Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Ответы на билеты по МПС - файл 1.doc


Ответы на билеты по МПС
скачать (436.5 kb.)

Доступные файлы (1):

1.doc437kb.17.11.2011 12:14скачать

содержание
Загрузка...

1.doc

  1   2   3   4
Реклама MarketGid:
Загрузка...

  1. Понятие микропроцессорных систем и их применение;



Микропроцессор (МП) - функционально законченный процессор ЭВМ реализованный в виде одной или нескольких БИС и предназначен для обработки цифровой информации по заданным программам.

Микропроцессорный контроллер (МПК) – функционально законченная микро-ЭВМ, предназначенная для целей контроля и управления.

МПК может реализовываться на следующей элементной базе:

- однокристальных микропроцессорах (ОМП);

- секционных (многокристальных) МП;

- однокристальных микроконтроллерах (ОМК);

- сложных матричных программируемых логических схемах (ПЛИС, PLD, CPLD и др.).

Наибольший эффект от внедрения микропроцессоров достигается в устройствах и системах локальной автоматики, системах измерения, контроля и других областях, в которых применение средств цифровой обработки данных до появления микропроцессоров было нерентабельным. Сравнительно низкая стоимость, малые габариты и потребляемая мощность, высокая надежность и исключительная гибкость, не свойственная другим способам обработки данных, обеспечивают приоритет микропроцессоров перед другими средствами обработки данных. Микропроцессор также является удобным средством для построения контроллеров, предназначенных для контроля и управления технологическими процессами в различных отраслях народного хозяйства.

Наибольший эффект применения микропроцессоров достигается при встраиваемом варианте его использования, когда микропроцессор встраивается внутрь приборов, устройств или машин. В таком варианте использования от микропроцессора требуется не столько вычислительная производительность (операции умножения, деления и пр.), свойственные обычным ЭВМ, сколько логическая оперативность, столь необходимая в задачах управления.

ОМК – функционально законченный МПК, реализованный в виде одной СБИС (сверх-БИС). ОМК включает в состав: процессор, ОЗУ, ПЗУ, порты ввода/вывода для подключения внешних устройств, модули ввода аналогового сигнала АЦП, таймеры, контроллеры прерывания, контроллеры различных интерфейсов и т.д.

Простейший ОМК представляет собой БИС площадью не более 1 и всего с восемью выводами.


^ 2. Классификация микропроцессорных систем (по назначению, по разрядности, по способу управления, по конструктивно-технологическим признакам);


Различают:

1) Периферийные (интерфейсные) ОМК предназначен для реализации простейших МП систем управления. Имеют малую производительность и малые габаритные размеры. В частности может использоваться периферийными устройствами ЭВМ (клавиатура, мышь и т.п.) К ним относятся: PIC – Micro Chip, VPS – 42 (Intel).

2) ^ Универсальные 8–разрядные ОМК предназначены для реализации МП систем малой и средней производительности. Имеют простую систему команд и большую номенклатуру встроенных устройств. Основные типы: MSC – 51 (Intel) Motorola HC05 – HC012 и др.

3) ^ Универсальный 16–разрядный ОМК. Предназначен для реализации систем реального времени средней производительности. Структура и система команд нацелены на скорейшую реакцию на внешние события. Наибольшее использование имеют в системах управления электродвигателями (мехатронные системы).

4) ^ Специализированные 32–разрядные ОМК реализуют высокопроизводительную ARM архитектуру и предназначены для систем телефонии, передачи информации, телевидения и других , требующие высокоскоростной обработки информации. К типовым 16–разрядным ОМК относятся: MSC96/196/296 (Intel), C161–C167 (Siemens, Infineon), HC16 Motorola и др.

5) ^ Цифровые сигнальные процессоры (DSP – Digital Signal Processor) предназначен для сложной математической обработки измеряемых сигналов в режиме реального времени. Широко используются в телефонии и связи. Основные отличия DSP: повышенная разрядность обрабатываемых слов (16,32,64 бита) и высокая скорость в формате с плавающей точкой (16 flops).Производители: Texas Instruments (TMS 320 и др.), Analog Device (ADSP 2181 и др.).

По области применения определилось три направления развития микропроцессоров:

 По внутренней структуре существует два основных принципа построения микропроцессоров:

  • Гарвардская архитектура

  • Архитектура Фон-Неймана

По системе команд микропроцессоры отличаются огромным разнообразием, зависящим от фирмы-производителя. Тем не менее можно определить две крайние политики построения микропроцессоров:

  • Аккумуляторные микропроцессоры

  • Микропроцессоры с регистрами общего назначения


^ 3. Применение микропроцессорных систем (по выбору студента);


Сама МПС, будучи оснащенной разнообразными устройствами ввода - вывода (УВВ) информации, может применяться в качестве законченного изделия. Однако часто к МПС необходимо подавать сигналы от множества измерительных датчиков и исполнительных механизмов какого - либо сложного объекта управления или технологического процесса. В этом случае уже образуется сложная вычислительная система, центром которой является МП. Простые в архитектурном исполнении микропроцессоры применяются для измерения временных интервалов, управления простейшими вычислительными операциями (в калькуляторах), работой кино-, фото-, радио- и телеаппаратуры. Они используются в системах охранной и звуковой сигнализации, приборах и устройствах бытового назначения.

Бурно развивается производство электронных игр с использованием микропроцессоров. Они порождают не только интересные средства развлечения, но и дают возможность проверять и развивать приемы логических заключений, ловкость и скорость реакции.

Видеоигры можно отнести к приложениям, требующим использования компьютеров с ограниченным набором функций. Сегодня игровые приставки потребляют наибольшее количество,

если не считать ПК, 32 - разрядных микропроцессоров. Наибольшее применение здесь получили МП Intel, Motorola. В устройстве PlayStation фирмы Sony используется 32 - разрядный процессор MIPS, а в видеоприставке Nintendo 64 — даже 64 - разрядный чип8 того же производителя. Продукты компании Sega с видеоиграми Saturn и Genesis вывели RISC - процессоры серии SH фирмы Hitachi на третье место в мире по объему продаж среди 32 - разрядных систем.

Хорошие перспективы сулит 32 - разрядным процессорам рынок персональных электронных секретарей (PDA) и электронных органайзеров. Современные электронные органайзеры - яркий пример интегрированных приложений, ведь для них практически не существует независимых поставщиков программного обеспечения. С другой стороны, PDA типа Newton фирмы Apple, по сути, не что иное, как новая вычислительная платформа, будущее которой зависит от разработчиков программного обеспечения (ПО).

До настоящего времени успехом среди электронных органайзеров пользуются устройства с ограниченным набором функций. Тем не менее, дальнейшее совершенствование технологии может

вывести эти «ручные» компьютеры в абсолютные лидеры, которые по объемам продаж в натуральном выражении должны обойти ПК.

Важной функцией МП является предварительная обработка информации с внешних устройств (ВУ), преобразования форматов данных, контроллеров электромеханических внешних устройств. В аппаратуре МП дает возможность производить контроль ошибок, кодирование - декодирование информации и управлять приемо-передающими устройствами. Их применение позволяет в несколько раз сократить необходимую ширину телевизионного и телефонного каналов, создать новое поколение оборудования связи. Использование МП в контрольно-измерительных приборах и в качестве контрольных средств радиоэлектронных систем дает возможность проводить калибровку, испытание и поверку приборов, коррекцию и температурную компенсацию, контроль и управление измерительными комплексами, преобразование и обработку, индикацию и представление данных, диагностику и локализацию неисправностей.

С помощью микропроцессорных средств можно решать сложные технические задачи по разработке различных систем сбора и обработки информации, где общие функции сводятся к передаче множества сигналов в один центр для оценки и принятия решения. Например, в бортовых системах летательных аппаратов за время полета накапливается большое количество информации от различных источников, требующих зачастую незамедлительной ее обработки. Это осуществляется централизованно с помощью вычислительной системы на основе бортовой МПС.


^ 4. Архитектура микропроцессорных систем;


В современных ОМК применяются следующие архитектуры процессоров:

RISC – (Reduce Instruction Set Commands ) архитектура с сокращенным набором команд.

CISC – (Complex Instruction Set Commands) традиционная архитектура с расширенным набором команд.

ARM – (Advanced RISC - machine) усовершенствованная RISC архитектура.


Главная задача RISC архитектуры обеспечение наивысшей производительности процессора. Её отличительными чертами является:

- малое число команд процессора (несколько десятков);

- каждая команда выполняется за минимальное время (1-2 машинных цикла, такта).

- максимально возможное число регистров общего назначения процессора (несколько тысяч);

- увеличенная разрядность процессора (12,14,16 бит).

Современная RISC архитектура включает, как правило, только последние 3 пункта, т.к. за счет повешенной плотности компоновки БИС стало возможным реализовать большое количество команд.

В современных 32–разрядных ОМК используют ARM архитектуру (расширенная RISC архитектура с суперсокращением команд ТНUМВ).


При создании МП используются три наиболее широко применяемых вида архитектур, созданных за время их развития: регистровая, стековая и ориентированная на оперативную память.


^ Регистровая архитектура (архитектура типа «регистр - регистр») микропроцессора определяет наличие достаточно большого набора регистров внутри больших интегральных схем (БИС) микропроцессора. Этот набор регистров образует поле сверхбыстрой оперативной памяти (СОЗУ) и с произвольной записью и выборкой информации. В микропроцессорах с регистровой архитектурой рабочие области регистров размещаются в логических частях процессоров. Однако малая плотность логических схем по сравнению с плотностью схем памяти ограничивает возможность регистровой архитектуры. МП с архитектурой, ориентированной на память, обеспечивают быстрое подключение к рабочим областям, когда необходимо заменять контексты. Смена контекстов осуществляется изменением векторов трех регистров - счетчика команд, регистров состояния и указателя рабочей области. Достоинство этой архитектуры в отношении смены контекстов связано с выполнением только одной команды для передачи полного вектора контекста. Микропроцессоры с регистровой архитектурой имеют высокую эффективность решения научно - технических задач, поскольку высокая скорость работы СОЗУ позволяет эффективно использовать скоростные возможности арифметик - логического блока. Однако при переходе к решению задач управления эффективность таких микропроцессоров падает, так как при переключениях программ необходимо разгружать и загружать регистры СОЗУ.

^ Стековая архитектура микропроцессора дает возможность создать поле памяти с упорядоченной последовательностью записи и выборки информации. Эта архитектура эффективна для организации работы с подпрограммами, когда возникает постоянная необходимость перехода от текущей программы к подпрограмме, обслуживающей какое - либо ВУ, и возврат в текущую программу. Хранение адресов возврата позволяет организовать в стеке эффективную обработку последовательностей вложенных подпрограмм. Основным недостатком МП этого типа является то, что стек, реализованный на кристалле микропроцессора, как правило имеет малую информационную емкость. При работе он быстро переполняется, приводя к возможности нарушения работы системы. Построение же стека большой емкости требует значительных ресурсов кристалла. Поэтому наилучшими характеристиками обладают МП, в которых стек реализуется вне микропроцессора - в

оперативной памяти (оперативном запоминающем устройстве – ОЗУ).

^ Архитектура микропроцессора, ориентированная на оперативную память, обеспечивает высокую скорость работы и большую информационную емкость рабочих регистров и стека при их организации в ОЗУ. В МП с такой архитектурой все обрабатываемые числа после операции в микропроцессоре выводятся из микропроцессора и вновь возвращаются в память, что и дало ей такое название.

При оценке быстродействия МП типа «память - память» необходимо учитывать физическую реализацию как элементов, так и связей между ними. Высокая скорость срабатывания логических

элементов интегральных схем не всегда может обеспечить высокую скорость работы МП, поскольку большие значения индуктивно - емкостных параметров связей на печатных платах не позволяют передавать сигналы без искажения. Высокий уровень технологии современных МП до долей микрон существенно уменьшило размеры БИС, снизило паразитные параметры связей. Поэтому стало возможным физически отделить блок регистров и стек от арифметико-логического блока и обеспечить при этом их высоко-скоростную совместную работу. При создании однокристальных МП регистровые СОЗУ и ОЗУ МПС имеют практически одни и те же параметры. Повышение скорости работы ОЗУ позволяет удалить набор регистров и стек из кристалла микропроцессора и использовать освободившиеся ресурсы для развития системы команд, средств прерывания, многоразрядной обработки. Организация рабочих регистров и стека в ОЗУ ведет к уменьшению скорости передачи информации, однако при этом повышается общая эффективность такого решения за счет большой информационной емкости полей регистровой и стековой памяти, а также возможности развития системы команд и прерываний. Архитектура микропроцессора, ориентированная на оперативную память, обеспечивает экономию площади кристалла МП. В этом случае на кристалле размещается только регистр - указатель начального файла набора регистров. Адресация остальных регистров осуществляется указанием в команде специальным указателем - кодом смещения. Доступ к рабочим регистрам в этом случае замедляется, поскольку приходится совершать сопряженное с затратами времени кольцевое «путешествие» из процессора во внекристальную память, где размещаются рабочие регистры. Однако контекстное переключение в микропроцессоре с такой архитектурой происходит быстро, поскольку при прерывании необходимо только изменить значение содержимого регистра - указателя рабочей области памяти.



  1. ^ Организация подсистемы обработки информации;



    Арифме́тико-логи́ческое устро́йство (АЛУ) (англ. arithmetic and logic unit, ALU) — блок процессора, который под управлением устройства управления (УУ) служит для выполнения арифметических и логических преобразований (начиная от элементарных) над данными, представляемыми в виде машинных слов, называемыми в этом случае операндами.



Арифметико-логическое устройство в зависимости от выполнения функций можно разделить на две части:

микропрограммное устройство (устройство управления), задающее последовательность микрокоманд (команд);

операционное устройство (АЛУ), в котором реализуется заданная последовательность микрокоманд (команд).


Операции в АЛУ

Все выполняемые в АЛУ операции являются логическими операциями (функциями), которые можно разделить на следующие группы:

-операции двоичной арифметики для чисел с фиксированной точкой;

-операции двоичной (или шестнадцатеричной) арифметики для чисел с плавающей точкой;

-операции десятичной арифметики;

-операции индексной арифметики (при модификации адресов команд);

-операции специальной арифметики;

-операции над логическими кодами (логические операции);

-операции над алфавитно-цифровыми полями.

Современные ЭВМ общего назначения обычно реализуют операции всех приведённых выше групп, а малые и микроЭВМмикропроцессоры и специализированные ЭВМчасто не имеют аппаратуры арифметики чисел с плавающей точкой, десятичной арифметики и операций над алфавитно-цифровыми полями. В этом случае эти операции выполняются специальными подпрограммами. К арифметическим операциям относятся сложениевычитание, вычитание модулей («короткие операции») и умножение и деление («длинные операции»). Группу логических операций составляют операции дизъюнкция (логическое ИЛИ) и конъюнкция (логическое И) над многоразрядными двоичными словами, сравнение кодов на равенство. Специальные арифметические операции включают в себя нормализацию, арифметический сдвиг (сдвигаются только цифровые разряды, знаковый разряд остаётся на месте), логический сдвиг (знаковый разряд сдвигается вместе с цифровыми разрядами). Обширна группа операций редактирования алфавитно-цифровой информации. Каждая операция в АЛУ является логической функцией или последовательностью логических функций описываемых двоичной логикой для двоичных ЭВМ, троичной логикой для троичных ЭВМ, четверичной логикой для четверичных ЭВМ, …, десятичной логикой для десятичных ЭВМ и т. д..


Классификация АЛУ

^ По способу действия над операндами АЛУ делятся на последовательные и параллельные.

В последовательных АЛУ операнды представляются в последовательном коде, а операции производятся последовательно во времени над их отдельными разрядами.

В параллельных АЛУ операнды представляются параллельным кодом и операции совершаются параллельно во времени над всеми разрядами операндов.

^ По способу представления чисел различают АЛУ:

-для чисел с фиксированной точкой;

-для чисел с плавающей точкой;

-для десятичных чисел.

По характеру использования элементов и узлов АЛУ делятся на блочные и многофункциональные.

^ В блочном АЛУ операции над числами с фиксированной и плавающей точкой, десятичными числами и алфавитно-цифровыми полями выполняются в отдельных блоках, при этом повышается скорость работы, так как блоки могут параллельно выполнять соответствующие операции, но значительно возрастают затраты оборудования.

^ В многофункциональных АЛУ операции для всех форм представления чисел выполняются одними и теми же схемами, которые коммутируются нужным образом в зависимости от требуемого режима работы.

По своим функциям АЛУ является операционным блоком, выполняющим микрооперации, обеспечивающие приём из других устройств (например, памяти) операндов, их преобразование и выдачу результатов преобразования в другие устройства. Арифметико-логическое устройство управляется управляющим блоком, генерирующим управляющие сигналы, инициирующие выполнение в АЛУ определённых микроопераций. Генерируемая управляющим блоком последовательность сигналов определяется кодом операции команды и оповещающими сигналами.



  1. ^ Структура простейшей обрабатывающей части МП и порядок её функционирования (на примере выполнения команды пересылки);


  1   2   3   4



Скачать файл (436.5 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации