Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекция 11 - файл


скачать (169.8 kb.)


Тема 3. Нелинейная регрессия


1. Модели нелинейной регрессии

Если между экономическими явлениями существуют нелинейные соотношения, то они выражаются с помощью соответствующих нелинейных функций: гиперболы у = a + b/x + , параболы у = а + bx + cx2 + и др.

Различают два класса нелинейных регрессий:

– регрессии, нелинейные относительно включенных в анализ объясняющих переменных, но линейные по оцениваемым параметрам;

– регрессии, нелинейные по оцениваемым параметрам.

Примером нелинейной регрессии по включенным в нее объясняющим переменным могут служить следующие функции:

– полиномы разных степеней: у = а + bx + cx2 + ; у = а + bx + cx2 + dx3 + ;

– равносторонняя гипербола у = a + b/x + .

К нелинейным регрессиям по оцениваемым параметрам относятся функции:

– степенная у = axb;

– показательная у = abx;

– экспоненциальная у = ea + b x .

Нелинейная регрессия по включенным переменным не имеет никаких сложностей для оценки ее параметров. Они определяются, как и в линейной регрессии, методом наименьших квадратов (МНК), ибо эти функции линейны по параметрам. Так, в параболе второй степени

у = а0 + a1x + a2x2 + ,

заменив переменные x = x1, x2 = x2, получим двухфакторное уравнение линейной регрессии:



у = а0 + a1x1 + a2x2 + ,

для оценки параметров которого используется МНК

Соответственно для полинома третьего порядка

у = а0 + a1x + a2x2 + a3x3 +

при замене x = x1, x2 = x2, xЗ = x3 получим трехфакторную модель линейной регрессии



у = а0 + a1x + a2x2 + a3x3 + ,

а для полинома k-го порядка



у = а0 + a1  x + a2  x2 +ak  xk+ 

получим линейную модель множественной регрессии с k объясняющими переменными:



у = а0 + a1x + a2x2 + … akxk + .

Следовательно, полином любого порядка сводится к линейной регрессии с ее методами оценивания параметров и проверки гипотез. Как показывает опыт большинства исследователей, среди нелинейной полиномиальной регрессии чаще всего используется парабола второй степени; в отдельных случаях – полином третьего порядка. Ограничения в применении полиномов более высоких степеней связаны с требованием однородности исследуемой совокупности: чем выше порядок полинома, тем больше изгибов имеет кривая и соответственно меньше однородность совокупности по результативному признаку.

Модели регрессии, нелинейные по оцениваемым параметрам, подразделяются на внутренне линейные и внутренне нелинейные. Если нелинейная модель внутренне линейна, то с помощью соответствующих преобразований она может быть приведена к линейному виду. Если же нелинейная модель внутренне нелинейна, то она не может быть сведена к линейной функции. Например, в эконометрических исследованиях при изучении эластичности спроса от цены широко используется степенная функция

,

где y – спрос (количество); x – цена; – случайная ошибка.

Данная модель нелинейна относительно оцениваемых параметров, ибо включает параметры a и b неаддитивно. Однако её можно считать внутренне линейной, ибо логарифмирование данного уравнения по основанию e приводит его к линейному виду:

ln y = ln a + b  ln x + ln

Соответственно оценки параметров a и b могут быть найдены методом наименьших квадратов. В рассматриваемой степенной функции предполагается, что случайная ошибка мультипликативно связана с объясняющей переменной x. Если же модель представить в виде , то она становится внутренне нелинейной, ибо её невозможно превратить в линейный вид.

Внутренне нелинейной будет и модель вида



,

или модель



,

потому что эти уравнения не могут быть преобразованы в уравнения, линейные по коэффициентам.

В специальных исследованиях по регрессионному анализу к нелинейным часто относят модели, только внутренне нелинейные по оцениваемым параметрам, а все другие модели, которые внешне нелинейны, но путем преобразования параметров могут быть приведены к линейному виду, относят к классу линейных моделей. Например, экспоненциальную модель y = ea + b x; ибо, прологарифмировав её по натуральному основанию, получим линейную форму модели

ln y = a + bx + ln .

Если модель внутренне нелинейна по параметрам, то для оценки параметров используются итеративные процедуры, успешность которых зависит от вида уравнений и особенностей итеративной процедуры. Модели внутренне нелинейные по параметрам, могут иметь место в эконометрических исследованиях; однако большее распространение получили модели, приводимые к линейному виду. Решение такого типа моделей реализовано в стандартных пакетах прикладных программ.

По виду преобразования, которое используется для приведения модели к линейному виду, выделяют следующие группы моделей:



  1. Двойная логарифмическая модель (и зависимая, и объясняющая переменные заданы в логарифмическом виде). Получается при линеаризации уравнения . Сводится к линейной путем замены U=lnY Z=lnX A=lna: U= A +b · Z

  2. Полулогарифмические модели - это модели вида

- лог-линейная. Получается при линеаризации уравнения . Сводится к линейной путем замены U=lnY : U= a +b · X

- линейно-логарифмическая. Сводится к линейной путем замены Z=lnX : Y= a +b · Z

  1. Обратная модель . Сводится к линейной путем замены Z=1/X Y=a+b·Z+

  2. Степенная модель (полиномиальная) .




Скачать файл (169.8 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации