Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Юлов В.Ф. История и философия науки - файл n1.doc


Юлов В.Ф. История и философия науки
скачать (13628 kb.)

Доступные файлы (1):

n1.doc13628kb.23.01.2013 18:00скачать


n1.doc

1   ...   5   6   7   8   9   10   11   12   ...   28
Тема 5. Конституирование классической науки.
Здесь предполагается наука XVIII и XIX вв. То, что раньше лишь намечалось, становится тут рельефной тенденцией. Вместе с тем появляются и новые общественные особенности.

1. Социокультурные черты.

Универсализация буржуазного образа жизни. В конце XVIII в. происходит великая французская революция, присоединившая Францию к буржуазному порядку. В экономике Европы и США дух капитализма становится нормой. Паровая машина знаменует начало промышленной революции. Массы крестьян превращаются в пролетариев-основную социальную силу индустриализации. Юная демократическая власть учится регулировать острые классовые конфликты.

Просвещение как культ разума. Радикальные сдвиги происходят и в сознании людей. В XVII в. массовое сознание продолжало ещё жить традицией, где господствовала христианская вера. Ставку на силы разума делал узкий круг элиты – философы, мыслители, политические деятели, представители искусства, учёные. В XVIII в. группа носителей разума стремительно расширяется и становится важной социальной силой.

Феномен атеизма: материалисты критикуют религию. Возвышение разума вызвало усиление критического начала. Его предметом становится широкий круг традиционных устоев. Главный удар наносится по феодальному порядку и церкви. Впервые в истории культуры религия оказалась в положении того, что остро, открыто и аргументировано отвергается. Лидерами этих атак были французские философы: П. Бейль, Д. Дидро и др. Свои атаки на религию они вели с позиции натурализма и материализма, где Богу решительно отказывалось в существовании. Фронт французского атеизма был расширен за счёт силы искусства. Свой литературный гений Вольтер направил против христианских верований и авторитетов церкви, призывая «раздавить гадину».

Философский разум начинает критику метафизических систем. Со времён Аристотеля первой частью философского учения традиционно выступала онтология или метафизика. Здесь шла речь о мировой сущности и об универсальном устройстве внешнего мира (бытие, движение, причинность и т.п.). Средневековье закрепило эту схему, введя тематику Бога. Возрождение и Новое время выдвинули на первый план антропологию и теорию познания. Становление экспериментального естествознания актуализировало в философском корпусе методологию науки. Экспансия науки в познание природы и человека создало иллюзию ухода внешнего мира из предмета философии. Данная тенденция не могла не отразиться на умонастроениях философов. Приоритет онтологии начинает падать в мнениях некоторых мыслителей и ярким выразителем такого нигилизма стал И. Кант. Хотя и после него возникли классические системы метафизики (Г. Гегель).

Масонские общества, модные салоны пропагандируют идеи Просвещения. Свои взгляды просветители стремились распространять всеми возможными способами. Важной трибуной стали национальные академии наук, число которых в XVIII в. значительно выросло. Другим эффективным каналом выступили масонские общества, мода на которые сделала их весьма популярными среди интеллигенции и правящей элиты. Масонами были Вольтер, Дидро, Гёте, Б. Франклин и др. Организация средневековых каменщиков была возрождена для объединения просветителей и пропаганды их идей.

Просветительская культура распространялась и с помощью салонов. Эту форму породил Париж. Особняки некоторых аристократов и интеллектуалов стали местом регулярных встреч, бесед, обменов мнений известных философов, писателей, учёных и других личностей с оригинальным опытом культуры. Через салоны произошло вхождение женщин в высокую культуру и науку. Именно, в салонах наука стала явлением моды. Любопытные интеллектуалы не только знакомились с идеями научных мемуаров и новыми открытиями, нередко они сами участвовали в проведении опытов. На рубеже XVIII и XIX вв. в парижских салонах возникла мода на медицинские опыты. Случались такие дни, когда в моргах не хватало трупов для массовых вивисекций.

«Энциклопедия» - новый союз философии, науки, техники и искусства. Ярким явлением просвещенческой культуры стала французская «Энциклопедия, или Толковый словарь наук, искусств и ремесел» (1751-1772). Ёе статьи, составившие 17 томов текста и 11 томов иллюстраций, были написаны выдающимися личностями, многие из которых сочетали в себе философа и учёного: Ж. Д’Аламбер (1717-1783), Д. Дидро (1713-1784) и др. Шумный издательский успех показал, что семена Просвещения попали на широкую социальную почву.

Начало профессионализации науки. Нововременная наука была представлена университетскими преподавателями и любителями типа Р. Бойля и П. Ферма. К началу XIX в. положение дел начинает меняться. Главной причиной перемен была промышленная революция, где чётко обозначилась тенденция – разработка техники на основе научных знаний. Такая сложная и систематическая деятельность требовала профессионального статуса как учёного, так и инженера. Соответственно стали складываться определённые социальные формы. В Германии, а затем в других странах возникли научные лаборатории (химическая лаборатория Ю. Либиха), работающие на заказы промышленных фирм. Приобретение приборов, оборудования и заработная плата сотрудников – всё это финансировалось бизнесом. Профессионализация научного естествознания оказала влияние и на школу. В университетах стали углубляться дисциплинарная специализация обучения и усиливаться прикладные аспекты теоретических курсов. Знаковым явлением можно считать открытие в Париже Политехнической школы.

  1. Науки о жизни и их место в естествознании.

Кроме физико-математических дисциплин естествознание Но­вого времени было представлено и другими науками. Безусловное оживление наблюдалось среди химии и биологических дисциплин.

Успехи медицины, анатомии и физиологии. В XVI в. бурный расцвет переживали анатомические исследо­вания. Большая группа ученых пересматривала старую картину. Если древнеримский медик Гален (129-200) утверждал, что кровь протекает из правого желудочка сердца в левый через мембрану, то это традиционное мнение оспорил профессор Падуанского уни­верситета А. Везалий (1514-1564). Профессор анатомии А. Чезальпино доказал, что вопреки доктрине Галена кровеносные сосуды берут свое начало не от печени, а от сердца. 3. Коломбо выдвинул гипотезу, что дыхание, скорее – процесс очищения крови, а не процесс охлаждения. Поставил точку в пересмотре галеновой традиции английский ученый У. Гарвей. Его теория кровообращения содер­жала механистическую модель: сердце – насос, вены и артерии – трубы, кровь – жидкость, движущаяся под давлением. Вот почему Гарвей не согласился с предположением французского врача Ж.Фернеля. Анатомируя трупы, последний увидел, что артерии и левый желудочек сердца пусты и в своей книге заявил, что эти про­странства заполнял «жизненный дух», исчезнувший со смертью человека. Критикуя этот домысел, Гарвей обратился не только к эмпирическому опыту, но и использовал материалистические доводы. Все это существенно повлияло на мировоззре­ние Декарта и через него определило механицистскую программу в биологии. Теория кровообращения получила дальнейшее развитие благо­даря микроскопу. Модель Гарвея предсказала существование ка­пиллярных сосудов между артериями и венами. В 1661 г. с помощью микроскопа М. Мальпиги обнаружил кровь в капиллярах легких лягушки. Вливая подкрашенные жидкости в жидкий воск, Р. Бойль установил направление капилляров.

Опровержение идеи самозарождения. XVII в. нанес серьезный удар еще одной древней идее. Речь идет о концепции самозарождения, согласно которой, если из продук­тов гниения и разложения возникают черви, стало быть, неживое вещество способно порождать жизнь. Итальянский ученый Ф. Реди (1626-1698) выступил с критикой такой теории. Проведя простые опыты (рыба и мясо в двух сосудах; один — открыт, другой — за­крыт), он установил, что мухи переносят личинки, из которых ро­ждаются черви. Глобальный вывод о том, что живое возникает из живого, сделали биологи XIX в.

Живое отличается от неживого. Ученые XVIII в. исходили из противопоставления живой (орга­нической) природы мертвой (неорганической). Такое подразделе­ние впервые четко сформулировал в 1778 г. французский натура­лист Ж. Бюффон и оно стало традиционным. По мнению другого французского исследователя Ж.Б. Ламарка, «между телами неор­ганическими и живыми существует глубокий разрыв, который не позволяет их поместить в единый ряд и свидетельствует о том, что по своему происхождению эти тела резко отличаются друг от дру­га». Типичное объяснение давал креационизм: сотворив весь тварный мир, Бог наделил живое особой жизненной силой. Другим вариантом религиозной концепции была теология. Здесь подчеркивается целесообразность жизни как реа­лизация божественного замысла и проявление сверхъестествен­ного целевого плана. Такими были взгляды английского естествоиспытателя Ч. Ляйеля (ХIХ в.).

Многообразие методологических идей.

Религия. Многие биологи придерживались в своих теоретических позициях традиционной религии. Весьма часто она вносила негативные деформации. Так, английский ботаник Т. Э. Найт (XVIII в.) проделал ряд успешных опытов по гибридизации, но пришел к выводу о том, что гибридизация между разными видами невозможна. К такому за­блуждению его привели религиозные убеждения (человек не мо­жет менять результаты божественного творения). Если Ламарк раз­делял представление о божественной гармонии при­роды, то ему было трудно принять мысль о взаимной борьбе видов.

Деизм. Некоторые биологи отдавали предпочтение этому уче­нию, где роль Бога ограничивается установлением законов приро­ды. В своей книге «Происхождение видов» английский биолог Ч. Дарвин (1809-1882) в качестве эпиграфа взял следующее выска­зывание английского логика В. Уэвелля: «Но по отношению к материальному миру мы можем допустить, по крайней мере, следую­щее: мы можем видеть, что явления вызываются не отдельными вмешательствами божественной силы, оказывающей свое влияние в каждом отдельном случае, но установлением общих законов».

Идеализм. В мировоззренческих основаниях биологии действо­вали разные варианты идеализма. Его типичным представителем был немецкий биолог Г. Дриш. Он полагал, что все живое наделено нематериальной «жизненной силой». Через призму тако­го аристотелевского представления он объяснял факты ярко выра­женной способности живого к самосохранению.

Материализм. В биологии существовала и эта традиция. Широкое рас­пространение она имела среди французских исследователей. Это можно объяснить влиянием на науку французского материализма и атеизма, которые в XVIII в. были весьма популярны. Д. Дидро и Ж. Л. Д'Аламбер доказывали существование материальных основ жизни, они ввели в научный оборот идею естественной эволюции всего живого. Французские материалисты дали аргументирован­ную критику преформизма (лат. praeformate — предобразовать), со­гласно которому все живое развивается из зародышей, где все ор­ганы уже предсуществуют. Эту позицию разделяли многие нату­ралисты XVII-XVIII вв. (Ш. Бонне, А. Галлер и другие). Материалисты поддержали концепцию эпигене­за (греч. epi – на, над, сверх; genesis – происхождение), где под влиянием факторов внешней среды развитие жизни протекает пу­тем новообразований (К.Ф. Вольф, Ж. Бюффон и другие).

Специфика биологического познания.

Описание. До XX в. биология во многом нематематична и описа­тельна. Но уже в XIX в. наметилась четкая тенденция теоретического синтеза . На это повлияли социокультурные факторы (расширение международных контактов, технический прогресс и т.п.). Эволюционную теорию Ч. Дарвина и теорию эволюции мозга американского натуралиста Д. Дана (1813-1895) объединяет то, что оба ученых собирали фак­ты во время многолетних кругосветных плаваний. Дарвин плавал с экспедицией на корабле «Бигль» с 1831 по 1836 г., Дан — на кораб­ле «Пикок» с 1838 по 1842 г. Оба ученых смогли оценить жизнь при­роды в планетном аспекте.

Открытие клетки. Глобальность биологического подхода проявилась не только в большом, но и в малом. С введением в XVII в. микроскопа ученые приступили к изучению глубин жизни. Р. Гук и Левенгук установи­ли, что растения имеют клеточное строение. В 1839 г. немецкие ученые М. Шлейден и Т. Шванн открыли, что все живое состоит из клеток. Английский ботаник Р. Броун обнаружил в 1831 г. ядро рас­тительной клетки. В 1837 г. чешский естествоиспытатель Я. Пуркине выявил, что все растительные и животные клетки имеют ядра. Клеточная теория заменила старую доктрину о том, что структура организма сводится к основным жидкостям («гуморы»).

Утверждение эксперимента. С развитием биологии в ней рос объем экспериментальных исследований. В главной книге Дарви­на содержится 100 таблиц с изменениями растений, подвергнутых перекрестному опылению и самоопылению, а также описаны опы­ты по скрещиванию голубей. С 1856 г. чешский монах Г. Мендель начал опыты по скрещиванию видов гороха. В 80-е годы возникают эк­спериментальная морфология растений и экспериментальная эм­бриология животных (Ру, Дриш). В конце XIX в. Ф. Гальтон предло­жил методику биометрии для экспериментального изучения естес­твенного отбора.

От алхимии к химии. В XVII в. на химии еще были обрывки одежды алхимии. Но миро­воззренческие и доктринальные идеи радикально пересматрива­лись. Химические вещества уже не трактовались как проявления живого, они стали косной и неживой материей. На место «свадь­бы» металлов пришла химическая реакция исходных продуктов. Алхимик оперировал идеей «первоэлемента», по которой химичес­кое качество представлялось как абсолютно изолированное, пре­бывающее в теле как в неком вместилище. Английский ученый Р. Бойль (1627-1691) в книге «Химик-скептик» развенчал этот предрассудок и показал, что тела определяют свои качества в отно­шениях друг к другу. И в этом плане все химические качества соот­носительны.

Определение химического элемента. Химики XVII в. поставили важную проблему: «Как выделить «простое тело» из сложной смеси тел?» Под «простым телом» понимался предел опытного хими­ческого разложения. Это был прообраз современного химическо­го элемента. В качестве способа разложения «сложных тел» было предложено прокаливание. Оно вытекало из концепции флогисто­на. «Сложное тело» состоит из «простого тела» и флогистона. При прокаливании металлов как сложных тел флогистон улетучивается и остаток (окислы) выступает «простым телом». Здесь ошибочная теория привела к превратной процедуре, ибо прокаливание про­стое (металл) делает сложным (оксид). Когда Лавуазье установил роль кислорода в процессе горения и указал на ошибочность идеи флогистона, прокаливание как процедура установления химичес­ких элементов была отброшена.





Но и при ошибочной теории научная практика давала свои пло­ды. Были открыты многие подлинные элементы химии: фосфор (1669), кобальт (1736), никель (1751), водород (1766), фтор (1771), азот (1772), хлор и марганец (1774), кислород (1772-1776). Также была отработана методика взвешивания химических про­дуктов. Она вывела Лавуазье и Ломоносова к очень важному тео­ретическому выводу. Проведя серию опытов с обжигом металлов в герметических ретортах, французский ученый в 1789г. сформу­лировал и опубликовал закон сохранения вещества в химических реакциях. Этот закон Лавуазье оценивал как одно из выражений принципа сохранения материи. (Ломоносов не публиковал свои результаты).

Химический атомизм. В 1800-1809 гг. французский химик Ж. Пруст установил «за­кон постоянства состава», согласно которому любое индивидуаль­ное химическое соединение обладает строго определенным и не­изменным составом. Этот эмпирический закон объяснил английс­кий ученый Дж. Дальтон (1766-1844), который первым ввел в химию атомизм. По его представлению, каждому химическому элементу соответствуют специфические атомы как маленькие шарики, меж­ду которыми действуют силы притяжения и отталкивания. Силы от­талкивания присущи частицам теплорода, обволакивающим атомы. Так как атомы различных веществ отличаются друг от друга вели­чиной и весом, то нужно определить относительный вес атомов и их относительные размеры. Дальтон составил таблицу атомных ве­сов химических элементов (атомный вес водорода был принят за единицу) и дал первые формулы химических соединений, введя символы для атомов химических элементов. Эта таблица была да­лека от совершенства. Приняв для воды неправильную формулу (НО), Дальтон неправильно определил атомный вес кислорода, уг­лерода и других элементов. Но в целом его атомистическое направ­ление было правильным и перспективным.

Химический атомизм утверждался в ходе решения сложных проблем. Одна из них возникла в связи с открытием Гей-Люссаком в 1808 г. нового закона. Было установлено, что газы соединяются всегда в кратных объемных отношениях. Так, один объем водорода соединяется с одним объемом хлора и получается два объема хлороводорода. Согласно атомизму Дальтона, одинаковые объемы хло­ра и водорода содержат одинаковое число атомов и при реакции должны давать один объем хлороводорода. Объяснение дал италь­янский химик А. Авогадро (1776-1856). В 1811 г. он выдвинул гипо­тезу о различении двух типов частиц: атомы и молекулы как ком­плексы атомов (о «корпускулах», состоящих из нескольких атомов, писал Ломоносов). Закон Гей-Люссака получил следующую трак­товку. В равных объемах газов содержится одинаковое число не атомов, а молекул. Молекулы простых газов состоят из двух и бо­лее атомов.

Рождение периодической системы элементов. В конце XVIII в. Лавуазье создал первую научную химическую систему. Наряду с подлинными элементами в нее во­шли и сложные соединения (глинозем, кремнезем, магнезия, из­весть). Дело в том, что Лавуазье сохранил ошибочную идею Бойля – химический элемент есть то, что не поддается эксперименталь­ному разложению. Данный предрассудок преодолел Дальтон и на­чал составлять таблицы на атомистической основе. Молекулярная гипотеза Авогадро развила эту линию.

Революция в химии. Важной победой атомно-молекулярного метода стало открытие русского химика Д. И. Менделеева (1834- 1907). В творческих муках, в которых не последнюю роль играли учебно-педагогические факторы, он пришел к новому принципу – химический элемент занимает свое место в периодической систе­ме, определяемое его атомным весом (или атомной массой). Здесь тоже важен опыт, но измерение атомного веса имеет прямое отно­шение к сущности химического элемента.

Принцип систематизации элементов по их атомным весам проявил высокую познавательную силу. Многие химические элемен­ты были предсказаны и уже потом установлены опытным путем. В конечном счете, в свою систему Менделеев включил 62 химичес­ких элемента. В XX и XXI вв. путем физического синтеза атомных ядер было открыто более 110 элементов. Элементы от 102-го и далее (нобелий – ... – мейтнерий) неустойчивы: период их полураспада составляет тысячные доли секунды. Сколько же всего в природе существует химических элементов? Один из теоретических ожи­даемых пределов системы химических элементов – 118. Но есть прогнозы и на большее число.

Для своего времени открытие Менделеева было, безусловно, ве­ликим. Но его основу составил эмпирический закон, который в дальнейшем был объяснен и уточнен квантовой теорией атома. Оказалось, что место элемента в периодической системе обуслов­лено не его атомной массой, а зарядом атомного ядра. Так, изотопы хлора отличаются друг от друга по атомной массе, но оба относятся к одному химическому элементу – хлору. Хими­ческий элемент есть совокупность всех атомов, которые обладают одним зарядом ядра. Химические связи представляют собой про­явление волновых свойств валентных электронов, дающих обмен­ное взаимодействие электронных оболочек. Соответственно расширился взгляд на молекулы, в их число вошли атомные, ионные, металлические монокристаллы и полимеры, образованные водоро­дными связями. Итак, современная химия неотделима от кванто­вой физики.

3. Концепции зрелой классической физики и мировоззренческие споры.

К началу XIX в. математическая физика стала бесспорным ли­дером естествознания. Ее ведущие понятия и принципы станови­лись идеалом даже для гуманитарного знания. Так, французский социальный мыслитель Сен-Симон вынашивал проект создания теории морали на основе социально осмысленного закона всемир­ного тяготения. Эта и другие идеи хорошо гармонировали с пред­полагаемой в будущем «социальной физикой». Однако и сама фи­зика стояла перед серьезными проблемами.

3.1. От силы к энергии. Закон сохранения энергии. Через флюидную концепцию механицизм начал историю своей компро­метации. Но такая дискредитация началась только в химии (фло­гистон) и в начале XIX в. она еще не коснулась физических флюи­дов (теплород и т.д.). Влияние механики усиливалось и по другим каналам. Ее ядро — понятие силы — обрело мощную экспансию и стало стремительно распространяться на все разделы физики. Лек­сикон ученых пестрел обилием «сил»: «сила тока», «магнитная сила», «сила света», «электродвижущая сила» и т. д. «Силовой» стиль мышления перекинулся и за пределы физики – «химическое срод­ство» как сила, «жизненная сила» и т. п.

Вечный двигатель невозможен. И все же в недрах самой физики вызревала здоровая альтерна­тива универсальному образу силы. Речь идет о понятии энергии, которое вышло из раздвоения представления о силе. Внешний двигатель Аристотеля Ньютон заменил силой, импетус же Декарт преобразовал в им­пульс как количество движения. Но достаточно ли этого понятия для выражения всей «внутренней движущей силы?» Отрицатель­ный ответ дал голландский физик X. Гюйгенс (1629-1695). Случаи падения и поднятия тел, упругий удар, колебания физического ма­ятника требуют дополнительного образа типа: «центр тяжести ма­ятника не может подняться выше начального уровня». Данную фор­мулировку закона сохранения энергии, дающую его в частном виде, он использовал в качестве принципа запрета: «вечный двига­тель нельзя построить механическими средствами».

Образ монады и «живая сила». Важный вклад внес Лейбниц. Согласно его философии сущность мира представлена множеством монад, которые являются некими нематериальными атомами. Каж­дая монада выступает центром деятельной силы, направленной из­нутри вовне. Декартовское понятие количества движения (mv, где m – масса тела, v – скорость движения) выражает лишь ее воз­можности и начальное действие. Это следует оценить как «мерт­вую» силу, которая переходит в силу «живую» (mv2). Закон сохра­нения живой силы означает, что она не может исчезать и возникать. Понятие живой силы и принцип ее сохранения быстро вошли в оборот физики XVIII в.

Паровая машина и понятие работы. XVIII в. дал новый тип машины: паровой водоподъемник англи­чанина Ньюкомена, паровую машину русского изобретателя И. И. Ползунова и англичанина Д. Уатта. Этой машине капитализм обес­печил массовое применение. Обобщив формы действия разных машин, французский инженер Л. Карно в 1783 г. ввел понятие ра­боты («момент деятельности»). Тер­мин «работа» стал употреблять французский инженер и геометр Ж. В. Понселе (1788-1867). Его соотечественник С. Карно (1793-1832) смоделировал действие машины, превращающей теплоту в механическую работу. В циклическом процессе «теплород» переходит от нагревателя к холодильнику. За счет этой разницы температур и совершается работа. Обратные процессы, когда механические процессы (тре­ние) ведут к выделению теплоты, исследовали американец Б. Том­псон и англичанин Г. Дэви.

Физические открытия делают гениальные дилетанты. В первой половине XIX в. в центре физических исследований оказались взаимопревращения разных форм движения или «сил». Это касалось не только механических действий и теплоты, но и хи­мических, тепловых, световых и пондермоторных действий элек­трического тока, взаимодействия электричества и магнетизма. На­зревало фундаментальное обобщение. Одним из первых к нему пришел немецкий врач и физиолог Р. Майер (1814-1878). Его за­интересовал тот факт, что кровь, взятая из вены у людей, живущих в тропиках, имеет более яркий цвет, чем у людей, живущих в Евро­пе. Майер объяснил его различием в разности температур челове­ческого тела и окружающей среды. Дальнейшие и более широкие размышления привели его в 1841 г. к выводу о том, что «силы», пре­вращаясь друг в друга, меняются качественно, но количественно они остаются неизменными («неразрушимыми»). И если теплота и механическое движение переходят друг в друга при наличии точ­ного механического эквивалента теплоты, то теплород и другие не­весомые жидкости нужно изгнать из науки о природе.

В 1843 г. независимо от Майера к открытию закона сохранения энергии пришел англичанин Д. П. Джоуль (1818-1889). Он иссле­довал факты выделения теплоты электрическим током в его раз­личных формах. Установление механического эквивалента тепло­ты (424 кГм/ккал) обусловило открытие закона сохранения энер­гии. «Живая сила» и теплота превращаются друг в друга и здесь ничего не теряется.

Немецкий врач и физиолог Г. Гельмгольц (1821-1894) изучал преобразования различных сил в живом орга­низме. Сначала он исследовал превращения «живой силы» (кине­тической энергии) в «силу напряжения» (потенциальную энергию) и обратно, затем превращения механического движения в теплоту и электрического тока в теплоту. Также был объяснен закон элек­тромагнитной индукции. Общим выводом стал закон сохранения энергии. В современной формулировке он звучит так: движение и энергия не возникают из ничего и не исчезают бесследно, они лишь переходят из одной формы в другие. Для любого физического про­цесса общая энергия системы и ее окружения всегда остается пос­тоянной.

Примечательно, что Майер и Гельмгольц – врачи, а Джоуль – инженер. Эти дилетанты в физике и открыли фундаментальный закон. Не случайно, что их статьи не принимали редакторы физи­ческих журналов, мотивируя свой отказ преобладанием полуфило­софского содержания. Революционное открытие не смогли бы сде­лать ученые с узко физическим мышлением. Широкое мировоззре­ние с его открытостью для нового сыграло здесь исключительно положительную роль. Если Джоуль апеллировал к Творцу, создав­шему силы природы неразрушимыми, то Майер как материалист указывал на способность природы к качественным превращениям и количественному сохранению своих сил. Гельмгольц также пред­почитал говорить о силах природы как таковой.

Физика и диалектический материализм Ф. Энгельса. Новые открытия физики существенно повлияли на формирование такого философского направления как диалекти­ческий материализм. Немецкий философ и социалист Фридрих Энгельс (1820-1895) подчеркивал, что за­кон сохранения и превращения энергии стал важным звеном диалектичес­кой картины природы как связного целого. Материя находится в состоянии вечного движения. Формы ее движения разнообразны, взаимосвязаны и превращаются друг в друга. Энергия выступает количественной характеристикой физико-химических форм дви­жения. Такие диалектические выводы, полагал Энгельс, разруша­ют метафизическую, т. е. одностороннюю и упрощенную концеп­цию природы, ядром которой стал механицизм.

3.2. «За» и «против» атомизма в науке. Австрийский физик Мах провел ту мысль, что атомизм лишен всяких опытных оснований и представляет собой результат незаконного вторжения материалистической философии в физи­ку. Ненужным костылем Мах считал ньютоновское понятие массы, определенное через идею атома. Он полагал, что возможности избежать этого «химерического» образа су­ществуют. В 1851 г. французский физик Сен-Венан показал, что можно ввести понятие массы без привлечения атомистики. Критике была подвергнута и термодинамика в форме статисти­ческой физики. По мнению Маха, флюидная концепция оставила отрицательный след в виде модели движения атомов. «Современ­ное представление о теплоте как о движении столь же мало сущес­твенно, как и прежнее представление о веществе». Причина тако­го положения состоит в том, что термодинамика взяла идеалы ато­мистической механики, которые не соответствуют специфике теп­лоты. Мах полагал, что с атомизмом связана вредная умозритель­ная идея дискретности (прерывистости), никак не подтверждаемая чувственными данными. Эмпирический опыт убеждает в справед­ливости другого вывода – «природа не делает скачков». Общее за­ключение Маха свелось к одному: атомизм как форму физическо­го материализма следует изгнать из всех разделов физики.

Отношение ученых к махизму было разным. Одни приняли его пол­ностью, другие отнеслись критически, а некоторые, не соглашаясь с Махом в главном, видели его правильность в критике механициз­ма и догматизма. В ньютоновском понятии массы Мах нашел дей­ствительно слабое и ошибочное место – масса тела всегда посто­янна, так как атомы неизменны. Специальная теория относитель­ности показала, что инертная масса зависит от скорости движения тела. Но это не только не подорвало позиции атомизма, но и значи­тельно их укрепило. Догма о неизменных атомах уступила место идее изменчивых материальных микрообъектов. Мах ратовал за единственность кинематического подхода к массе, но не учел того, что он отражает один из восьми общих признаков массы. Это мно­гообразие форм (инертная, гравитационная и т. д.) он игнорировал. Масса как мера количества микрообъектов в теле сохраняет свое значение и в современной физике.

Принципиальным критиком махизма был австрийский физик Л. Больцман (1844-1906). По его мнению, эмпирики чрезмерно любят наготу природы в виде голых ее фактов, но существует и внутренняя красота ее законов. Они и являются пред­метом деятельности теоретика. Если эмпирик находится в рабстве у фактов, то в теории ученый обязан свободно владеть фактами, объясняя и предсказывая их. Эту линию поддержал немецкий физик М. Планк (1858-1947). Он полагал, что Мах стал универсальным отрицателем-скептиком, «ниспровергая вместе с механистическим миросозерцанием всякое физическое миросозерцание». Создавая теорию, ученый должен иметь некоторое мировоззрение, дающее ему необходимые идеи. Ценным физическим миросозерцанием и является атомизм.

В развитии самой атомистики были слабые места и серьезные трудности. Так, далеко не все химики в начале XIX в. отдавали пред­почтение молекулярной концепции, так как она противоречила весьма авторитетной электрохимической теории шведского учено­го И. Я. Берцелиуса (1779-1848). Согласно последней, каждый атом имеет положительный или отрицательный заряд. Электрическая сила, действующая между атомами с противоположными заряда­ми, выступает причиной химических соединений элементов. Но, по теории Берцелиуса, объединение в общую молекулу атомов одно­го и того же химического элемента невозможно. Несовместимость электрохимической теории и молекулярной гипотезы привела хи­мию к 1840-м гг. к путанице: для одного и того же химического вещества существовало несколько формул, предлагались разные значения атомных весов и т.д. Все это вызывало у некоторых ис­следователей подозрение в реальном существовании атомов. Так, французский химик Ж. Б. А. Дюма пришел к выводу о том, что атом­ная теория выражает пройденный этап в развитии химии и нужен поиск другой программы. И она была предложена энергетизмом.

Концепция энергетизма. Это направление стало формироваться к 80-м годам XIX в. К этому времени понятие энергии вошло в структуру физи­ческого знания и в 1887 г. немецкий ученый Г. Гельм заявил, что всю физику надо перестроить на основе понятия энергии. Ведущи­ми законами природы следует считать закон сохранения энергии и некоторое обобщение второго закона термодинамики. Эту линию продолжил немецкий химик В. Ф. Оствальд (1853-1932). Он выдви­нул цель – «построить миросозерцание исключительно из энерге­тического материала, совершенно не пользуясь понятием мате­рии». В активе энергетизма не было общего понятия энергии, зато фигурировали «особые сорта энергии». Поэтому он был бессилен в деле теоретического синтеза разнообразных явлений. Больцман указывал, что энергетика считает разные формы энергии качес­твенно различными; «единая энергия, объединяющая живую силу и тепло, является для нее чуждой». Оствальд ввел три вида энергии, за­висящие от расстояния, поверхности и объема. И если первые две зависимости еще могли найти физико-химический смысл, то «объ­емная энергия» была явной фикцией, так как энергия идеального газа не зависит от объема, а зависит только от температуры.

3.3. Второй закон термодинамики: статистичность и стрела времени. В середине XIX в. англичанин В. Томпсон (1824-1907) и немец­кий физик Р. Клаузиус (1822-1888) углубили основы термоди­намики. Они дали общее математическое выражение второго за­кона термодинамики: «Переход теплоты от более холодного тела к более теплому не может иметь места без компенсации». В качестве особой функции Клаузиус ввел меру способности теплоты к пре­вращению и дал ей название «энтропия» (греч. en - в, внутрь; trope - поворот, превращение). До тех пор, пока тепло, сообщенное системе извне, не распределится в ней совершенно равномер­но, энтропия системы возрастает. В равновесном состоянии она до­стигает максимального значения.

К новому закону многие ученые отнеслись критически, так как из него следовали необычные и странные выводы. Здесь утвержда­лась односторонность физических процессов, которой в механике не было. Во всякой изолированной системе процессы должны про­текать в направлении постепенного превращения всех видов энер­гии в теплоту при одновременном уравнивании температурных разностей. Кроме того, если теплота, в конечном счете, сводится к механическому движению атомов и молекул, то с точки зрения ме­ханики оно должно быть обратимо и это противоречит сути второ­го закона термодинамики. Встала настоятельная проблема обосно­вания данного закона. Попытки ученых пересмотреть тезис Клаузиуса – «энтропия отдельных систем и мира в целом стремится к максимуму» – оказались неудачными. Более перспективным ока­залось направление, развивавшее атомно-молекулярную модель с применением вероятностно-статистических представлений.

Статистический метод. Этот подход родился в XV в. вместе с идеей бухгалтерского ба­ланса, когда нормальное ведение торговых дел стали трактовать как равенство прихода и расхода. Постепенно этот формальный прием контроля правильности бухгалтерских записей вырос в новое, ста­тистическое понимание мира как огромной совокупности балансов. Сначала представление о балансе (лат. bilanx – чашечные весы) было чисто механическим и его развитие привело к ряду физичес­ких принципов сохранения. Общенаучным методом баланс стал тогда, когда ученый перестал интересоваться детальным содержа­нием чашек весов, когда стала законной любая процедура, приво­дящая к выравниванию стрелки весов. В естествознании пошла речь о балансе сил природы, в политических науках – о равнове­сии властей.

Понятие вероятности в социокультурном контексте. Конец XVIII и начало XIX вв. стали временем важных и быст­рых перемен (французская революция, образование США, взлет и падение Наполеона Бонапарта). Соответственно усилилась потреб­ность в статистическом прогнозе, и ответом на нее стала теория ве­роятностей, разработанная Лапласом и Гауссом. Баланс, равнове­сие они стали трактовать в виде результата игры разнородных слу­чайностей. В 1845 г. А. Кетле выпустил книгу, где теория вероят­ностей применена к социально-политической проблематике и где центральное место заняло понятие «среднего человека». Британс­кий ученый Дж. Гершель в 1850 г. опубликовал обзор этой книги в одном из научных журналов, где он попытался дать строгое доказа­тельство закона ошибок. Прочитав данную рецензию, английский исследователь Д. К. Максвелл (1831-1879) решил применить тео­рию вероятностей к физике. В 1860 г. он вывел закон распределе­ния скоростей газовых молекул. Его математическая форма оказа­лась такой же, как и у закона распределения результатов измере­ний по величине их ошибки. Здесь описывается общая функция перехода к состоянию статистического равновесия.

Атомизм как основа термодинамики. Основы кинетической теории газов были заложены немецким физиком А. Кренигом. В статье 1856 г. он рассмотрел газ как сово­купность упругих шариков - атомов, движущихся хаотично в пус­том пространстве. Траектория отдельного атома не поддается ни­какому расчету, но совокупное движение соответствует вероятнос­тным законам. Клаузиус усовершенствовал модель идеального газа и вывел ряд уравнений движения молекул. Максвелл предсказал независимость коэффициента внутреннего трения от давления газа, что подтвердилось экспериментально. В 1873 г. голландский физик Ван-дер-Ваальс разработал первую теорию реальных га­зов, в которой учитывались размер молекул и силы, действую­щие между ними. На ее основе были определены размеры моле­кул, их число в единице объема. И все же проблема установления связи атомно-молекулярных моделей со вторым началом тер­модинамики оставалась актуальной. Ее решение принадлежит Больцману.

Статистическая интерпретация второго закона термоди­намики. Сначала Больцман, подобно другим ученым, пытался вывести второе начало из общих принципов механики, не обращаясь к тео­рии вероятности. Для обратимых процессов это получилось, но все попытки с необратимыми потоками оказались безуспешными. Пос­тепенно у Больцмана окрепло убеждение в чисто статистической природе второго закона, и в работе 1875 г. он ставит окончатель­ную точку. Вследствие огромного числа молекул, составляющих тела макроскопических размеров, чрезвычайной быстроты и бес­порядочности их движения физик может наблюдать лишь средние значения. Вычисление же средних значений является главной за­дачей теории вероятности.

Вероятностный подход или Н-теорема. В упрощенном виде ход рассуждений Больцмана был таким. Все состояния частиц газа равновероятны и определенному термоди­намическому состоянию системы соответствует определенное чис­ло микросостояний (Z). Тогда термодинамическая вероятность мак­росостояния W равна Z. Определим, какое термодинамическое состояние имеет наибольшую вероятность. Решение этой задачи при­водит к функции распределения Максвелла, что соответствует тер­модинамическому равновесию. Энтропия S равна величине Н, взя­той с обратным знаком, которая пропорциональна логарифму тер­модинамической вероятности. Отсюда следует, что стремление газа к состоянию с максимальной энтропией есть движение к на­иболее вероятному состоянию. Эта теория получила название Н-теоремы.

S = – Н= k InW, где k – постоянная Больцмана.

Примечательно, что энтропию как макроскопическую величи­ну Больцман выразил через микрохарактеристику, ибо W оцени­вается через число микросостояний, соответствующих определен­ному макросостоянию. Второй закон термодинамики получил обос­нование в статистической природе микромира.

Образ статистической закономерности вместо лапласовского детерминизма. В конце XIX в. Н-теорема стала центром научной полемики. За чисто физическими аргументами угадывалось традиционное миро­воззрение, связанное с механикой. П. Лаплас выразил общее мнение исследователей классической эпохи о том, что законы природы суть глубокие, но простые и необходимые связи. Для их действия до­статочно любых двух материальных тел. Случайности существуют лишь в мире фактов, где проявляются динамические законы и в своем многообразии создают сложные статистические эффекты. Математическая механика стала успешно изучать динамические законы посредством выяснения у движущихся тел их начальных пространственных координат и скоростей. На этом пути не существует принципиальных барьеров. Прогресс науки будет расширять круг тел с известными начальными условиями и широкая система уравнений способна дать точные значения будущих состояний тел. То, что сейчас кажется случайным, ученые в будущем сведут к знанию множества необходимых законов. Эти рассуждения и получили название «лапласовский детерминизм».

И вот лапласовский оптимизм был поставлен под сомнение. Термодинамика, начиная с кинетической теории газов, стала утвер­ждать иной тип закономерности – статистический закон. Для него требуется огромное количество объектов (атомы, молекулы) и предполагается сущностный беспорядок. В то время как в механи­ке начальное состояние задает определенный порядок последую­щего движения, в статистическом законе случайности выступают не в роли фактора, отклоняющегося от необходимости, а в качест­ве внутренней причины, формирующей сам закон в виде некото­рой средней и общей тенденции. Познание здесь возможно только в форме вычисления вероятностей и знание будущих следствий всегда будет неоднозначным. Принять новую концепцию для большинства ученых было мучительно трудно, так как лапласовс­кий детерминизм уже стал прочной традицией.

Спекулятивная догадка становится научной теорией. В самом начале XX в. идеи Больцмана начинают утверждаться. На них возникает квантовая теория излучения, появляется «Статистическая механика» Гиббса, снимаются многие возраже­ния против Н-теоремы. В 1905-1906 гг. А. Эйнштейн и М. Смолуховский (1872-1917) указали на возможность использо­вания факта броуновского движения для подтверждения атомной гипотезы. Броуновскую частицу можно рассмотреть как простую молекулу в состоянии теплового движения. Математически выве­денная молекулярная постоянная совпала с опытными данными, что стало прямым экспериментальным подтверждением атомно-молекулярной концепции. Другое экспериментальное доказатель­ство дали опытные исследования группы французского физика Ж. Перрена, изучавшей распределение по высоте взвешенных в жидкости частичек. Все это вынудило противников атомизма ме­нять свою позицию. В 1908 г. Оствальд писал, что атомистическая теория стала научной после экспериментальных доказательств.

Гипотеза тепловой смерти Вселенной. Если тепловая энергия рассеивается по мировому пространст­ву, то температура выравнивается на низком уровне. В 1852 году В. Томпсон на основе второго закона термодинамики сделал ряд ми­ровоззренческих выводов. В необратимых процессах теплопровод­ности у изолированных систем механическая энергия не восста­навливается, постепенно все виды энергии превращаются в тепло­ту при одновременном выравнивании разностей температур. Хотя количественно энергия сохраняется, с течением времени ее качес­тво ухудшается, она лишается способности к превращениям, вклю­чая совершение работы. Все наблюдаемые явления природы текут необратимо, стало быть, везде в природе происходит «рассеяние энергии» и Вселенная идет к «тепловой смерти». Энтропия конечного состояния Вселенной максимально вероят­на. Позднее и Клаузиус посчитал возможным применить оба закона термодинамики ко всей Вселенной: 1) энергия мира постоянна; 2) энтропия мира стремится к максимуму. Он также пришел к за­ключению о неизбежности тепловой смерти.

Тепловая смерть — это и есть начало страшного суда. Вывод о тепловой смерти хорошо вписывался в религиозное учение о со­творении и конце мира. Если он вполне удовлетворял верующих естествоиспытателей, то атеисты и материалисты подвергли его критике. Они указывали, что гипотеза тепловой смерти противо­речит «духу» закона сохранения энергии, утверждающего неуничтожимость движения. Вот почему главным предметом сомнения стала всеобщность второго закона, применимость его ко всей Все­ленной.

Критика Больцмана. В начале австрийский физик подчеркивал то, что второе начало относится к области теории вероятности, законы которой с непреложностью выполняются в лабораторном эксперименте и делают проблематич­ным их применение ко всему космосу. Но в дальнейшем он разра­ботал флуктуационную гипотезу. Предположим, что вся Вселенная пребывает в тепловом равновесии. Вероятность того, что какая-то одна ее часть (допустим наш мир) может отклониться (лат. fluctuatio - колебание) от общего состояния, существует. И эта вероят­ность тем больше, чем больше сама Вселенная. Когда наш мир бу­дет приближаться к равновесию, другой мир как часть Вселенной выпадет из общего состояния благодаря самопроизвольной флук­туации.

Другие аргументы против тепловой смерти Вселенной. Возра­жения против гипотезы Больцмана сводились к тому, что вероят­ность громадной флуктуации очень мала. Но если учитывать влия­ние гравитационных полей и релятивистские эффекты, то это су­щественно повышает значение такой вероятности. Существуют и другие научные подходы, которые ставят крест на идее тепловой смерти. Такой вывод неизбежен, если применять термодинамику на основе теории относительности к Вселенной. Таким образом, современные физические концепции не дают основания для кос­мического пессимизма.

3.4. От дальнодействия к близкодействию: теория электромагнитного поля.

Идея единства разных сил природы и ее эмпирическое подтвер­ждение. В начале XIX в. начинают закладываться основы теории электричества и магнетизма. Большую роль здесь сыграло мировоззренческое представ­ление о единстве сил природы. Начало здесь положил датский фи­зик Х. К. Эрстед (1777-1851), получивший докторскую степень по философии. Его внимание привлекла идея немецкого натурфилософа Ф. Шеллинга о взаимовлиянии природных сил. В 1813 г. ученый поставил проблему - выяснить связь между «вольтаическим электричеством» и магнетизмом. Решение пришло в 1820г., когда обнаружилось, что электрический ток создает вокруг проводника магнитное поле, которое влияет на магнитную стрелку. В 1821 г. француз A. M. Ампер (1775-1836) установил, что два параллельных друг другу проводника с электрическим током ведут себя как два магнита: если токи идут в одном направлении, то проводники при­тягиваются, в случае противоположных направлений они отталки­ваются. Английский физик М. Фарадей (1791-1867) поставил про­блему обратной зависимости: может ли магнитное поле порождать ток в проводнике? В 1831 г. он установил, что в проводнике, нахо­дящемся в переменном магнитном поле, появляется ток. Так было открыто явление электромагнитной индукции.

Все эти эмпирические законы объединяла математи­ческая теория немецкого физика В. Е. Вебера (1804-1891). Ее ос­нову составила идея дальнодействующих сил, которые родственны ньютоновской гравитационной силе, не нуждающейся в промежу­точной среде и действующей мгновенно. Авторитет Ньютона в физическом сообществе был таким высоким, что ученые слепо следо­вали его призыву «не измышлять гипотез» по поводу механизма действия сил. И все же здесь нашлись исключения, прежде всего, в лице Фарадея.

Работая переплетчиком в типографии, Фарадей самостоятельно изучил физику и это увлечение привело его в науку. Как верующий человек он был уверен во взаимосвязи электрических и магнитных явлений, так как «природа едина от Бога». Нетрадиционное мышление самоучки и талант эксперимен­тирования сделали его ученым мирового уровня. Сложной матема­тикой своего времени он не овладел и поэтому все силы отдавал опытам и осмыслению их результатов. Идея дальнодействия, господствовавшая на университетс­ких кафедрах, не повлияла на сознание Фарадея. Тем более, что разнообразные эксперименты убеждали его в близкодействии электрических и магнитных сил. Особо в этом отношении выделя­лись факты движения проводников (железные опилки вблизи маг­нита, провода и контуры с током и т. п.)

Для электричества и магнетизма близкодействие универсально. Новаторское мышление Фара­дея предвосхитило идейные сдвиги в физической картине приро­ды. Ньютоновская идея дальнодействия сыграла положительную роль при формировании закона всемирного тяготения. В условиях отсутствия нужных фактов и должной математики она не дала уче­ным увлечься конструированием преждевременных умозритель­ных моделей тяготения. Но в первой половине XIX в. ситуация начала меняться. Физика стала восприимчивой к картезианским представлениям о дви­жении различных материальных объектов, сред, выступающих но­сителями близкодействующих сил. В оптике ньютоновская концеп­ция уступила место волновой теории света с моделью колебаний эфирной среды. В кинетической теории теплота предстала в виде движения атомов и молекул вещества. Механика сплошных сред также способствовала возрождению картезианских идей. Ученые с острой интуицией первыми почувствовали необходимость пере­мен. Так, немецкий исследователь К. Ф. Гаусс (1777-1855) и его ученик Б. Риман предположили, что электродинамические силы действуют не мгновенно, а с конечной скоростью, равной скорос­ти света. Кроме того, к середине XIX в. сформировались математи­ческие методы в виде дифференциальных уравнений в частных производных. Этот аппарат стал необходимым для реализации идеи близкодействия. Многие уравнения гидродинамики и тер­модинамики оказывались пригодными для электродинамики. В 40–50-е гг. на повестку дня встала проблема создания элек­тродинамики на базе принципа близкодействия и ее разрешил Максвелл.

Эмпирические законы Фарадея переводятся на язык математики. В качест­ве исходного материала Максвелл взял эмпирические обобщения Фарадея. Свою главную задачу он видел в том, чтобы придать им соответствующую математическую форму. Эта работа оказалась далеко неформальной, ибо перевод эмпирических образов на язык математики требовал особого творчества. Так, анализируя электро­магнитную индукцию, Фарадей выдвинул идею «электротоничес­кого состояния», где изменение магнитного поля вызывает вихре­вое электрическое поле.

Поле и эфир. Из фарадеевского наследия Максвелл также взял принцип близкодействия и идею поля. Они дополняли друг друга, так как близкодействие должно происходить в материальной не­прерывной среде, в этой среде как раз и действует поле. Правда, у Фарадея поле понималось неопределенно и среда рассматрива­лась как нечто подобное газовой среде. И не случайно Максвелл на первых порах строил модели электрического поля, помещая его в особую жидкоподобную среду, которая несжимаема, безынерци­онна и течет, испытывая сопротивление. Позднее в качестве среды у него закрепился эфир, который заполняет все пространство и пронизывает все весомые тела. Этим представлением широко поль­зовался Томсон, под чьим научным влиянием находился Максвелл. Отсюда поле у него стало областью эфира, непосредственно свя­занной с электрическими и магнитными явлениями: «...Электро­магнитное поле – это та часть пространства, которая содержит в себе и окружает тела, находящиеся в электрическом или магнит­ном состоянии».

Экстравагантность тока смещения. Идеи поля и эфира сыгра­ли определяющую роль в понимании центрального элемента теории - гипотезы тока смещения. В опытах Фарадея наблюдались эф­фекты, удаленные на большом расстоянии от электричества, теку­щего по проводнику. Такого же объяснения требовал факт прохож­дения переменного тока через изолятор, разделяющий две пласти­ны конденсатора. В признании нового вида электрического тока могли сыграть свою роль соображения симметрии - ток проводи­мости дополняется током смещения. Но как возможно движение последнего? И вот тут на сцену выступил эфир. Как и проводник, он является телом, обладающим лишь большой разреженностью и проницаемостью. Упругие свойства эфира позволяют переменно­му электрическому полю смещаться туда - сюда, т. е. колебаться. Это и есть ток смещения, имеющий форму волнового колебатель­ного процесса и распространяющийся в эфире вне проводников. Так же, как и ток проводимости, он может порождать магнитное поле. Согласно закону индукции, переменное магнитное поле со­здает переменное электрическое поле. Своей теорией Максвелл утвердил полное взаимодействие: любое переменное электричес­кое поле, основанное либо на токе проводимости, либо на токе сме­щения, порождает магнитное поле. Налицо симметрия взаимных влияний динамичных полей, которая составляет единую природу электромагнитного поля.



Свет как электромагнитное поле. Теория Максвелла помогла глубже понять сущность света. С древних времен существовала корпускулярная (лат. corpusculum - тельце) гипотеза, утверждав­шая, что свет представляет собой поток прямолинейно движущих­ся, очень маленьких частиц. Согласно другому предположению, свет является волнами с весьма малой длиной. В начале XIX в. Е. Юнг и О. Френель представили убедительные аргументы в поль­зу волновой гипотезы. Измерения установили, что скорость света равна примерно 300000 км/с.

Электромагнитное поле - это не только свет. Согласно теории Максвелла, электромагнитные волны распространяются так­же со скоростью 300000 км/с. Совпадение скоростей и волновая теория света побудили ученого отнести свет к электромагнитным процессам. Теория света как последовательного чередования элек­трических и магнитных полей не только хорошо объясняла старые факты, но и предсказывала неизвестные явления. Кроме видимого света должно быть инфракрасное, ультрафиолетовое излучения и другие виды волн. Свет также должен оказывать определенное дав­ление на вещество.

Опытное обнаружение электромагнитных волн. Теория Мак­свелла была опубликована в 1873 г. в «Трактате об электричестве и магнетизме». Почти все физики отнеслись к ней скептически, осо­бое неприятие вызвала гипотеза тока смещения. В теориях Вебера и Гельмгольца таких экзотических идей не было. В данной ситу­ации требовалось свидетельство решающих экспериментов и оно состоялось. В 1887 г. немецкий физик Г. Герц (1857-1894) создал генератор электромагнитных волн и осуществил их прием. Тем са­мым был обнаружен таинственный «ток смещения», который от­крыл перспективу новой практики (радио, телевидение). В 1895 г. немецкий физик В.К. Рентген обнаружил новое излучение, назван­ное рентгеновским и оказавшимся электромагнитными волнами с частотой более высокой, чем ультрафиолетовое излучение. В 1900 г. русский ученый П. Н. Лебедев (1866-1912) посредством очень тонких опытов открыл давление световых волн и измерил его вели­чину. Вся эта научная практика однозначно указала на теорию Мак­свелла как на истинный образ природы.

Материя - это вещество и электромагнитное поле. В силу своей фундаментальности теория Максвелла существенно повлия­ла на научную картину природы. Рухнула длительная монополия идеи вещества, и через понятие электромагнитного поля стала фор­мироваться идея физического поля как самостоятельного вида ма­терии. Программа обнаружения единства природы получила заме­чательный результат - былое различие электричества и магнетиз­ма уступило место единому электромагнитному процессу. Мак­свелл продемонстрировал высокую эвристическую силу математи­ческой гипотезы и дал образец синтеза математики с физикой. Новая электродинамика стала венцом классической физики.

Задания.

  1. Какие тенденции были характерны для развития биологии с XVI по XIX в.?

  2. Почему открытие Д. И. Менделеевым периодического закона оценивается как революция в химии?

3. Какие мировоззренческие выводы были сделаны из закона сохранения энергии?

4. За что махисты и энергетисты критиковали атомистику?

  1. Можно ли с позиции лапласовского детерминизма признать статистическую закономерность?

6. Какие новые идеи принесла с собой электродинамика Максвелла?
Афоризмы и истории.
 Учатся не тогда, когда попадают в ловушку, а только тогда, когда из нее выбираются.

 Английский врач Абернети (XIX в.) вернулся с ночного визита и улегся в постель. Раздался звонок и чей-то голос потребовал доктора. «Что случилось?» – крикнул рассерженный Абернети. «Доктор, мой сын проглотил мышь, помогите!» «Ну, так дайте ему проглотить кошку и оставьте меня в покое!»

 Со временем великие истины становятся глубокими заблуждениями.

 Французский ученый Будэ (XIX в.) работал в своем кабинете, как вдруг к нему прибежал слуга с криком: «Пожар!» «Доложите об этом моей жене, - спокойно сказал ему ученый. – Ведь вы знаете, что я в хозяйственные дела не вмешиваюсь».

 Искусство открытия растет вместе с открытиями (Ф. Бэкон).

 В свободное время Д.И. Менделеев любил переплетать книги, делать чемоданы. Однажды, когда ученый покупал необходимые ему материалы, кто-то, увидев бородатого Менделеева, спросил продавца: кто это такой? «Как же, его все знают, – ответил продавец. – известный чемоданных дел мастер Менделеев».

 Лучше знать мало, чем понимать плохо (французский писатель А. Франс).

 Как-то раз французский химик Пьер Бертло, бывший образцом пунктуальности и аккуратности, взял к себе в ассистенты одного весьма рассеянного юношу. Тот постоянно опаздывал и всякий раз ссылался на неточность хода своих часов. В конце концов, выведенный из себя Бертло заявил своему помощнику: «Решайте, сударь, или вы смените свои часы, или я сменю вас!»

 Некоторые идеи как старые солдаты: никогда не умирают.

 Однажды в кабинет известного химика, академика Н. Н. Бекетова вбежал слуга и взволнованно сообщил: «У Вас в библиотеке воры!». Бекетов спокойно его спросил: «И что же они читают?».

 Новое в науке рождается как ересь и умирает как предрассудок (английский биолог Т. Гексли, 1825-1895).

 На столе у химика В. Нернста стояла пробирка с органическим соединением дифенилметаном, температура плавления которого 26є С. Если в 11 утра препарат таял, Нернст вздыхал: Против природы не попрешь! И уводил студентов заниматься греблей и плаванием.
Литература.


  1. Больцман, Л. Статьи и речи. М., 1970.

  2. Жизнь науки. Антология вступлений к классике естествознания. М., 1973.

  3. Максвелл, Дж. К. Статьи и речи. М., 1968.

  4. Оствальд, В. Философия природы. СПб., 1903.

  5. Мах, Э. Познание и заблуждение. Очерки по психологии исследования М., 2003.

  6. Энгельс, Ф. Диалектика природы // К. Маркс и Ф. Энгельс. Соч., т. 20.


1   ...   5   6   7   8   9   10   11   12   ...   28



Скачать файл (13628 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации