Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Конспект лекцій (Кучеров С.Ф., Кухарець С.М.) - Гідравліка - файл Лекции гидравлика.rtf


Конспект лекцій (Кучеров С.Ф., Кухарець С.М.) - Гідравліка
скачать (3884.6 kb.)

Доступные файлы (1):

Лекции гидравлика.rtf64211kb.17.09.2010 20:28скачать

Лекции гидравлика.rtf

1   2   3   4   5   6
7.4.2 Приплив води до дренажних колодязів

При проектуванні водоприймачів підземних вод однією з основних задач є розрахунок продуктивності водозабору. Цей розрахунок виконують на основі закону фільтрації, з урахуванням гідравлічних умов стану підземного потоку, а також розташування водоприймальної частини колодязя в пласті, що обраний до експлуатації.

Приплив води до досконалого дренажного колодязя. Для досконалого колодязя, тобто такого, що досягає водонепрохідного шару (рис.7.10), і при рівномірному відкачуванні води з нього (Q=const), глибина води в колодязі знизиться від Ho до ho, тобто на величину Z. Рівень вільної поверхні води в грунті (водоносному пласті) навколо колодязя буде плавно зменшуватися від природного рівня ґрунтових вод (РГВ) до відмітки в колодязі і утворювати депресивну поверхню. В плоскому перерізі рівень ґрунтових вод на ділянці водозниження буде характеризуватися кривою депресії.

Приплив води (дебіт) до такого колодязя при уклоні водонепрохідного шару J=0 визначають за формулою Дюпюї:




(7.5)


де H0 – глибина (потужність) водоносного пласту; h0 – глибина води в колодязі; k – коефіцієнт фільтрації ґрунту; r0 – радіус колодязя; R0 – радіус впливу колодязя (радіус депресійної воронки).

Для попередніх розрахунків радіуса впливу значення R0 (м) – можуть бути прийняти такими:

дрібнозернисті ґрунти – R0=100...200 ;

cередньозернисті ґрунти - R0=250..600;

крупнозернисті ґрунти – R0=700...1000.

На практиці для визначення радіуса впливу колодязя часто користуються емпіричною формулою Зихарда:


,

(7.6)


в якій Z=H0-h0.




Рис. 7.10. Круглий досконалий колодязь:

1- природний рівень ґрунтових вод; 2 – крива депресії; 3 – водоносний шар; 4 – водотривкий шар


Приплив води до досконалого артезіанського колодязя. Артезіанський колодязь забирає воду з водоносного шару, обмеженого зверху і знизу водонепроникними грунтами (рис.7.11). Вода в такому шарі знаходиться під тиском і зветься артезіанською водою. В цьому випадку статичний напір H0 і напір у будь-якому перерізі h відрізняється від потужності а, водоносного шару.

Дебіт (витрата) артезіанського колодязя визначається за формулою:




(7.7)



Рис.7.11. Приплив води до круглого колодязя


Дебіт недосконалих колодязів. Для недосконалих колодязів при усталеному русі підземних вод їх продуктивність визначають за формулами

напірні водоносні пласти:




(7.8)


безнапірні водоносні пласти:



(7.9)


Фільтраційний опір ξ в цих формулах визначають за допомогою графіків (рис.7.12) в залежності від співвідношення l/a і а/r0, тобто від довжини водоприймальної частини колодязя l і потужності водоносного пласта а, а також потужності і радіуса колодязя r0.



Рис.7.12. Графіки додаткового опору ξ, обумовленого недосконалістю свердловини за ступенем розкиття пласта:

а – при примиканні фільтра колодязя до водоупору; б – при розташуванні фільтра колодязя в середній частині шару


^ 7.5 Водоочисні споруди


Якість природних джерел води, особливо поверхневих, в більшості випадків не відповідає вимогам санітарних норм до питної води. Тому використовувати її без попереднього очищення не можна. Очищення води полягає в її прояснені (освітленні), знебарвлюванні, знезаражуванні і дезодорації (усуненні запахів і присмаків).

Воду можна очищати як з використанням хімічних реагентів, так і без них. Але за нашого часу більшість водоочисних станцій працюють за схемою з хімічною обробкою води.

На рис. 7.13 зображена широко розповсюджена технологічна схема для глибокого прояснення води з самопливним рухом води, яку використовують при будь-якій продуктивності водоочисної станції і будь-якої якості води.



Рис. 7.13. Схема водоочисної станції з камерою пластівцеутворення, відстійниками і фільтрами


Природна вода подається насосною станцією першого підйому 1 до змішувача 3. Хімічні речовини, так звані (реагенти або коагулянти), для хімічної обробки води, заготовлюються в реагентному цеху 2 і також надходять до змішувача 3, де змішуються з усією масою води, що підлягає обробці. Зі змішувача вода потрапляє в камеру пластівцеутворення 4. Тут відбувається фізико – хімічний процес агломерації (об’єднання) колоїдних і змулених частинок у порівняно великі пластівці, що швидко осідають. Далі вода надходить до відстійників 5, в яких осідає основна маса пластівців. Після відстійників вода проходить через фільтри 6, де затримуються всі частинки, що не встигли осісти у відстійниках.

Прояснена і знебарвлена вода, якщо вона використовується як питна підлягає потім знезаражуванню і збирається в резервуарах чистої води 7. З резервуарів за допомогою насосної станції другого підйому 8 вода подається в мережу.


^ 7.6 Водопровідна мережа


Водопровідна мережа – один з основних елементів системи водопостачання. Вона являє собою сукупність водопровідних ліній (трубопроводів) для подачі води до місць споживання. Водопровідна мережа складається з водоводів, магістральної мережі і розподільних трубопроводів.

Водоводи прокладають для транспортування від джерела водопостачання до очисних споруд і від резервуарів чистої води до магістральної мережі. Згідно з санітарними нормами і правилами (СНіП), водоводи повинні мати не менше, ніж дві паралельні лінії трубопроводів з відстанню між ними 10…100м і пропускною спроможністю не менше 70% розрахункової витрати системи водопостачання.

Мережа міського, або іншого населеного пункту, призначена для розподілення води по його території, забезпечення можливості відбирання в заданих точках потрібної кількості води і створення необхідних вільних напорів. Крім того, мережа повинна мати певну надійність, тобто підтримувати заданий рівень забезпечення водою споживачів при будь-яких можливих аваріях її ліній.

За характером своєї роботи водопровідні лінії можуть бути поділені на дві категорії: 1) магістральні, які служать, в основному, для транспортування води; 2) розподільні, призначені для роздавання води споживачам.

За конфігурацією відповідні мережі бувають розгалуженими (рис. 7.14а) і кільцевими (рис. 7.14б).

Тупикові мережі не забезпечують безперебійності водопостачання, тому їх можна застосовувати в тих випадках, коли за СНіП допустимі перерви в подачі води або коли є запаси води для постачання об’єкта на час відновлення трубопровіда після аварії.

Для міських, селищних і виробничих водопроводів, як правило, улаштовують кільцеві мережі. При кільцевих мережах завдяки наявності паралельних ліній аварія на будь-якій ділянці не призводить до припинення подачі води споживачам, крім тих, хто постачається безпосередньо від пошкодженої ділянки.

Водопровідна мережа проектується на основі архітектурного панування населеного пункту з урахуванням розташування вулиць, кварталів, окремих великих споживачів води – заводів, фабрик, ферм та інших підприємств, до яких потрібно підводити магістралі. При цьому беруться до уваги взаємне розташування джерела і об’єкта водопостачання, рельєф місцевості, ґрунтові умови, наявність штучних і природних перешкод.





Рис. 7.14. Конфігурація мережі:

а – тупикова; б - кільцева


Взаємна ув’язка перелічених вимог і факторів на стадії проектування називається трасуванням мережі.

Вибір загальної схеми водопостачання як населеного пункту, так і промислових і сільськогосподарських підприємств і споруд є однією з найбільш складних і відповідальних задач, від розв’язання якої залежить і безперебійна подача необхідної кількості води всім споживачам, і вартість будівництва, і експлуатація системи.

Найбільш поширеними в практиці є так звані однозонні схеми водопостачання, які використовують для забезпечення водою споживачів (міст, селищ, промислових і сільськогосподарських підприємств), розташованих на порівняно невеликих територіях зі спокійним рельєфом. Одно зона система може бути без башти, з баштою на початку мережі і з контррезервуаром.

Схему водопостачання без башти застосовують для постачання води об’єктів, що рівномірно витрачають воду протягом доби і необхідність в улаштуванні регулюючих ємкостей відпадає.

Схема з баштою на початку мережі застосовується в тих випадках, коли водоспоживання в межах доби нерівномірна, а водоводи подають воду по мережі в найбільш високу точку місцевості. Башта як би розділяє систему на дві частини. Висота підйому води, а отже, і подача насосів ІІ-го підйому визначаються висотою башти. Мережа живиться від башти, яка є для неї водоживильником.

Якщо найбільш висока точка місцевості знаходиться на протилежній стороні від місця подачі води в мережу водоводами, застосовують схему водопостачання з контррезервуаром. Характерним для такої схеми є те, що в години максимального водоспоживання мережа отримує воду з двох сторін – від водоводу і від контррезервуара, а в години мінімального водоспоживання надлишок води, яку подає насосна станція, транзитом проходить по мережі від водоводу до контррезервуара і поповнює його.


^ 7.7 Режим водоспоживання і визначення розрахункових об’єкмів водоспоживання


Розміри і потужності окремих елементів інженерних систем водопостачання визначають на підставі заданого або передбаченого в процесі їх експлуатації навантаження. Під навантаженням розуміють розрахункові кількості води, які ці елементи повинні подавати чи транспортувати в одиницю часу, акумулювати або зберігати. Основою для визначення навантажень служать кількість споживаної води, режим її споживання, а також потрібні і допустимі значення тисків у водопровідній мережі.

Розрізняють такі основні категорії споживання води:

  1. на господарсько – питні потреби населення;

  2. на виробничі потреби промислових підприємств і сільськогосподарських об’єктів;

  3. на поливку і мийку територій населених пунктів, поливку зелених насаджень;

  4. на гасіння пожеж.

Загальна кількість води, яка повинна бути подана споживачам визначається за нормами, встановленими СНіП для кожної категорії.

Режим водоспоживання не залишається сталим, а змінюється протягом року під впливом природних, соціально – економічних, господарських і технічних факторів. Протягом доби також змінюється погодинна витрата води, що викликано зміною дня і ночі, розпорядком роботи підприємств та іншими випадковими причинами.

Для того, щоб система водопостачання працювала надійно, її розраховують по максимальній добовій витраті Qдоб. max.

Відхилення максимальної добової витрати від середньодобової характеризується коефіцієнтом добової нерівномірності Kдоб.max, який дорівнює відношенню максимальної добової витрати до середньодобової.

Іноді при розрахунках систем водопостачання потрібно знати мінімальну добову витрату Qдоб.min. В цьому випадку вводять коефіцієнт нерівномірності Кдоб.min., який оцінює відхилення Qдоб.min. від середньодобової витрати.

Таким чином, розрахункові добові витрати визначають за формулами:


Qдоб.max.доб.max·Qдоб.ср.,

Qдоб.minдоб.min·Qдоб.ср.,

(7.10)


Коефіцієнти нерівномірності, які враховують побут населення, режим роботи підприємств, ступінь благоустрою будівель, приймаються рівними: Кдоб.max=1,1...1,3; Кдоб.min=0,7...0,9.

Велике значення для визначення розрахункових витрат води має урахування можливих максимальних годинних витрат Qгод.max. Максимальна годинна витрата за добу найбільшого водоспоживання визначає найбільше можливе навантаження мережі за розрахунковий рік. При мінімальній годинній витраті протягом доби в мережі будуть виникати найбільші напори. Нарешті, середня година витрата може використовуватися для оцінки витрат енергії на подачу води. Ці годинні витрати визначають із формул:




(7.11)


Коефіцієнти годинної нерівномірності Кгод.max= Qгод.max / Qгод.ср і Кгод.min = Qгод.min / Qгод.ср визначають з залежностей, рекомендованих СНіП :




(7.12)


в яких α – коефіцієнт, що ураховує ступінь благоустрою будівель, режим роботи підприємств та інші місцеві умови, приймається: αmax=1,2... 1,4 і αmin= 0,4...0,6; β – коефіцієнт, що ураховує кількість мешканців населеного пункту, має такі значення:


Кількість мешканців населеному пункті (тис.чол)

1

1,5

2,5

4

6

10

20

50

100

300

βmax

2

1,8

1,6

1,5

1,4

1,3

1,2

1,15

1,1

1,05

βmin

0,1

0,1

0,1

0,2

0,25

0,4

0,4

0,6

0,7

0,85


Більшість споживачів отримує воду на деякій висоті над поверхнею землі. Це вимагає створення в мережі в місці приєднання вводу напору, достатнього для підйому води на задану висоту, який називають вільним напором Нв:

Нв=Hг +hw +Hзал,

(7.13)


де Hг геометрична висота підйому води від поверхні землі до самої високої водорозбірної точки, м; hw – втрати напору у внутрішній мережі, водомірному вузлі і вводі, м; Hзал. – залишковий напір у диктуючого приладу, м.

Вільний напір при одноповерховій забудові приймають рівним 10м., при більшій етажності додають по 4м. на кожний поверх. На промислових підприємствах вільний напір визначається технологічним процесом.

Максимально допустимий напір водопровідної мережі, обумовлений міцністю труб і водопровідної арматури, не повинен перевищувати 60 м.

Точка мережі, в якій вільний напір в годину максимального водоспоживання буде найменшим, називається диктуючою. Якщо в цій точці буде створено необхідний вільний напір, то у всіх інших точках мережі він буде більшим.


^ 7.8 Основи розрахунку водопровідної мережі і її елементів


Гідравлічний розрахунок водопровідних мереж виконують з метою визначення втрат напору в них і діаметрів труб окремих ділянок мережі. Втрати напору необхідно знати для визначення висоти водонапірної башти і потрібного напору насосних станцій. Водопровідна мережа повинна бути розрахована на випадки найбільшого водоспоживання і моменту пожежі, яка співпадає за часом з годиною максимального водоспоживання.

При визначенні діаметрів труб ділянок мережі потрібно знати розрахункові витрати води для цих ділянок, тобто кількість води, яка буде проходити через них в розрахункові періоди роботи системи.

Гідравлічний розрахунок мережі на практиці виконують за спрощеною умовною схемою, при якій водовідбір великих водоспоживачів (промислові і сільськогосподарські підприємства, подача води в ємності, пожежні відбори та ін.) ураховують у вигляді зосереджених відборів у відповідних точках мережі (так звані вузлові точки). Тоді сумарний відбір іншими споживачами на одиницю довжини мережі визначається з такого виразу:




(7.14)


де Q – повна витрата води споживачами в даний розрахунковий момент; ΣQзос. – сума відборів води великими споживачами; Σlк – довжина всіх ліній водопровідної мережі; ΣQшл. – сумарна шляхова витрата води.

Загальний відбір води з кожної ділянки мережі (шляхова витрата)


.

(7.15)


де lk – довжина к-ї ділянки мережі.

Для перевірки правильності визначення шляхових і зосереджених витрат по всій мережі може бути використано співвідношення:




(7.16)


Розрахункову вузлову витрату будь-якої вузлової точки визначають як суму фактичної зосередженої витрати, що відбирається безпосередньо у вузлі, і півсуми шляхових витрат всіх ділянок, які примикають до даної вузлової точки:


,

(7.17)

де n – кількість розрахункових ділянок, що примикають до к-го вузла.

Діаметри труб окремих ділянок мережі визначають за формулою:


.

(7.18)


В якій Qк – розрахункова витрата води через к-ту ділянку; υк - швидкість руху води в трубопроводі к-ї ділянки.

Швидкість руху води безпосередньо впливає на такі показники як вартість електроенергії, труб, роботи по їх укладанню та ін.

Орієнтовно найбільш економічними швидкостями є швидкості в межах 0,5...2,0м/с. Причому менші значення швидкостей приймають для труб малого діаметра, а більші – для труб великого діаметру.

Мінімальний діаметр труб водопроводу, який об’єднаний з протипожежним, в населених пунктах і промислових підприємствах повинен бути не менше 100мм., а в сільських населених пунктах – не менше 75мм.

Визначення втрат напору в мережі. Оскільки, як правило, протяжність водопровідної мережі будь-якого об’єкта водопостачання досить значна, основними при розрахунку мережі уважають втрати напору на гідравлічне тертя в трубах по довжині. Як відомо, ці втрати можуть бути визначені за формулою Дарсі-Вейсбаха:


.





Але для розрахунків водопровідних систем зручніше користуватися модифікацією цієї формули, в якій швидкість замінено на витрату:




(7.19)

де К – коефіцієнт, що зв’язаний з коефіцієнтом гідравлічного тертя λ співвідношенням:


,

(7.20)


Q-витрата води; n i m – показники степеня.

В інженерній практиці прийнято визначати втрати напору на одиницю довжини безрозмірною величиною – гідравлічним уклоном . Тоді повні втрати напору для лінії будь-якої довжини:


.

(7.21)


Величину гідравлічного уклону і розраховують за таким формулами:

а) залізобетонні а також ненові стальні і чавунні труби при швидкості руху води υ>1,2м/с.




(7.22)

при швидкості руху води υ<1,2м/с

;

(7.23)

б) азбестоцементні труби

;

(7.24)

в) пластмасові труби

,

(7.25)

в яких d – розрахунковий внутрішній діаметр труб, м.; Q – витрата води, м3/с;
υ – швидкість руху води, м/с.

Значне поширення набули спеціальні таблиці, графіки і номограми для визначення втрат напору. Наприклад, таблиці, складені Ф.А. Шевелевим, дають величини втрат напору на одиницю довжини трубопроводу (і або 1000і ) для всіх стандартних діаметрів труб різних типів в широкому діапазоні витрат і відповідних цим витратам швидкостей.

Гідравлічний розрахунок розгалужених мереж виконується досить просто, якщо відомі витрати води в вузлах мережі. В такому випадку спочатку обчислюють розрахункові витрати, потім призначають діаметри (з урахуванням економічних факторів) ліній мережі, після чого можуть бути визначені втрати напору на кожній ділянці .

Загальна втрата напору по обраному напряму може бути знайдена по формулі:


,

(7.26)


як сума втрат напору в послідовно з’єднаних ділянках трубопроводів.

При розрахунках кільцевих мереж користуються такими законами:

1. Сума витрат води, що надходить до даного вузла, дорівнює сумі вузлового відбору з нього і витрат, які витікають з вузла. Це означає, що алгебраїчна сума витрат, що надходять у вузол (береться зі знаком плюс), і витрат, що витікають з вузла (беруться зі знаком мінус), повинна дорівнювати нулю.

2. В кожному замкненому колі мережі, утвореному лініями мережі, сума втрат напору на ділянках, де вода рухається за годинниковою стрілкою, дорівнює сумі втрат напору на ділянках, де рух води напрямлений проти годинникової стрілки, тобто алгебраїчна сума втрат напору в кільці дорівнює нулю.

Існує багато методів розрахунку кільцевих мереж. Виконання таких розрахунків - трудомістка задача, і при значній кількості кілець її розв’язують за допомогою ЕОМ і аналогових пристроїв.

Висота водонапірної башти і потрібний напір насосів. Висоту водонапірної башти або конррезервуара і напір насосів, які подають воду в мережу, визначають при найбільш несприятливих умовах (режимах) її роботи. Башта повинна мати таку висоту, щоб можна було забезпечити необхідні вільні напори в критичних (диктуючих) точках мережі, а напір насосів визначають з розрахунку подачі води в бак башти в баштових системах водопостачання чи забезпечення необхідного напору в найбільш високорозташованих і віддалених від насосної станції точках мережі – в безбаштових.

На схемі водопроводу (рис.7.15) диктуючою є точка А з геодезичною (відмітка відносно поверхні землі)відміткою ZA. Водонапірна башта розташована в точці Б з геодезичною відміткою ZБ. Висота водонапірної башти (до дна бака, який встановлено на башті)




(7.27)


де Нв – вільний напір в диктуючій точці при максимальному водозаборі;

– сума втрат напору в мережі при максимальному водозаборі на ділянці від водонапірної башти до диктуючої точки А.

Напір насосної станції ІІ підйому визначають з рівняння




(7.28)


в якому Нр – максимальна глибина води в резервуарі (баку) башти; Σhн – втрата напору в водоводах і водопровідної мережі від насосної станції до башти; Zр – геодезична відмітка насосної станції (рис.7.15).




Рис. 7.15. Схема роботи водопроводу при господарсько-питному водоспоживанні


8 Каналізація


^ 8.1 Загальні відомості


Водопровідна вода, яка була використана людиною в процесі її побутової і виробничої діяльності, а також поверхневі води (дощові, розталі, поливомийні) називаються стічними водами.

Органічні забруднення, що містяться в стічних водах, можуть загнивати і бути сприятливим середовищем для розвивання мікроорганізмів, в тому числі і патогенних (хвороботворних). Хімічні з’єднання, жири, масла, нафтопродукти, отруйні і радіоактивні речовини здатні завдавати великої шкоди ґрунту і водоймищам. Накопичування стічної рідини на поверхні і у глибині ґрунту, у водоймах викликає забруднення навколишнього середовища, виключає можливість використовування водойм для побутових і господарських потреб, і може бути причиною виникнення різних інфекційних захворювань. Все це викликає загрозу для людства і потребує негайного виведення стічних вод за межі житлових зон і їх очищення.

Каналізація (водовідведення) – це комплекс обладнання, мереж і споруд, які призначені для приймання і відведення по трубопроводах за межі населених пунктів чи промислових підприємств забруднених стічних вод з подальшим їх очищенням і знешкоджуванням перед утилізацією або скиданням у водойму.

Існує два види каналізації: вивізна і сплавна.

При організації вивізної каналізації рідкі забруднення збирають у спеціальні приймачі (вигріби) і періодично вивозять автомобільним транспортом на поля асенізації для обробки, або до спеціальних місць, узгоджених з санітарними органами. Вивізну каналізацію улаштовують тільки в невеликих населених пунктах, де використання іншого виду каналізації утруднено. Вивізна каналізація економічно недоцільна і не забезпечує потрібного санітарного стану територій.

При улаштуванні сплавної каналізації стічні води по підземним трубопроводам транспортується на очисні споруди, де вони підлягають очищенню переважно в штучно створених умовах, після чого скидаються в найближчі водойми.

Каналізаційні мережі будують переважно самопливними. Для цього всю територію населеного пункту поділяють на басейни каналізування (території, які обмежені вододілами), де відповідно до рельєфу місцевості прокладають самопливні трубопроводи вуличної мережі і колектори, тобто ділянки каналізаційної мережі, що збирають стічні води з одного чи кількох басейнів каналізування (рис.8.1).




Рис.8.1. Басейни каналізування І, ІІ, ІІІ:

1 – вулична мережа; 2 – головні колектори районів; 3, 5 – районні каналізаційні станції; 4 – напірний трубопровід; 6 – головний колектор; 7 – відвідний колектор; 8 – головна насосна станція; 9 – напірний водовід; 10 – очисні споруди; 11 – спуск у водоймище


Розрізняють три системи відведення стічних вод каналізації міст і населених пунктів.

Загальна система каналізації передбачає відведення всіх категорій стічних вод (побутових, виробничих, дощових) у водойму єдиною системою водовідведення і очищення; при роздільній – дощові води відводяться окремо від побутових і виробничих; при напівроздільній – в систему каналізації крім побутових і виробничих надходять також перші, найбільш забруднені порції дощових вод.


^ 8.2 Склад стічних вод


Стічні води являють собою складні фізико–хімічні системи, в яких органічні і мінеральні забруднення знаходяться в розчиненому, колоїдному і нерозчиненому станах. Органічні і неорганічні компоненти забруднень, що знаходяться у стічних водах в колоїдному і нерозчиненому станах, утворюють суспензії, емульсії і піну. Склад стічних вод і концентрація забруднень в них визначаються, в основному, нормами водоспоживання, а також складом виробничих стічних вод.

Ступінь забруднення стічної води органічними речовинами можна визначити по кількості кисню, яке потрібно для окислення органічних речовин за допомогою аеробних мікроорганізмів – мінералізаторів. Загальна кількість кисню, потрібного для окислення органічних речовин аеробними мікроорганізмами, називається біохімічною потребою кисню (БПК) і виражається кількістю кисню в міліграмах на літр (мг/л) чи в грамах на літр (г/л).

Кількість і склад виробничих стічних вод визначається багатьма факторами : галуззю промислового виробництва, типом вихідної сировини, режимом технологічних процесів, можливістю утилізації відходів виробництва, витратою води на одиницю продукції. Виробничі стічні води містять мінеральні і органічні забруднення в самих різних сполученнях.

В зв’язку з тим, що визначення абсолютного складу стічних вод – трудомісткий процес, користуються спрощеним переліком показників, які найбільш повно характеризують їх якість і які використовуються для проектування і розрахунку споруд каналізації. До таких показників відносяться: температура, забарвлення, запах, прозорість, сухий залишок, вміст осідаючих і завислих речовин, БПК, вміст різних форм азота, фосфатів, хлоридів, сульфатів, токсичних елементів (залізо, нікель, мідь, свинець, цинк, хром, миш’як тощо), синтетичних поверхнево-активних речовин, біологічні забруднення. Останні представлені бактеріями, вірусами, грибами, тому стічні води небезпечні в епідеміологічному відношенні.


^ 8.3 Методи очищення стічних вод


Метод і ступінь очищення стічних вод визначають в залежності від місцевих умов з урахуванням можливого використання очищених стічних вод для промислових або сільськогосподарських потреб. Існують механічний, фізико-хімічний і біологічний методи очищення стічних вод.

У результаті механічної очистки зі стічних вод видаляються забруднення, що знаходяться в них в нерозчиненому і, частково, в колоїдному стані. Для механічної очистки використовують грати, піскоуловлювачі, відстійники, жироловки, гідроциклони, фільтри й інші споруди. Грати служать для уловлювання великих забруднень (ганчір’я, паперу та ін.), піскоуловлювачі – для уловлювання нерозчинених мінеральних домішок (піску, шлаку, скла), відстійники – для очищення вод від завислих речовин.

До фізико–хімічних методів відносяться коагулювання, нейтралізація, екстракція, сорбція і т.д. При коагулюванні в стічні води вводять реагент, який сприяє укрупненню частинок (коагуляції), внаслідок чого збільшується кількість утриманих нерозчинених речовин. Такий вид очищення використовують для прискорення осаджування завислих речовин.

Біологічне очищення стічних вод – метод очищення побутових і промислових стічних вод, який полягає в біохімічному руйнуванні (мінералізації) мікроорганізмами забруднень органічного походження, розчинених і емульгованих в стічних водах. В мінералізації органічних з’єднань беруть участь бактерії, які в залежності від відношення їх до кисню поділяються на дві групи : аероби і анаероби. Аероби при диханні користуються розчиненим у воді киснем, анаероби розвиваються без вільного кисню.

Аеробну біологічну очистку здійснюють в умовах, наближених до природних: на полях зрошування і фільтрації, в біологічних ставках, і в штучно створених умовах, коли життєдіяльність мікроорганізмів інтенсифікують подачею повітря, а іноді і чистого кисню, в потік стічних вод що проходять через спеціальні очисні споруди (аеротенки, аерофільтри, біофільтри).

При анаеробному способі очищення використовують метантенки – резервуари значної місткості (до кількох тисяч м3), де знешкоджують без доступу повітря осади, що виділяються у відстійниках.

Очищення стічних вод здійснюють послідовно на ряді споруд. Механічна очистка, як правило, передує біологічній. Спочатку стічні води очищають від нерозчинених, в вже потім від розчинених органічних забруднень. На рис.8.2 показано одну з поширених схем спільної очистки побутових і виробничих стічних вод.





Рис. 8.2. Вертикальна схема каналізаційної станції очищення з баштовими фільтрами:

1 – грати; 2 – піскоуловлювачі; 3 – первинні відстійники; 4 – резервуар з насосною станцією; 5 – баштові фільтри; 6 – гідроавлічний затвор; 7 – вторинні відстійники; 8 – до хлораторної або на рециркуляцію; 9 – водопровід


На рис.8.3 наведені схеми біологічної очистки на аеротенках з додаванням активного мулу.

Активний мул – це скупчення аеробних мікроорганізмів, які здатні сорбувати на своїй поверхні органічні забруднення і окислювати їх. Мул неперервно циркулює в системі – відділяється у вторинних відстійниках і повертається у стічну воду перед аеротенками. Життєдіяльність мікроорганізмів супроводжується постійним їх приростом. Надлишковий мул, що утворюється при цьому, направляють на зброджування в метантенки разом з осадом з первинних відстійників.







^ 8.4 Основні відомості з розрахунку каналізаційних мереж


Каналізаційну мережу розраховують на часткове наповнення труб. Самопливний режим течії з частковим наповненням поперечного перерізу труб дозволяє:

а) створити певний запас в перерізі труб для пропускання витрати, що перевищує розрахункову;

б) створити кращі умови для транспортування завислих забруднень;

в) забезпечити вентиляцією мережі для виведення зі стічної води шкідливих і небезпечних газів, які з неї виділяються.

Гідравлічний розрахунок мережі виконують з використанням формул усталеного рівномірного руху:




(8.1)



(8.2)


в яких Q – витрата рідини, м3/с; ω – площа живого перерізу потоку,м2; υ – середня швидкість руху рідини, м/с; RГ - гідравлічний радіус, м; І – гідравлічний уклон, що при рівномірному русі дорівнює ухилу дна труби; λ – коефіцієнт гідравлічного тертя; g – прискорення сили ваги, м/с2.

Коефіцієнт гідравлічного тертя визначають за формулою




(8.3)


де - еквівалентна шорсткість, см; ДГ=4RГ – гідравлічний діаметр, см; Re – критерії Рейнольдса; α – безрозмірний коефіцієнт, що залежить від характеру розподілу шорсткості труб і структури потоку рідини зі зависсю (суспензією).

Розрахункові швидкості потоку в каналізаційній мережі належить приймати з умови транспортування піску і інших домішок неорганічного походження, які присутні в стічній рідині.

Самоочисною (критичною) називається швидкість, що відповідає повному суспендованню забруднень, які є в потоці. В залежності від діаметрів труб побутової каналізаційної мережі значення самоочисної швидкості приймають від 0,7 м/с (для труб діаметром 150...250мм.) до 1,5м/с (для труб діаметром 1500мм. і більше).

З другого боку, швидкості потоку не повинні бути надто високими через наявність у стічних водах піску та інших твердих домішках, які викликають стирання і руйнування поверхні труб. Так, у металевих трубопроводах бажано не допускати швидкості більше 8 м/с, а в неметалевих – більше 4 м/с.

Кінцевою метою гідравлічного розрахунку каналізаційних мереж є визначення діаметрів і уклонів трубопроводів, а також складання поздовжнього профілю каналізаційної мережі.


9 Гідромашини


Машиною в загальноприйнятому значенні цього слова називають пристрій, що виконує механічні рухи з метою перетворення енергії, матеріалів чи інформації. Машини, робочим тілом яких є крапельні рідини, називають гідравлічними. В свою чергу, гідромашини розділяють на насоси і гідродвигуни.

Насосом називають гідромашину, яка перетворює механічну енергію приводного двигуна в кінетичну і потенціальну енергію потоку робочої рідини.

Гідродвигун – це гідромашина, в якій енергія потоку робочої сили перетворюється в механічну роботу.

За принципом дії всі гідромашини поділять на динамічні та об’ємні.

В динамічних гідромашинах силова взаємодія між ротором /робочим колесом/ і потоком рідини здійснюється в проточній камері, яка постійно сполучена зі входом потоку в гідромашину і виходом з неї. В результаті цієї взаємодії змінюється в основному кінетична енергія рідини.

В об’ємних гідромашинах взаємообмін енергією між потоком рідини і робочими органами машини відбувається при навперемінному заповненні робочої камери рідиною і витисненні її з робочої камери. При цій взаємодії відбувається в основному зміна потенціальної енергії рідини.

В даному курсі з динамічних гідромашин розглядаються відцентрові лопатеві насоси, які найбільше поширені в мережах водопостачання, а також основні типи об’ємних насосів і гідродвигунів.


^ 9.1 Відцентрові, лопатеві


9.1.1 Принцип дії лопатевого насоса

Схема відцентрового лопатевого насоса показана на рис. 9.1 . Головною частиною насоса є робоче колесо 2, яке складається з фасонних дисків „а” і „б”, з’єднаних між собою профільованими лопатками „в”. Диски і лопатки утворюють проточну камеру насоса. Рідина з усмоктувального патрубка 1 надходить в центральну частину робочого колеса 2. Під дією відцентрових сил, що виникають в результаті силової дії лопаток колеса на рідину, вона переміщується в міжлопатевих каналах від цента до периферії і потрапляє в спіральний видвід 3, з якого подається в напірний патрубок 4 і далі в напірний трубопровід. Спіральний відвід призначений не тільки для уловлювання рідини, що виходить з робочого колеса, але і для часткового перетворення її кінетичної енергії в потенціальну енергію тиску.




Рис. 9.1. Схема відцентрового насосу консольного типу: 1 – підвід рідини; 2 – робоче колесо (а – ведучий диск, б – ведений диск, в – лопатки колеса); 3 – спіральний відвід; 4 – напірний патрубок; 5 – кромка спірального відводу


^ 9.1.2 Основні технічні і експлуатаційні показники відцентрових насосів

Робота насоса характеризується його подачею, напором, споживаною потужністю і частотою обертання робочого колеса.

Подачею насоса називається витрата рідини через напірний (вихідний) патрубок. Так само як і витрата, подача може бути об’ємною (Q, м/с3) і масовою (М, кг/с).

Напір насоса Нн – різниця питомих енергій потоку при виході з насоса і на вході до нього, виражена в метрах стовпа рідини, яку подає насос:


.

(9.1)


В деяких випадках замість напору використовують тиск насоса:


.

(9.2)


Потужністю насоса (потужність, що споживає насос) називається енергія, яка підводиться до нього від приводного двигуна за одиницю часу:


,

(9.3)


де Мкр – крутний момент на валу насоса; ω – кутова швидкість обертання вала насоса.

Корисна потужність насоса Nk – це енергія, яку надає насос рідині, що проходить через нього за одиницю часу:


.

(9.4)


Відношення корисної потужності насоса до потужності, яку він споживає, називають коефіцієнтом корисної дії (ККД) насоса:


.

(9.5)


В свою чергу, ККД насоса є добутком трьох окремих ККД:



(9.6)


де h0 – об’ємний ККД, який враховує об’ємні втрати потужності в насосі (втрати внаслідок витікання рідин через щілини) і дорівнює відношенню дійсної подачі насоса до його ідеальної подачі:




(9.7)


hг – гідравлічний ККД, який враховує гідравлічні втрати потужності в насосі (втрати на долання гідравлічних опорів в насосі) і рівний відношенню напору насоса Нн до суми напору насоса і втрат напору в насосі (теоретичний напір):




(9.8)


hм – механічний ККД – враховує механічні втрати потужності в насосі (в підшипниках, ущільненнях в механізмі насоса та ін.):


;

(9.9)


Nмех – механічні втрати потужності в насосі.


Кавітаційний запас

Відцентрові насоси забезпечують широку область подач і тисків (напорів), але за умовами роботи на стороні усмоктування для них існують обмеження, причиною яких є можливість виникнення в певних зонах усмоктую чого тракту насоса особливого явища – кавітації. Суть кавітації полягає в утворенні розривів суцільності потоку (каверн) в тих місцях, де тиск знижується до величини тиску насиченої пари (рнп) при даній температурі рідини. Таке зниження тиску призводить до миттєвого скипання рідини і утворення великої кількості бульбочок, заповнених парою та розчиненими в рідині газами. Ці бульбочки переносяться потоком рідини до зон підвищеного тиску, де також майже миттєво руйнуються внаслідок конденсації пари і розчинення газів. Останнє супроводжується мікроскопічними гідроударами великої потужності, які поступово руйнують робоче колесо насоса.

Для порівняння кавітаційних якостей насосів користуються так званим кавітаційним запасом, тобто перевищенням повної питомої енергії потоку рідини на вході в насос над енергією, що відповідає тиску насиченої пари рідини:




(9.10)


де рвх – абсолютний тиск рідини на вході в насос; υвх – швидкість потоку рідини на вході в насос; рнп – тиск насиченої пари.

Кавітаційний запас, при якому починається кавітація, називається критичним. Стосовно до лопатевих насосів критичний кавітаційний запас підраховується за формулою С.С. Руднєва:




(9.11)


в якій n – частота обертання робочого колеса, об/хв.; Q – подача насоса, м3/с; С – кавітаційний коефіцієнт швидкості, який залежить від конструктивних особливостей насоса (для поширених конструкцій відцентрових насосів С=800...1000).

Допустимий кавітаційний запас – це кавітаційний запас, який гарантує роботу насоса без змін основних технічних показників, що зв’язані з виникненням в насосі кавітації:




(9.12)


Відцентрові лопатеві насоси мають обмеження стосовно висоти їх розташування над рівнем вільної поверхні рідини у витратному (приймальному) резервуарі, з якого насос усмоктує рідину. Ці обмеження обумовлені тиском на поверхні рідини в приймальному резервуарі, швидкістю потоку і величиною втрат енергії у всмоктуючому водопроводі, температурою і фізичними властивостями рідини, тобто факторами, від яких залежить виникнення кавітації на вході в насос.

Допустиму висоту всмоктування, при якій забезпечується робота насоса без зміни основних технічних показників, зв’язаних з виникненням явища кавітації, визначають за формулою:




(9.13)


де р0 - абсолютний тиск на поверхні витратного резервуара; рнп – величина тиску насиченої пари рідини; Shw.вс – сумарні втрати напору у всмоктуючому трубопроводі.

Характеристиками відцентрового насоса називають графічно зображені залежності напору, потужності, ККД, а інколи і допустимої висоти усмоктування, від подачі насоса при сталій частоті обертання робочого колеса. (рис.9.2).



Рис. 9.2


^ 9.1.3 Насосна установка і її характеристика

Насос /група насосів/ з трубопроводами і відповідним комплектуючим обладнаням називається насосною установкою.

На рис 9.3 зображена напівконструктивна схема насосної установки. До насоса 7, який приводиться в дію електроприводом 6, вода надходить з приймального резервуара 1 по всмоктуючому трубопроводу 12. Насос нагнітає рідину в напірний резервуар 2 по напірному трубопроводу. На напірному трубопроводі є регулююча засувка 8, за допомогою якої можна змінювати подачу насоса. Інколи на напірній магістралі встановлюють зворотній клапан 10, який автоматично перекриває напірну магістраль при зупинці насоса. Якщо тиск в приймальному резервуарі відрізняється від атмосферного, або насос розташований нижче рівня рідини в приймальному резервуарі , то на всмоктуючому трубопроводі встановлюють монтажну засувку 11, яку перекривають при зупинці чи ремонті насоса. На вході у всмоктуючу магістраль передбачають запобіжну приймальну сітку 13 для запобігання засмічування насоса і зворотній клапан 14, що дає змогу залити насос і усмоктуючий трубопровід перед пуском. Робота насоса контролюється витратоміром 4, манометром 5, і мановакуумметром 9.



Рис. 9.3. Схема насосної установки: 1 – приймальний резервуар; 2 – напірний резервуар; 3 – напірний трубопровід; 4 – витратомір; 5 – манометр;
6 – електродвигун; 7 – насос; 8 – регулююча засувка; 9 – мановакуумметр;
10, 14 – зворотний клапан; 11 – монтажна засувка; 12 – всмоктувальний трубопровід; 13 – запобіжна приймальна сітка;


Різницю висот рівнів вільних поверхонь рідини в приймальному і напірному резервуарах називають геометричним напором НГ насосної установки.

Для того щоб подати рідину по трубопроводах установки з примального (витратного) резервуара до напірного, необхідно витратити енергію на підйом рідини на геометричну висоту НГ , на подолання різниці тисків р/// в резервуарах і на подолання сумарних гідравлічних витрат Σhw усмоктуючого і напірного трубопроводів.

Таким чином потрібний напір установки

,

(9.14)

де – статичний напір установки.

(9.15)


Характеристикою насосної установки називають графічну залежність потрібного напору від витрати рідини в трубопроводі з насосною подачею.

Статичний напір Нст належить від витрати рідини в трубопроводі, а витрати в загальному випадку виражають формулою 6.2: .

Тому криву потрібного напору (характеристику насосної установки) будують за рівнянням


.

(9.16)


При турбулентному режимі течії гідравлічні втрати пропорційні квадрату витрати і


.

(9.17)


Для насосної установки, зображеної на (рис. 9.3), її характеристика показана на (рис. 9.4).



Рис. 9.4. Характеристика насосної установки


^ 9.1.4 Робота насоса на мережу

Розрахунок трубопроводів(мережі) з насосною подачею виконують на основі найважливішого правила:

при усталеному русі рідини в трубопроводах напір Hн , що створює насос, завжди дорівнює потрібному напору, тобто


.

(9.18)


Графоаналітичний метод розрахунку трубопроводів полягає в побудові на одному графіку в однакових масштабах кривих потрібного напору Hпотр.=f1(Q) і характеристики насоса Hн =f2(Q) і визначенні точки їх перетину.




Точку перетину кривої потрібного напору і характеристики насоса (точка А на рис. 9.5) називають робочою точкою, так як вона визначає єдиний можливий режим роботи насоса на дану мережу (трубопровід) – його напір
HА=Hпотр; подачу QA , потужність NA і ККД ηА насоса на цьому режимі.

Для того, щоб отримати іншу робочу точку, необхідно змінити або ступінь відкриття регулюючого пристрою (крана, дроселя, вентиля), тобто змінити криву потрібного напору (рис. 9.6), або частоту обертання вала насоса (рис. 9.7)


0100090000037800000002001c00000000000400000003010800050000000b0200000000050000000c022505090b040000002e0118001c000000fb021000070000000000bc02000000cc0102022253797374656d0005090b0000d8c71100c7d4e330c0bb1b000c020000090b0000040000002d01000004000000020101001c000000fb029cff0000000000009001000000cc0440001254696d6573204e657720526f6d616e0000000000000000000000000000000000040000002d010100050000000902000000020d000000320a5a00000001000400000000000f0b270520002d00040000002d010000030000000000

Рис. 9.6

Рис. 9.7


^ 9.1.5 Послідовна і паралельна робота насосів на мережу

Спільне підключення насосів до однієї мережі використовують в тих випадках, коли потрібно суттєво збільшити продуктивність насосної установки або підвищити її напір. Можливі варіанти паралельного і послідовного з’єднання насосів. В першому варіанті збільшується подача рідини при майже незмінному напорі, в другому – напір потоку при незмінній подачі.

Паралельна робота насосів можлива при однакових напорах насосів в кожний даний момент. На рис. 9.8 зображені: схема паралельного з’єднання двох різних насосів, їх характеристики Hн=f(Q) (криві І і ІІ), а також характеристика насосної установки Hпотр =f(Q).

Для отримання робочої точки потрібно побудувати сумарну характеристику цих насосів НΣ=f(Q) (криву І+ІІ), для чого складають абсциси (подачи Q) точок кривих І і ІІ при однакових ординатах (напорах НН). Точка А перетину кривих Hпотр =f(Q) і І+ІІ буде робочою точкою.

Абсциса точки А визначає сумарну подачу обох насосів, ордината її – напір, який розвивають насоси: . Горизонтальна пряма, проведена через точку А, перетинає характеристики обох насосів вточках В і С, які є робочими точками насосів І і ІІ.

Паралельне включення насосів виправдовує себе економічно лише тоді, коли характеристика насосної установки Hпотр.=f(Q) є положистою кривою.



Рис. 9.8. Визначення режиму роботи паралельно з’єднаних насосів


Послідовна робота застосовується в тих випадках, коли один насос не може забезпечити потрібного напору. При цьому подача насосів однакова, а загальний напір дорівнює сумі напорів обох насосів при одній і тій же подачі.

На рис 9.9 зображена схема послідовного включення двох різних насосів, характеристики яких показані кривими І і ІІ. Сумарну характеристику (крива І + ІІ ) насосів одержують складанням ординат кривих напорів І і ІІ обох насосів. Перетин сумарної характеристики насосів з характеристикою насосної установки дає робочу точку А. Положення її визначає сумарний напір HI+HII обох насосів при подачі Q. Якщо через точку А провести вертикальну пряму, то при перетині цієї кривої з кривими напорів І і ІІ отримаємо напори насосів HІ і HІІ.

Необхідно мати на увазі, що послідовне з’єднання кількох насосів менш економічне порівняно з використанням одного високонапірного насоса. Це пов’язане з тим, що загальний К.К.Д групи послідовно з’єднаних насосів дорівнює добутку К.К.Д кожного з насосів.




Рис. .9.9. Визначення режиму роботи послідовно з’єднаних насосів


^ 9.2 Об’ємні гідромашини

1   2   3   4   5   6



Скачать файл (3884.6 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации