рис. 7.9


В залежності від витрати фільтраційного потоку поверхня його може займати різне положення, аналогічно вільній поверхні у відкритих руслах. Поверхня фільтраційного потоку називається депресійною поверхнею, а крива вільної поверхні – кривою депресії.

Фільтрація може бути ламінарною і турбулентною. Ламінарний рух, як і в трубах, характеризується втратами напору прямо пропорційними швидкості фільтрації в першій степені. Такий рух буває в дрібнозернистих грунтах (водопроникні глини, суглинки, пісковики, піски). В крупнозернистих пісках і матеріалах (гравій, галька, щебінь) установлюється турбулентна фільтрація, при якій втрати напору пропорційні швидкості в степені більше першої.

Основний закон ламінарної фільтрації виражається формулами Дарсі:




(7.1)

і

.

(7.2)


В цих формулах υ – середня швидкість фільтрації; Q – витрата фільтраційного потоку; ω – повна площа перерізу фільтраційного потоку, яка є сумою площі пор ωп і площі перерізу частинок грунту ωгр; J – гідравлічний нахил, що являє собою втрату напору по довжині і на одиницю довжини фільтраційного потоку: ; k – коефіцієнт фільтрації.

Коефіціент фільтрації (см/с чи м/с) залежить в основному від розміру і форми зернин грунту, наявності в ньому глинястих частинок і температури рідини. Значення коефіціентів фільтрації деяких грунтів наведені в табл. 7.1


Таблиця 7.1

Коефіцієнти фільтрації ґрунтів

Тип грунту

k, см/с

Гравій з розміром зерен 4-7 мм

3,5

Гравій з розміром зерен 2 мм

3

Пісок чистий

1,00…0,01

Пісок з домішками глини

0,01…0,005

Піщано-глинисті ґрунти

5·10-3…10-4

Глина

10-4…10-7

Глина щільна

10-7…10-10

Торф’яні ґрунти

10-2…10-3

Мулкі ґрунти

10-2…10-3


Границі застосування формул Дарсі визначають по критерію переходу від ламінарної фільтрації до турбулентної.

Н.Н.Павловський запропонував критерій існування ламінарної фільтрації у вигляді:




(7.3)


де ν – кінематична в’язкість рідини; d – середній діаметр зернин ґрунту, ν – середня швидкість фільтрації; m – коефіцієнт пористості ґрунту, рівний відношенню площі пор до повної площі перерізу фільтраційного потоку: .

Значення коефіцієнта пористості для деяких ґрунтів наведені в таблиці 7.2.


Таблиця 7.2.

Коефіцієнти пористості ґрунтів

Грунт

m

Гравій (2≤d≤20 мм)

0,30…0,40

Пісок (0,06≤d≤2 мм)

0,33…0,45

Супісь

0,35…0,45

Суглинок

0,35…0,50

Глинистий грунт

0,40…0,55

Торф’яний грунт

0,60…0,80


Якщо (7.3) не виконується, то має місце турбулентна фільтрація, для якої середню швидкість визначають залежністю


,

(7.4)


де показник степеня n знаходиться в межах .

1   2   3   4   5   6



Скачать файл (3884.6 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации