Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Билеты по материаловедению - файл Шпоры по Материалке.doc


Загрузка...
Билеты по материаловедению
скачать (128.6 kb.)

Доступные файлы (2):

билеты.doc76kb.08.02.2008 20:31скачать
Шпоры по Материалке.doc1023kb.08.02.2008 20:31скачать

Шпоры по Материалке.doc

  1   2   3   4   5
Реклама MarketGid:
Загрузка...
Билет №1

1. Межатомное взаимодействие, влияние энергии межатомного взаимодействия на свойства материалов.

Любой материал представляет собой продукт взаимодействия огромного количества атомов, и свойства материала зависят от характера взаимодействия этих атомов. Зная характер взаимодействия атомов, можно прогнозировать свойства материалов. Поскольку взаимодействие множества атомов анализировать достаточно сложно, вначале для простоты рассмотрим взаимодействие двух атомов.

Между двумя атомами действует сила притяжения, она убывает обратно пропорционально квадрату расстояния между атомами. Помимо силы притяжения, между атомами действует и сила взаимного отталкивания, которая обратно пропорциональна расстоянию в степени n, где n больше 2.

В том случае, когда взаимодействует множество атомов, смещение любого из них приводит к росту энергии системы, Поэтому потенциальную кривую можно представить в виде периодической функции (рис. 2).



^ Рис. 2. Зависимость энергии потенц-го взаимодейс-твия (Wp) от расстояния между атомами (x) для случая взаимодействия множества атомов.

При минимуме энергии системы расстояния между атомами одинаковы и равны r0. Вдоль любого направления расстояния будут равны r0, хотя эти расстояния по разным направлениям будут разными. Расстояние между атомами вдоль какого-либо направления принято обозначать а.

Для переброса атома из одного равновесного положения в другое требуется повышение энергии. Поэтому в том случае, когда энергия системы минимальна или незначительно отличается от минимальной, атомы не могут перемещаться из одного положения в другое, и мы имеем дело с твердым телом. При значительном повышении энергии системы атомы активно колеблются, обмениваются энергией - и в результате могут переходить из одного положения в другое. В этом случае мы имеем дело с жидким телом. Дальнейший рост энергии системы приводит к выходу атомов из потенциальной ямы, они перестают взаимодействовать друг с другом, могут занимать различные положения – и мы имеем дело с газом.


^ 2. Электропроводность диэлектриков. Влияние внешних условий на электропроводность диэлектриков.

Электропроводность диэлектриков определяет-ся в основном перемещением ионов. На концентра-цию ионов оказывают влияние: состав материала, температура, облучение материала частицами высо-ких энергий. Концентрация подв-х носителей заряда в полярных материалах, как правило, выше, чем в неполярных. Это связано с тем, что ионы примесей электрически взаимодействуют с дипольными моментами полярных молекул, поэтому очистка полярных материалов от примесей затруднена.

^ Зависимость электропроводности от температуры.

При повышении температуры энергия системы повышается на величину kT и вероятность выхода иона из потенциальной ямы возрастает. Поэтому электропроводность диэлектриков при повышении температуры растет в соответствии с выражением:

γ=γ0exp(Ea/kT),

где: γ0 - удельная электропроводность диэлектрика, константа,

Ea - энергия активации выхода иона из потенциальной ямы,

kT- тепловая энергия системы.

^ Зависимость электропроводности от напряжённости.

При сравнительно небольших значениях напряженности поля электропроводность диэлектриков следует закону Ома. Однако при повышении напряженности поля электроп-роводность перестает сле-довать закону Ома. При дальнейшем повышении напряженности поля возможны два случая: в первом электроп-роводность быстро нарастает с ростом напряжен-ности поля (а) (для загрязненных диэлектриков и чистых диэлектриков с ионной связью), а во втором - вначале наступает насыщение электропроводнос-ти, и лишь затем в сильных полях наблюдается ее резкий рост (б) (неионных кристаллов высокой чистоты).


Билет №2

^ 1.Типы химических связей между атомами, влияние типа связи на свойства материалов.

Ковалентная связь образуется между атомами одного или нескольких химических элементов с близкими ионизационными потенциалами. В чистом виде ковалентная связь реализуется при взаимодействии элементов с наполовину заполненными электронными оболочками. H2 ,C, Si, Ge, Sn. Соседние атомы обмениваются электронами.

Появление между положительно заряженными ионами пары отрицательно заряженных электронов приводит к тому, что оба иона притягиваются к обобществленным электронам и, тем самым, притягиваются друг к другу. Каждый атом взаимодействует с ограниченным числом соседей, причем число соседей равно числу валентных электронов атома. Следовательно, ковалентная связь насыщенна. Кроме того, атом взаимодействует только с теми соседями, с которыми он обменялся электронами, то есть ковалентная связь имеет направление.

^ Ионная связь образуется при взаимодействии атомов с малым количеством валентных электронов и атомов с большим количеством электронов на валентных оболочках. При этом наружные электроны атомов с низкими потенциалами ионизации переходят на валентные оболочки атомов с высокими ионизационными потенциалами. Ионная связь ненасыщенна, поскольку каждый из отрицательно заряженных ионов притягивает к себе положительно заряженные, а каждый из положительно заряженных ионов притягивает к себе все отрицательно заряженные. Однако ионная связь направлена, поскольку ион притягивает к себе разноименно заряженные ионы и отталкивает одноименно заряженные.

Уменьшение размера иона и увеличение его заряда ведет к росту энергии связи, а следовательно, к росту температуру плавления материала, уменьшению коэффициента теплового расширения и к увеличению модуля упругости.

^ Металлическая связь образуется между атомами одного или нескольких химических элементов, у которых валентные электронные оболочки застроены меньше чем на половину. Поскольку энергия иона минимальна при полностью заполненной внешней оболочке, атомы отдают внешние валентные электроны и превращаются в положительно заряженные ионы, между которыми находятся свободные электроны (электронный газ).

Металлическая связь не имеет направления и ненасыщенна. Кристаллические решетки металлов упакованы плотно.

^ Связь Ван-дер-Ваальса образуется при сближении молекул или атомов инертных газов и заключается в их связи между собой за счет постоянных или взаимно созданных дипольных моментов.


^ 2. Поляризация диэлектриков, виды поляризации, механизмы поляризации. Влияние внешних условий на поляризацию диэлектриков.

Поляризацией называется такое состояние диэлектрика, когда суммарный электрический момент отличен от нуля. Появление поляризации является следствием воздействия различных факторов: электрического поля, температуры, механических напряжений и др. В большинстве диэлектриков поляризация возникает под действием электрического поля.

^ Виды поляризации.

Упругая поляризация не связана с тепловым движением молекул.

Заряженные частицы под действием поля смещаются на очень малые расстояния в пределах поля упругих сил, связывающих эти частицы с другими. Поэтому поляризацией упругого ядерного смещения в промышленных материалах можно пренебречь.

а) упругого электронного смещения. Cвязана со смещением электронных оболочек атомов относительно ядер и имеет место во всех без исключения диэлектриках, за исключением абсолютного вакуума.

б) ионного упругого смещения. Вызвана упругим смешением ионов из равновесных положений под действием внешнего электрического поля. Хар-на для ионных кристаллов (мрамор, соль, слюда, кварц и др.). В таких материалах присутствует ещё и пол-я упругого электронного смещения.

в) дипольно-упругая. Заключается в повороте на малый угол диполей и имеет место в полярных твердых диэлектриках, где диполи прочно связаны связями с другими молекулами.

г) упругого ядерного смещения. Этот вид поляризации наблюдается в газах со сложными молекулами. Вклад этой поляризации в диэлектрическую проницаемость пренебрежимо мал.

Релаксационная поляризация:

а) Дипольно-релаксационная. Наблюдается во многих твердых и жидких диэлектриках с полярными группами: компаунды, бакелит, аминопласты и др. При такой поляризации происходит смещение полярных молекул или смещение радикалов, входящих в состав крупных молекул. Cопровождается необратимыми потерями энергии при нахождении диэлектриков в переменном электрическом поле.

б) Ионно-релаксационная. Связана с перебросом из одного равновесного положения в другое слабосвязанных ионов или полярных групп.

в) Электронно-релаксационная. При приложении электрического поля дефекты кристаллической решетки могут перебрасываться из одного положения в другое.

г) Резонансная. При совпадении собственной частоты колебания структурной единицы вещества с частотой внешнего поля наблюдается резонансная поляризация. В этом случае в узком интервале частот резко возрастает диэлектрическая проницаемость.


Существуют 4 основных мех-ма поляризации:

Электронный, ионный, дипольный, спантанный.

  1. Электронный – упругое смещение

электронов в атомах и ионах

Такая поляризация есть во всех материалах, а поляризации других видов добавляются к электонной. Она происходит быстро (t=10-14 – 10-15) и поэтому не зависит от частоты изменения электрического поля до тех пор, пока время поляризации не соизмерима с периодом изменения электрического поля (f = 10-14 – 10-15Гц)

При нагревании плотность падает, уменьшается число атомов в единице объема в следствии чего поляризация ослабевает.

  1. Ионный – смещение ионов в

узлах кристаллической решетки электрическим полем за время t=10-12 – 10-13 (ионы тяжелее электронов). Она не зависит от частоты до f=1012-1013Гц. С ростом температуры расстояние м/у ионами увеличивается из-за теплового расширения, хмимические связи ослабляются. Ионы легче смешиваются, поэтому поляризация ионных диэлектриков растет вместе с температурой.

К диэлектрикам с ионной поляризацией относят слюду.

  1. Дипольный

поворот диполей, находящихся в хаотическом тепловом движении электрическим полем за время 10-6-10-8 сек. Дипольную поляризацию, ноаборот, наблюдают в полярных диэлектриках (в воде, канифоле и др) Она сопровождается потерями энергии на преодоление трения при повороте диполей, что приводит к нагреву диэлектрика

При частоте 106-108 Гц диполи не успевают ориентироваться по полю и остается только электронная поляризация.

При низких темпераурах вязкость вещества велика. Диполи неподвижны и электрическая прницаемость обусловлена электронной поляризацией. С увеличением температуры вязкости уменьшается, и диполи начинают поворачиваться, приводя к росту E. При темперауре выше температуры плавления тепловое движение мешает ориентации диполей и E снижается.

  1. Спонтанный наблюдают в

веществах, называемых сигнетоэлектриками, например в титанате бария и титанате стронция.Как правило, в кристаллах сигнетиков, как и в кристаллах магнетиков есть домены. В одном домене все диполи ориентированы одинаково и создают электр. момент домена. В силу этого электрические моменты различных доменов не совпадают по направлению. При воздействии внешнего электрического поля эл. Моменты доменов постепенно ориентруются в направлении поля, что создает поляризацию до 100тыс.


Билет №3

^ 1. Точечные дефекты кристаллической решетки. Влияние точечных дефектов не свойства материалов.

К ним относятся атомы инородных элементов (легирующих элементом или примесей), межузельные атомы (атомы основного элемента, по каким-либо причинам покинувшие узлы кристаллической решетки и застрявшие в междоузлиях), вакансии или не занятые атомами узлы кристаллической решетки.

Представление о вакансиях было впервые введено Я. И. Френкелем для объяснения процессов диффузии в металлах - материалах с плотноупакованной кристаллической решеткой.

При наличии в кристаллической решетки вакансии атом может перескочить из узла решетки в вакантное место. Тем самым вакансия смещается, и процесс диффузии можно описывать как последовательное перемещение атомов или как движение вакансий.

Согласно модели Френкеля, при образовании вакансий атом из узла кристаллической решетки перепрыгивает в междоузлие, и появляется пара дефектов - вакансия и межузельный атом, или пара Френкеля.

^ В материалах с ионной связью между атомами основным носителем заряда являются ионы. При появлении вакансий перемещение ионов облегчается, а следовательно, падает удельное электросопротивление. При появлении в материале примесей кристаллическая решетка искажается, энергия материала локально повышается, что способствует облегчению выхода иона из потенциальной ямы. Таким образом, появление любых точечных дефектов ведет к снижению электросопротивления материалов с ионной связью.

^ В материалах с ковалентной связью присутствие вакансий приводит к обрыву ковалентной связи и появлению на валентной оболочке атома неспаренного электрона. Наличие неспаренных электронов энергетически невыгодно, и атом теряет его. Таким образом, в материале появляются два носителя заряда: отрицательно заряженный свободный (делокализованный) электрон и положительно заряженная дырка. Следовательно, увеличение концентрации вакансий ведет к падению удельного электрического сопротивления материалов с ковалентной связью.

Присутствие неизовалентных примесей ведет к появлению в материале дырок или свободных электронов, то есть к повышению концентрации носителей заряда.

^ 2. Потери энергии электрического поля в диэлектриках. Влияние внешних условий и особенностей строения диэлектриков на тангенс угла диэлектрических потерь

Под действием электр-ого поля в диэлек-ке развиваются два основных процесса: поляризация и сквозная электропр-сть. Развитие этих процессов может привести к рассеянию энергии электрич-ого поля в диэлек-ке в виде тепла. Так, под действием электр-ого поля свободные носители заряда набирают кинет-ую энергию и, сталкиваясь с молекулами вещ-ва, передают им эту энергию. Т-м об-ом, энергия электрич-ого поля трансформируется в тепловую энергию материала. Кроме того, в случае, когда структурные единицы вещ-ва (молекулы) полярны, внешнее электр-ое поле совершает работу по повороту диполей по полю, и, , энергия поля вновь рассеивается в материале.

Для количеств-ой оценки величины диэлектр-их потерь используют понятие тангенс угла диэлектрических потерь.

В идеальном диэлектрике сдвиг фаз между напряжением и реактивной составляющей тока равен 90 градусам. В реальном диэлектрике появляется активная составляющая тока. Поэтому векторная диаграмма токов и напряжений выглядит, как показано на рисунке 3.10.

Зная величину напряжения, круговую частоту и емкость, можно определить реактивную составляю-щую тока:

Ip=U**C . (7)

Тогда активная составляющая тока определится как:

Ia=Ip*tg . (8)

Рассеиваемую мощность можно определить следующим образом:

Р=UIa= UCtg . (9)



^ Рис. 3.10. Векторная диаграмма токов и напряжений в реальном диэлектрике

Таким образом, tg можно использовать в качестве меры потерь энергии поля в диэлектрике.

Рассмотрим зависимости tg от температуры в полярных и неполярных диэлектриках.

С увеличением температуры концентрация носителей заряда в диэлектрике повышается, поскольку увеличивается вероятность выхода иона из потенциальной ямы . Поэтому вероятность столкновения носителя заряда со структурной единицей вещества также растет. Следовательно, при увеличении температуры потери на сквозную электропроводность возрастают. В неполярных диэлектриках реализуется упругая электронная или упругая ионная поляризация. Как известно, при развитии упругих процессов потерь энергии нет, поэтому в неполярных диэлектриках основной вид потерь-потери за счет сквозной электропроводности.

В полярных диэлектриках, помимо потерь на сквозную электропроводность, появляются потери на поляризацию, то есть внешнее электрическое поле совершает работу по повороту диполей.

Помимо потерь энергии поля на поляризацию, в полярных диэлектриках существуют потери на сквозную электропроводность. Так, в полярных диэлектриках концентрация носителей заряда, как правило, повышена, поскольку из-за полярности молекул основного материала очистка его от примесей затруднена.


Билет №4

^ 1. Линейные дефекты кристаллической решетки, влияние линейных дефектов на свойства материалов.

Дислокации - линейные дефекты кристаллической решетки.

^ Краевая дислокация. В кристалле имеется оборванная плоскость - экстраплоскость. Вблизи обрыва экстраплоскости остальные плоскости кристаллической решетки изгибаются. Таким образом, вблизи края экстраплоскости кристаллическая решетка искажена. Величина искажений кристаллической решетки быстро снижаются при удалении от края экстраплоскости, но сохраняется при движении вдоль линии обрыва.

^ Винтовая дислокация:

Особенности вектора Бюргерса:

  1. вектор Бюргерса инвариантен, то есть неизменен. Следовательно, дислокация не может оборваться в кристалле;

  2. энергия упругих искажений решетки пропорциональна квадрату модуля вектора Бюргерса;

  3. при движении решеточной дислокации с вектором Бюргерса, равным периодутрансляции решетки, кристаллическая решетка не изменяется.

При приложении внешних напряжений дислокации смещаются и выходят на поверхность кристалла, и таким образом осуществляется пластическая деформация.

^ Влияние дислокаций на свойства:

При полном отсутствии дислокаций прочность кристаллов была бы равна теоретической. Важно отметить, что при повышении плотности дислокаций в обычных материалах их прочность возрастает. Повышение прочности металлов в ходе холодной пластической деформации называют наклепом, или нагартовкой.

Наличие в материале дислокаций резко повышает скорость диффузии.

Искажение кристал-лической решетки за счет присутствия дислокаций повышает удельное электри-ческое сопротивление металлических материалов и снижает удельное электрическое сопротивление неметаллических материалов.


^ 2. Принципы выбора материалов для разрывных контактов.

Разрывные контакты периодически замыкаются и размыкаются. При этом между контактными площадками образуется электрическая дуга. Возникновение дуги ведет к росту температуры, а, следовательно, к снижению механической прочности, окислению материала контактов, появляется вероятность их сваривания, а также возможна эрозия материала.

Для того чтобы материал разрывных контактов надежно работал, он должен удовлетворять следующим требованиям:

• иметь высокую электропроводность;

• быть устойчивым к коррозии;

• иметь высокую температуру плавления;

• быть твердым;

• иметь высокую теплоту испарения;

• обладать высокой теплопроводностью.

Кроме того, материал должен быть дешевым и недефицитным.


Билет №5

^ 1. Поверхностные дефекты кристаллической решетки, влияние поверхностных дефектов на свойства материалов.

К поверхностным дефектам решетки относятся дефекты упаковки и границы зерен.

^ Дефект упаковки. При движении обычной полной дислокации атомы последовательно становятся из одного равновесного положения в другое, а при движении частичной дислокации атомы переходят в новые положения, нетипичные для данной кристаллической решетки. В результате в материале появляется дефект упаковки. Появление дефектов упаковки связано с движением частичных дислокаций.

В том случае, когда энергия дефекта упаковки велика, расщепление дислокации на частичные энергетически невыгодно, а в том случае, когда энергия дефекта упаковки мала, дислокации расщепляются на частичные, и между ними появляется дефект упаковки. Материалы с низкой энергией дефекта упаковки прочнее материалов с высокой энергией дефекта упаковки.

^ Границы зёрен представляют собой узкую переходную область между двумя кристаллами неправильной формы. Ширина границ зерен, как правило, составляет 1,5-2 межатомных расстояния. Поскольку на границах зерен атомы смещены из равновесного положения, то энергия границ зерен повышена. Энергия границ зерен существенно зависит от угла разориентации кристаллическихрешеток соседних зерен. При малых углах разориентации (до 5 град.) энергия границ зерен практически пропорциональна углу разориентировки. При углах разориентировки, превышающих 5 град., плотность дислокаций на границах зерен становится столь высокой, что ядра дислокаций сливаются.

Зависимость энергии границ зерен (Егр) от угла разориентации (). сп1 и сп2 – углы разориентации специальных границ.

При определенных углах разориентации соседних зерен энергия границ зерен резко снижается. Такие границы зерен называются специальными. Соответственно углы разориентации границ, при которых энергия границ минимальна, называют специальными углами.

Измельчение зерен ведет к росту удельного электрического сопротивления металлических материалов и падению удельного электрического сопротивления диэлектриков и полупроводников.


^ 2. Принципы выбора материалов для скользящих контактов.

В основном, к материалам скользящих контактом предъявляются те же требования, что и к материалам разрывных контактов:

* иметь высокую электропроводность;

• быть устойчивым к коррозии;

• иметь высокую температуру плавления;

• быть твердым;

• иметь высокую теплоту испарения;

• обладать высокой теплопроводностью.

Однако особенно остро ставится вопрос об уменьшении износа при трении. Для снижения износа трения можно повысит твердость материала контактирующих пар и использовать смазку. Естественно, что смазка должна быть электропроводной.

Для коллекторов электрических моторов используют холоднодеформированную медь, а для щеток используют графит. Для тяжелонагруженных машин для изготовления щеток используют металлографитовые щетки – медно-графитовые и бронзо-графитовые.


Билет №6

^ 1. Объемные дефекты кристаллических решеток. Влияние объемных дефектов на свойства материалов.

К объёмным, или трехмерным дефектам кристаллической решетки относятся трещины и поры. Наличие трещин резко снижает прочность как материалов на металлической основе, так и неметаллических материалов. Это связано с тем, что острые края трещин являются концентраторами напряжений. Важно отметить, что при одинаковой геометрии трещин пластичность металлических материалов остается выше, чем неметаллических.

Присутствие в материале пор также снижает прочность металлических материалов, поскольку уменьшается истинное сечение деталей. В неметаллических материалах влияние пор на свойства материала не столь однозначно. Крупные поры снижают прочность материала, поскольку уменьшается сечение изделий. В то же время мелкие поры могут повышать прочность материалов. Это связано с тем, что при возникновении пор появляется свободная поверхность. Таким образом, на атомы, находящиеся на поверхности пор, действуют сжимающие напряжения. Неметаллические материалы с ионной или ковалентной связью между атомами хорошо сопротивляются действию сжимающих и плохо противостоят действию растягивающих напряжений. При всех реальных схемах нагружения (например, изгиб) в материале возникают как растягивающие, так и сжимающие напряжения. При наличии пор сжимающие напряжения на их поверхности компенсируют внешние растягивающие напряжения. Поэтому присутствие мелких пор ведет к росту прочности неметаллических материалов.

Поскольку энергия атомов на поверхности объёмных дефектов повышена, то они являются источником вакансий. При нагреве трещины и поры как бы "испаряются", превращаясь в вакансии. При охлаждении вакансии вновь "конденсируются". При "конденсации" вакансионного "пара" система стремится к минимуму энергии, а следовательно, к минимуму поверхностной энергии. Таким образом, при нагреве и последующем охлаждении острые трещины превращаются в сферические поры, то есть за счет чередования нагрева с охлаждением можно превращать опасные трещины в менее опасные поры.

Уменьшение сечения материала при наличии пор и трещин, а также искажение кристаллической решетки вблизи их поверхности приводит к повышению удельного электросопротивления металлических материалов. В неметаллических материалах наличие объёмных дефектов снижает удельное электросопротивление вследствие повышения подвижности ионов по вакансиям в материалах с ионной связью и облегчения выхода электронов в материалах с ковалентной связью.


^ 2. Влияние напряженности электрического поля на электропроводность диэлектриков.

При сравнительно небольших значениях напряженности поля электропроводность диэлектриков следует закону Ома. Однако при повышении напряженности поля электропроводность перестает следовать закону Ома. При дальнейшем повышении напряженности поля возможны два случая: в первом электропроводность быстро нарастает с ростом напряженности поля (рис. 26 а), а во втором - вначале наступает насыщение электропроводности, и лишь затем в сильных полях наблюдается ее резкий рост (рис. 26 б).



Рис.26. Зависимость электропроводности от напряженности поля для загрязненных диэлект-риков и чистых диэлектриков с ионной связью (а) и неионных кристаллов высокой чистоты (б).

Первый случай наблюдается в загрязненных диэлектриках и чистых диэлектриках с ионной связью, в которых при увеличении напряженности поля происходит размножение заряженных частиц. Второй случай типичен для неионных диэлектриков высокой чистоты, в которых число заряженных частиц ограничено, что и вызывает насыщение электропроводности. В очень сильных полях происходит размножение ионов в результате перехода к пробою диэлектриков.


Билет №7

^ 1. Материалы высокой электропроводности

К материалам высокой электропроводности предъявляются следующие требования:

  • Высокая электропроводность

  • Высокая механическая прочность

  • Технологичность - то есть способность к сварке, пайке, высокая пластичность.

  • Высокая коррозионная стойкость.

  • Низкая стоимость.

Одной из важнейших характеристик проводниковых материалов является их электропроводность ():

=nq (4.1)

где: n - концентрация носителей заряда, q - величина заряда, - подвижность носителей заряда.

Очевидно, что высокой электропроводностью будут обладать чистые непереходные металлы с ГЦК решеткой (Ag, Cu, Al, Au).

Высокой механической прочностью будут обладать металлы с низкой энергией дефекта упаковки или сплавы металлов. Однако в случае образования твердого раствора помимо роста прочности увеличивается и удельное электросопротивление. Поэтому для материалов высокой электропроводности используют лишь такое легирование, когда компоненты не растворяются друг в друге.

Что касается технологичности, то у всех металлов с ГЦК решеткой высокая пластичность, следовательно, из них легко получаются изделия методами обработки давлением. Поэтому проблема технологичности сводится в легкости пайки и сварки.


^ 2. Влияние температуры на тангенс угла потерь полярных и неполярных диэлектриков

1 Влияние температуры на тангенс угла потерь неполярных диэлектриков:

С увеличением температуры концентрация носителей заряда в диэлектрике повышается. Поэтому вероятность столкновения носителя заряда со структурной единицей вещества также растет. Следовательно, при увеличении температуры потери на сквозную электропроводность возрастают.

В неполярных диэлектриках реализуется упругая электронная или упругая ионная поляризация. Как известно, при развитии упругих процессов потерь энергии нет, поэтому в неполярных диэлектриках основной вид потерь - потери за счет сквозной электропроводности.



^ 2. Влияние температуры на тангенс угла потерь в полярных диэлектриках:

В полярных диэлектриках, помимо потерь на сквозную электропроводность, появляются потери на поляризацию, то есть внешнее электрическое поле совершает работу по повороту диполей. Эту работу можно оценить как произведение момента сил (М) на угол поворота (). При увеличении температуры подвижность диполей растет, и момент сил, необходимый для поворота на один и тот же угол, снижается. В то же время, рост подвижности диполей при повышении температуры ведет к увеличению угла поворота под действием постоянного момента сил. Таким образом, работа, совершаемая электрическим полем на поворот диполей, при росте температуры вначале увеличивается, а затем уменьшается.

Помимо потерь энергии поля на поляризацию, в полярных диэлектриках существуют потери на сквозную электропроводность. Важно отметить, что хотя качественно процесс электропроводности в полярных диэлектриках не отличается от процесса электропроводности в неполярных диэлектриках, количественные различия имеются. Так, в полярных диэлектриках концентрация носителей заряда, как правило, повышена, поскольку из-за полярности молекул основного материала очистка его от примесей затруднена. Суммируя потери на сквозную проводимость и поляризацию, получаем зависимость tg от температуры показанную на рис. 38.


Билет№8

^ 1. Металлические материалы высокого сопротивления.

Материалы высокого электрического сопротивления используются для поглощения электрической энергии и преобразования ее в тепло. Очевидно, что к таким материалам будут предъявляться следующие требования:

  • Высокое удельное сопротивление

  • Высокая механическая прочность

  • Технологичность - то есть способность к сварке, пайке, высокая пластичность.

  • Высокая коррозионная стойкость.

  • Низкая стоимость.

  • Низкое значение термо- Э.Д.С. в паре с медью.

  • Малый температурный коэффициент сопротивления

Очевидно, что для того, чтобы материал имел высокое удельное сопротивление, он должен представлять собой твердый раствор одного металла в другом. Причем хотя бы один из компонентов сплава должен быть переходным металлом. Из теории сплавов известно, что неограниченное растворение одного металла в другом возможно при близости размеров ионов и одинаковом типе кристаллических решеток.

  1   2   3   4   5



Скачать файл (128.6 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации