Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

ВРД 39-1.10-052-2001 - файл ВРД 39-1.10-052-2001.doc


ВРД 39-1.10-052-2001
скачать (203.3 kb.)

Доступные файлы (1):

ВРД 39-1.10-052-2001.doc616kb.18.09.2003 16:01скачать

содержание
Загрузка...

ВРД 39-1.10-052-2001.doc

  1   2   3   4   5
Реклама MarketGid:
Загрузка...
ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "ГАЗПРОМ"


ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ

«Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ»


Система нормативных документов в газовой промышленности


ВЕДОМСТВЕННЫЙ РУКОВОДЯЩИЙ ДОКУМЕНТ


МЕТОДИЧЕСКИЕ УКАЗАНИЯ

ПО ВЫБОРУ И ПРИМЕНЕНИЮ АСИНХРОННОГО ЧАСТОТНО-РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА МОЩНОСТЬЮ ДО 500 кВТ


ВРД 39-1.10-052-2001


УДК 62-83 (083.74)

Дата введения 22.11.2001 г.


Предисловие


РАЗРАБОТАН Обществом с ограниченной ответственностью «Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ», Управлением энергетики ОАО "ГАЗПРОМ"


СОГЛАСОВАН Начальником Управления энергетики ОАО «ГАЗПРОМ» Г.Р. Шварцем 21.11.2001 г.


ВНЕСЕН Управлением энергетики ОАО «ГАЗ ПРОМ»


УТВЕРЖДЕН Членом Правления ОАО «ГАЗПРОМ» Б.В. Будзуляком 22.11.2001 г.


ВВЕДЕН В ДЕЙСТВИЕ 22.11.2001 г.


^ ВВОДИТСЯ ВПЕРВЫЕ


ИЗДАН Обществом с ограниченной ответственностью «Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ»


ВВЕДЕНИЕ


Настоящее Руководство разработано для применения производственными, проектными и научными организациями ОАО «Газпром» при проектировании строящихся и техническом перевооружении существующих объектов, оснащаемых частотно-регулируемым асинхронным электроприводом мощностью до 500 кВт, с целью повышения эффективности технологических процессов в газовой промышленности. В ведомственном руководящем документе «Методические указания по выбору и применению асинхронного частотно-регулируемого электропривода мощностью до 500 кВт» изложены основные требования и расчетные соотношения по выбору и применению частотно-регулируемого асинхронного электропривода, его составных элементов и устройств.

Руководство разработано коллективом сотрудников ООО «ВНИИГАЗ». Разработчики: Комягин А.Ф., главный научный сотрудник, д.т.н., академик АГН., Штин Е.А., ведущий инженер. Руководитель разработки: Медведев В.А., начальник лаборатории комплексных систем электропривода в технологических процессах, ООО «ВНИИГАЗ».

В разработке принимали участие представители Управления энергетики ОАО «ГАЗПРОМ»: Лезнов В.Б., зам.начальника отдела; Матвейчук П.А., главный технолог, к.т.н.


^ 1 ОБЛАСТЬ ПРИМЕНЕНИЯ И ОБЩИЕ ПОЛОЖЕНИЯ


1.1 Область применения


Одной из тенденций в области энергосберегающих технологий последних лет является применение частотно-регулируемых приводов на основе асинхронных короткозамкнутых электродвигателей и полупроводниковых преобразователей частоты, снижающих потребление электрической энергии, повышающих степень автоматизации, удобство эксплуатации оборудования и качество технологических процессов. На производственных объектах газовой промышленности установлены десятки тысяч асинхронных электродвигателей мощностью до 500 кВт и напряжением до 1000 В. Они используются в качестве приводов вспомогательных устройств, обслуживающих основное технологические оборудование и производственные процессы, в основном это вентиляторы и насосы.

Существуют различные способы управления производительностью вентиляторов и насосов: дросселирование нагрузки, снижение единичной мощности агрегатов и увеличение их количества и т.д. Наиболее эффективным способом является регулирование скорости вращения. Применение частотно-регулируемого привода на насосах и вентиляторах позволяет обеспечить снижение потребляемой мощности на 530% за счет исключения в водяных и воздушных трактах дросселей и заслонок, а также улучшения технологических процессов. Наряду с этим частотно-регулируемый привод дает ряд дополнительных преимуществ:

- экономию тепла в системах горячего водоснабжения за счет снижения потерь воды, несущей тепло;

- возможность создавать при необходимости напор выше номинального;

- уменьшение износа основного оборудования за счет плавных пусков, устранение гидравлических ударов, снижение напора;

- снижение шума;

- возможность комплексной автоматизации систем;

- возможность оптимизации выбора оборудования и его комплектной поставки.


^ 1.2 Общие положения


Структурная схема частотно-регулируемого привода с его составными элементами и преобразователем приведена на рис. 1.





Рис. 1 Структурная схема частотно-регулируемого привода


1 - кабель сети, 2 - сетевые предохранители, 3 - автоматический выключатель, 4 - сетевой дроссель, 5 - фильтр радиопомех, 6 - преобразователь частоты, 7 -тормозной резистор, 8 - синус (L-R-C) фильтр, 9 - тепловое реле, 10 - кабель двигателя, 11 - асинхронный двигатель с короткозамкнутым ротором, 12 - заземление


Как видно из рисунка, частотно-регулируемый привод нужно рассматривать в совокупности с источником электроснабжения, коммутационными аппаратами, кабелями сети, кабелями двигателя, кабелями управления, фильтрами, заземлением, дополнительными устройствами, электродвигателем, преобразователем частоты, а также условиями их монтажа на объекте и режимами работы всего оборудования.

В ведомственном руководящем документе «Методические указания по выбору и применению асинхронного частотно-регулируемого электропривода мощностью до 500 кВт» изложены основные требования и расчетные соотношения по выбору параметров частотно-регулируемого асинхронного электропривода, его составных элементов и устройств. Эти требования и расчеты дополняют ГОСТ 24607-88 «Преобразователи частоты полупроводниковые. Общие технические требования» в части применения его на объектах ОАО «Газпром». Дополнительные рекомендации основываются на российских и приведенных в справочном Приложении А зарубежных стандартах и нормах.


^ 1.3 Нормативные ссылки


В настоящем ВРД сделаны ссылки на следующие стандарты:

- ГОСТ 13109-97 «Нормы качества электрической энергии в системах электроснабжения общего назначения»;

- ГОСТ 24607-88 «Преобразователи частоты полупроводниковые. Общие технические требования»;

- ГОСТ 26567-85 «Преобразователи частоты полупроводниковые. Методы испытаний»;

- Международные и национальные стандарты стран, регламентирующие применение частотно-регулируемого асинхронного электропривода (приведены в справочном Приложении А).


^ 2 ВЫБОР И СОГЛАСОВАНИЕ ПАРАМЕТРОВ ЧАСТОТНО-РЕГУЛИРУЕМОГО АСИНХРОННОГО ЭЛЕКТРОПРИВОДА


В составе частотно-регулируемого асинхронного электропривода выбор и согласование параметров преобразователя частоты и асинхронного короткозамкнутого двигателя является главным вопросом.

Для выбора двигателя и преобразователя частоты нужно учитывать следующие параметры [1]:

- диапазон регулирования частоты вращения двигателя (для определения числа полюсов двигателя и номинальной частоты вращения двигателя);

- нагрузочную характеристику (она определяет ограничения, связанные с охлаждением двигателя и выходом в зону ослабленного поля, т.е. на частоту вращения ротора двигателя выше его номинальной по техническим условиям на двигатель);

- требуемый крутящий момент двигателя (он требуется для определения мощности двигателя);

- тип и мощность преобразователя частоты, учитывая следующие особенности:

- управление одним двигателем или группой;

- двигатель погружной;

- двигатель взрывозащищенный;

- двигатель двухскоростной.

Выбор преобразователя частоты и двигателя для вентилятора/насоса сводится к выполнению алгоритма, представленного на рис.2. Алгоритмы описываются ниже приведенными формулами.

Расчет требуемого крутящего момента на валу двигателя

, (н·м). (2.1)

, (кгс·м). (2.2)

где РН - мощность нагрузки в кВт;

N - число оборотов двигателя, об/мин;

ТН - крутящий момент на валу двигателя, (н·м) или (кгс·м).

Необходимо проверять мощность на валу с учетом момента нагрузки и условий окружающей среды. Обычно когда температура уменьшается, мощность на валу увеличивается [2].


^ Предварительный выбор двигателя/преобразователя на основе данных и расчетов


а) Выбор мощности двигателя: РДВ. > РНАГРУЗКИ, (кВт).

Мощность двигателя должна быть больше мощности нагрузки.

б) Выбор мощности преобразователя частоты.

Мощность преобразователя частоты выбирается так, чтобы номинальный ток двигателя (IДВ) был меньше или равен току на выходе преобразователя частоты (IПЧ)

IПЧ IДВ, А.


Расчет момента инерции


JB - момент инерции вентилятора (кг·м2) берется из Технических условий завода-изготовителя; - эффект маховика (кгс·м); ;

JДВ - момент инерции двигателя (кг·м2) берется из Технических условий завода-изготовителя.

Суммарный момент инерции равен

. (2.3)

Примечание. Когда между двигателем и вентилятором передача крутящего момента осуществляется через шкив и ремень необходимо учитывать момент инерции шкива и проскальзывание ремня.


Проверка времени ускорения


(с), (2.4)

(с), (2.5)

где ta, - время ускорения, сек; J - суммарный момент инерции, кг · м2, GD2 - суммарный эффект маховика, кгс · м2, N - изменение числа оборотов (об/мин) за период времени ta, ТДВ - номинальный крутящий момент двигателя (Н · м) или (кгс • м), ТН - момент нагрузки (Н · м) или (кгс · м),  - коэффициент коррекции момента при управлении от преобразователя частоты (1,21,3), ( - корректирующий коэффициент, учитывающий уменьшенный крутящий момент двигателя (13, для постоянного момента 1).


Проверка времени замедления


(с), (2.6)

(с), (2.7)

где  - коэффициент, корректирующий момент двигателя (0,1 - 0,3), зависит от КПД двигателя.

Если необходимо замедлиться за время внутри периода замедления tB, , необходимо применять тормозной модуль.





Рис. 2 Схема алгоритма выбора преобразователя частоты и двигателя для вентилятора/насоса


^ 3 КЛАССИФИКАЦИЯ ЭЛЕКТРОДВИГАТЕЛЕЙ, ПРИМЕНЯЕМЫХ В СОСТАВЕ ЧАСТОТНО-РЕГУЛИРУЕМОГО ЭЛЕКТРОПРИВОДА


Асинхронные электродвигатели, применяемые в составе частотно-регулируемого электропривода, представлены в таблице 3.1 [3].


Таблица 3.1 - Классификация электродвигателей


Типы электродвигателей

Дополнительная информация

Стандартный асинхронный короткозамкнутый, самовентилируемый (1LA)

Вращательный момент двигателя в диапазоне от 3 до 8000 Н·м. Частота вращения от 750 до 3000 об/мин

Стандартный асинхронный короткозамкнутый с принудительной вентиляцией (1PQ)

Высота оси вращения от 71 до 315 мм

Асинхронный короткозамкнутый, взрывозащищенный (1MJ) типа ВАО, ВАСО, ДАЛ

Напряжение 380, 3000, 3300, 6000, 6600 В. Частота вращения 1500, 3000, 3600 об/мин

Асинхронный погружной типа ПЭД, ПЭДВ, ПЭДП. ДПТВ, ПЭДУ

Рассчитан для продолжительной непрерывной работы в агрессивных условиях при высокой температуре и давлении


^ 3.1 Дополнительные требования к стандартному асинхронному короткозамкнутому самовентилируемому электродвигателю (1LA) при управлении от преобразователя частоты

Стандартные асинхронные короткозамкнутые самовентилируемые электродвигатели (АД) наиболее распространены в промышленности. Это обусловлено простотой их конструкции, очень высокой надежностью в эксплуатации, стандартизацией и высоким коэффициентом полезного действия. АД позволяют вносить изменения в конструкцию для удовлетворения специальному применению и различным условиям среды. Фактически они имеют только два недостатка: большой пусковой ток (57 Iном.) и ограниченные возможности регулирования частоты вращения.

Асинхронный двигатель общего применения сконструирован так, что оптимальная плотность электромагнитного потока у него при номинале питающего напряжения 200 В и частоте 50 Гц. Когда изменяется частота, необходимо в то же самое время и изменять напряжение питания электродвигателя. Это необходимо в случае поддержания постоянной величины скольжения. При таких условиях управление АД с изменением частоты вращения называется управлением с постоянным соотношением напряжения к частоте U/f.

Соотношение U/f - Линейное. Напряжение на двигателе растет линейно с увеличением частоты двигателя. Номинальное напряжение подается на двигатель при номинальной частоте. Линейное соотношение U/f следует использовать в электроприводах с постоянным моментом на валу (не зависящим от скорости рабочего органа).

Соотношение U/f - Квадратичное. Напряжение двигателя изменяется по квадратичной зависимости по мере возрастания частоты от 0 Гц до номинальной частоты двигателя. При этом на двигатель подается номинальное напряжение при номинальной частоте. Двигатель работает с уменьшенным магнитным потоком на частотах ниже номинальной. Он имеет меньший критический момент, чем при линейном соотношении U/f, и создает меньше шума. Квадратичное соотношение U/f используется для приводов, в которых требуемый момент пропорционален квадрату скорости. Таковыми являются центробежные вентиляторы и насосы.

Частота вращения двигателя при частотном управлении может значительно отличаться от номинальной. Допустимый максимум частоты вращения для стандартных двигателей соответствует их типоразмерам и приведен в таблице 3.2.


Таблица 3.2 - Типоразмеры и максимальная допустимая частота вращения стандартных асинхронных двигателей


Типоразмер (высота оси вращения, мм)

Допустимый максимум частоты вращения, об/мин

63-100

6000

112-200

4500

225-280

3600

315, 2 полюса

3600

315, другие

3000

355, 400, 2 полюса

3600

355,400, другие

2500


Выходные токи и напряжение преобразователя частоты в отличие от стандартной сети имеют не синусоидальную форму, а пики, высшие гармоники тока и напряжения, быстрое изменение частоты и напряжения во времени. Это приводит к увеличению напряжения на изоляции двигателя, увеличиваются потери двигателя, его вибрация и шум [4]. Так как техническим условием завода-изготовителя не предусматриваются испытания стандартного асинхронного двигателя при питании его от преобразователя частоты, появляется необходимость в проведении дополнительных проверок двигателя. Международным электротехническим комитетом, в состав которого входит Российская Федерация, принят стандарт МЭК 34-17 «Асинхронные двигатели с короткозамкнутым ротором, питаемые от преобразователей частоты». Первая редакция стандарта была выпущена в 1992 году, вторая в 1998 году. В первой редакции МЭК 34-17 в целях исключения негативных воздействий на двигатель, питаемый от преобразователя частоты, были введены дополнительные проверки, которые состоят из трех групп:

• 1 группа - Общая проверка двигателя при питании от преобразователя частоты;

• 2 группа - Проверка двигателя при частоте вращения ротора выше номинальной (при питании от преобразователя частоты);

• 3 третья группа - Проверка двигателя при частоте вращения ротора ниже номинальной (при питании от преобразователя частоты).

Проверки должны производиться на заводе-изготовителе электродвигателя или поставщика преобразователей частоты по требованию заказчика.

Состав проверок приведен на рис. 3.





Общая проверка двигателя







1

Нагрузочная способность







2

Уровень изоляции







3

Заземление

























Проверка двигателя при частоте вращения выше номинальной




Проверка двигателя при частоте вращения ниже номинальной




1

Максимальный вращательный момент двигателя




1

Смазка







2

Конструкция подшипников




2

Охлаждение







3

Смазка




3

Электромагнитный шум







4

Шум вентилятора
















5

Балансировка
















6

Критическая частота вращения
















7

Уплотнение вала














Рис. 3 Схема проверок двигателя при управлении от преобразователя частоты


^ Общая проверка двигателя


Нагрузочная способность

Различные типы преобразователей частоты, отличающиеся рабочими принципами, способами модуляции и коммутации частоты, дают разброс эффективности для одного и того же двигателя [4]. В теоретических вычислениях и лабораторных испытаниях определено, что непрерывная максимальная нагрузка (вращательный момент) привода с преобразователями частоты зависит в основном от способа модуляции и частоты переключений преобразователя частоты.

^ Основной принцип работы двигателя при питании от преобразователя частоты заключается в том, что максимально допустимый момент нагрузки двигателя как функция частоты вращения его ротора должен давать такой же рост температуры двигателя, как при питании синусоидальным напряжением номинальной частоты при номинальной нагрузке [4]. Этот рост температуры, как правило, соответствует классу изоляции В.

Увеличения нагрузочной способности двигателя можно достичь:

- повышением эффективности охлаждения;

- фильтрацией выходного напряжения преобразователя частоты;

- специальной конструкцией ротора.


^ Уровень изоляции

В преобразователе частоты с широтно-импульсной модуляцией (ШИМ) выходное напряжение (или ток) представляет собой ряд импульсов, а кабель между преобразователем частоты и двигателем может иметь протяженность 100 м и более. Если волновое сопротивление кабеля и обмотки двигателя не согласованы, происходит отражение волны напряжения в оба конца кабеля. Это отражение увеличивает пики напряжения на клеммах двигателя, а также в обмотке статора и может привести к пробою изоляции. Для защиты от этого негативного явления необходимо соблюдать следующие рекомендации [4]:

- если поминальное напряжение питания сети 415 В или меньше, усиление изоляции асинхронного двигателя не требуется;

- если номинальное напряжение питания сети 660-690 В, требуется усиление изоляции двигателя;

- если номинальное напряжение питания сети в интервале 440575 В, необходимо дополнительно учитывать длину кабеля между преобразователем частоты и двигателем, а также выходную мощность двигателя.

Существует ряд специальных мер для уменьшения перенапряжения в обмотках двигателя:

- установка фильтров на выходе преобразователя частоты;

- использование специальных «демпфирующих» (увеличивающих затухание отраженной волны напряжения) кабелей;

- применение ограничителей напряжения на клеммах двигателя.


Заземление

Правильная установка заземления очень важна вообще, но в приводе с преобразователем частоты ему должно быть уделено специальное внимание, чтобы гарантировать:

- работу всех защитных устройств и реле;

- минимальный или допустимый уровень электромагнитной помехи;

- допустимый уровень несущего напряжения, чтобы избежать токов, приводящих к повреждениям (отказам).

Необходимо учитывать, что в приводе с частотным преобразователем сумма напряжений фаз никогда не равна нулю. Это становится причиной трудности сохранения на корпусе двигателя нулевого потенциала. Емкостные напряжения и токи в случае плохого заземления статора могут воздействовать на питающее напряжение и вывести из строя оборудование.


^ Проверка двигателя при частоте вращения выше номинальной


Максимальный вращательный момент

В точке ослабления поля (наивысшая точка, где соотношение изменений U/f позволяет сохранять постоянным магнитный поток, называется точкой ослабления поля) с увеличением частоты вращения ротора магнитный поток двигателя и способность создавать вращательный момент уменьшаются в соответствии с зависимостью М ~ 1/f2. Поэтому на практике максимальный вращательный момент двигателя должен быть на 40% выше, чем момент сопротивления нагрузки для обеспечения процессов ускорения и торможения двигателя.

При использовании фильтров или дополнительных реактивных сопротивлений для улучшения параметров выходного напряжения и тока преобразователя частоты (приближения их к синусоидальной форме) необходимо обращать внимание на падение величины питающего напряжения двигателя при максимальном токе нагрузки. Падение напряжения должно быть не более 37%. Это обусловлено тем, что максимальный момент асинхронного двигателя пропорционален квадрату величины питающего напряжения. Для устойчивой работы асинхронного двигателя и производственного механизма необходимо определенное сочетание механических характеристик двигателя М(n) и нагрузки Мс(n). Двигатель устойчиво работает, когда [5].


^ Конструкция подшипников

При проверке подшипников необходимо учитывать, что имеется предел частоты вращения, с которой вращается подшипник. Тип подшипника, размер, внутренняя конструкция, нагрузка и условия охлаждения, точность изготовления, внутренний клиренс определяют возможную максимальную частоту вращения.


Смазка

Тип смазки определяется режимом работы (эксплуатации) двигателя. Используя специальные смазочные материалы, можно увеличить максимальную частоту вращения, уменьшить трение и выделение тепла.


^ Шум вентилятора

Шум, вызываемый вентилятором двигателя, увеличивается с частотой вращения двигателя и становится доминирующим для 2-х и 4-х полюсных двигателей уже при частоте 50 Гц. Если частота вращения в дальнейшем увеличится, то и уровень шума будет выше. Увеличение уровня шума может быть вычислено по формуле:

dB(A), (3.1)

где ^ L - увеличение уровня звукового давления, когда частота вращения изменяется в сторону увеличения от n1 к n2, dB(A); n1 и n2 - частоты вращения двигателя, об/мин.

Удвоение частоты вращения дает приблизительно 20 dB(A) уровня шума.

Шум вентилятора - это обычно так называемый «белый шум», содержащий все частоты слышимого диапазона.

Для уменьшения шума вентилятора применяется несколько методов:

- изменение конструкции вентилятора и его кожуха (уменьшение внешнего диаметра);

- использование специального вентилятора, осевой конструкции (одно направление вращения);

- использование глушителя для уменьшения всех компонентов шума.


Балансировка

Должны быть проверены точность балансировки и механическая напряженность всех вращающихся частей, включая муфты или шкивы.


^ Критическая скорость

Не должна превышаться 1-я критическая частота вращения стандартного двигателя даже в случае жесткого соединения с нагрузкой на валу. Гарантийный резерв должен быть равен 25% от критической частоты вращения. При невыполнении этого условия значения виброскорости могут выйти за установленные нормы и вызвать повышенный износ подшипников двигателя или его аварийный останов.


^ Уплотнение вала

При эксплуатации двигателя на частоте вращения выше номинальной, уплотнение вала требует специального внимания (V - образные кольца, масляные уплотнения, герметичный подшипник и т.д.). Уплотнения имеют предел частоты вращения, который не рекомендуется превышать. В особых случаях используются лабиринтные уплотнения без трения.


^ Проверка двигателя при частоте вращения ниже номинальной


Смазка

При уменьшении частоты вращения ротора асинхронного короткозамкнутого самовентилируемого двигателя ниже номинальной, производительность вентилятора, закрепленного на роторе, также уменьшается, что значительно ухудшает условия охлаждения двигателя и может привести к повышению температуры обмоток статора и подшипников до предельно допустимых значений. При увеличении значения температуры выше номинального на каждые 15°С интервал времени замены смазки должен уменьшаться в два раза. Если уменьшение интервалов невозможно, то рекомендуется использование высокотемпературных смазок с противозадирными присадками. При очень низких частотах вращения ротора двигателя невозможно создать масляную пленку между катящимися элементами и поверхностью качения. Это создает путь для электрического тока между шариками и несущими кольцами подшипника.


Охлаждение

Поток воздуха и охлаждающая мощность зависят от частоты вращения вентилятора. Чтобы увеличить охлаждающую мощность двигателя при низкой частоте вращения, может быть использован отдельный вентилятор с постоянной максимальной частотой вращения.

  1   2   3   4   5



Скачать файл (203.3 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации