Logo GenDocs.ru

Поиск по сайту:  

Загрузка...

Лекции - Моделирование и идентификация объектов управления в НГО - файл 1.doc


Лекции - Моделирование и идентификация объектов управления в НГО
скачать (945 kb.)

Доступные файлы (1):

1.doc945kb.18.11.2011 16:24скачать

содержание
Загрузка...

1.doc

  1   2   3   4
Реклама MarketGid:
Загрузка...
0МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РЕСПУБЛИКИ КАЗАХСТАН


Атырауский институт нефти и газа

Факультет Экономики и информационных систем

Кафедра «Информационные системы »





Учебно-методический комплекс дисциплины студента

Дисциплина «Моделирование и идентификация объектов управления»


для специальности

050702 – «Автоматизация и управление»


Атырау -2007

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РЕСПУБЛИКИ КАЗАХСТАН

Атырауский институт нефти и газа


Лист согласования


Утвержден на заседании Методического совета АИНиГ

Протокол №_от «___»__________________2007г.


Председатель Метод совета АИНиГ

первый проректор, проректор по УМР Джумамухамбетов Н.Г.


Согласовано:

Заведующий УМД: Исмагулова А.И.


Рассмотрено на заседании Методического бюро экономического факультета


«___»__________________2007г.


Председатель метод бюро факультета _________ доцент Жанбирова Б.А.


Рассмотрено и одобрено на заседании кафедры «Информационные системы»


«__»_ _______2007г.


Зав кафедрой: _____________ к.ф.-м.н. Мухамбетжанов А.Т.

Разработали: _______________ Шабдиров Д.Н.

_______________ Жанбирова Г.А.


СОДЕРЖАНИЕ



1.

Глоссарий ……………………………………………………......

4

2.

Конспект лекционных занятий …………………………………

4




Лекция 1. Основные понятия о моделях и методах их построения.







Лекция 2. Физические и математические модели







Лекция 3. Математические модели объектов идентификации..







Лекция 4. Принципы составления математических моделей динамики







Лекция 5. Преобразование уравнений. Методы линеаризации нелинейных уравнений







Лекция 6. Аналитические методы определения характеристик







Лекция 7. Виды упрощений математических моделей.







Лекция 8. Постановка задачи идентификации..







Лекция 9. Критерий идентификации. Функционал невязки







Лекция 10. Общие задачи статистической идентификации







Лекция 11. Прямые методы определения динамических характеристик объектов







Лекция 12. Параметрическая идентификация объектов







Лекция 13. Методы статистической идентификации.







Лекция 14. Методы непараметрической идентификации







Лекция 15. Идентификация нелинейных динамических объектов.




3.

Практические занятия ……………………………………….

61

4.

СРСП …………………………………………………………..

66

5.

СРС ……………………………………………………………

68

6.

Экзаменационные вопросы…………………………………….

68

7.

Список рекомендуемой литературы ………………………….

71




  1. ГЛОССАРИЙ


Объект, модель, адекватность модели, идентификация, аналогия, гипотеза, структурная и параметрическая идентификация, активная и пассивная идентификация, критерий идентификации, функционал невязки, уравнение Винера-Хопфа.


2. КОНСПЕКТ ЛЕКЦИОННЫХ ЗАНЯТИЙ

^

ЛЕКЦИЯ 1. Основные понятия о моделях и методах их построения.





  1. Основные понятия о моделях и методах их построения. Неизбежность упрощения модели по сравнению с реальным объектом. Отражение свойств объекта, существенных для цели моделирования.

  2. Адекватность модели. Критерий адекватности.



    1. Все то, на что направлена человеческая деятельность, называется объектом. Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием. Таким образом, моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью.


При построении математической модели реальное явление упрощается, схематизируется и полученная схема описывается в зависимости от сложности явлений с помощью того или иного математического аппарата.

От правильности учета в модели характерных черт рассматриваемого процесса зависят успех исследования и ценность полученных результатов моделирования.

В модели должны быть учтены все наиболее существенные факторы, влияющие на процесс, и вместе с тем она не должна быть загромождена множеством мелких, второстепенных факторов, учет которых только усложнит математический анализ и сделает исследование либо чрезмерно громоздким, либо вообще нереализуемым.

Метод математического моделирования применяют при изучении свойств процессов, для которых имеется достаточно точное математическое описание. В зависимости от степени полноты математического описания можно выделить два предельных случая: а) известны полная система уравнений, описывающая все основные стороны моделируемого процесса, и все числовые значения параметров этих уравнений; б) полное математическое описание процесса отсутствует. Этот второй случай типичен для решения кибернетических задач, в которых приходится иметь дело с управлением процессами при наличии неполной информации об объекте и действующих на него возмущениях. При отсутствии достаточной информации об исследуемых явлениях их изучение начинается с построения простейших моделей, но без нарушения основной специфики исследуемого процесса.

    1. Если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то говорят, что модель адекватна объекту. При этом адекватность модели зависит от цели моделирования и принятых критериев.

Обобщенно моделирование можно определить как метод опосредованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом- моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:

      1. моделирование как познавательный процесс, содержащий переработку информации, поступающей из внешней среды, о происходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам;

      2. моделирование, заключающееся в построении некоторой системы-модели, связанной определенными соотношениями подобия с системой-оригиналом, причем в этом случае отображение одной системы в другую является средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосредственного изучения поступающей информации.


Следует отметить, что с точки зрения философии моделирование- эффективное средство познания природы. Процесс моделирования предполагает наличие объекта исследования; исследователя, перед которым поставлена конкретная задача; модели, создаваемой для получения информации об объекте и необходимой для решения поставленной задачи. Причем по отношению к модели исследователь является, по сути дела, экспериментатором, только в данном случае эксперимент проводится не с реальным объектом, а с его моделью.

Надо иметь в виду, что любой эксперимент может иметь существенное значение в конкретной области науки только при специальной его обработке т обобщении. Единичный эксперимент никогда не может быть решающим для подтверждения гипотезы, проверки теории. Поэтому инженеры должны быть знакомы с элементами современной методологии теории познания и, в частности, не должны забывать основного положения материалистической философии, что именно экспериментальное исследование, опыт, практика являются критерием истины.

Моделирование начинается с формирования предмета исследований –системы понятий, отражающей существенные для моделирования характеристики объекта. Эта задача является достаточно сложной, что подтверждается различной интерпретацией в научно-технической литературе таких фундаментальных понятий, как система, модель, моделирование. Подобная неоднозначность не говорит об ошибочности одних и правильности других терминов, а отражает зависимость предмета исследований (моделирования) как от рассматриваемого объекта, так от целей исследователя. Отличительной особенностью моделирования сложных систем является его многофункциональность и многообразие способ использования; оно становится неотъемлемой частью всего жизненного цикла системы. Объясняется это в первую очередь технологичностью моделей, реализованных на базе средств вычислительной техники: достаточно высокой скоростью получения результатов моделирования и их сравнительно невысокой себестоимостью.


^ Принципы системного подхода в моделировании систем

В настоящее время при анализе и синтезе сложных (больших) систем получил развитие системный подход, который отличается от классического (или) индивидуального подхода. Последний рассматривает систему путем перехода от частного к общему и синтезирует (конструирует) систему путем слияния ее компонент, разрабатываемых раздельно. В отличие от этого системный подход предполагает последовательный переход от общего к частному, когда в основе рассмотрения лежит цель, причем исследуемый объект выделяется из окружающей среды.


^ Объект моделирования

Специалисты по проектированию и эксплуатации сложных систем имеют дело с системами управления различных уровней, обладающими общим свойством-стремлением достичь некоторой цели. Эту особенность учтем в следующих определениях системы. Система S-целенаправленное множество взаимосвязанных элементов любой природы. Внешняя среда E-множество существующих вне системы элементов любой природы, оказывающих влияние на систему или находящихся под ее воздействием.

В зависимости от цели исследования могут рассматриваться разные соотношения между самим объектом S и внешней средой E. Таким образом, в зависимости от уровня, на котором находится наблюдатель, объект исследования может выделяться по-разному и могут иметь место различные взаимодействия этого объекта с внешней средой.

С развитием науки и техники сам объект непрерывно усложняется, и уже сейчас говорят об объекте исследования как о некоторой сложной системе, которая состоит из различных компонент, взаимосвязанных друг с другом. Поэтому, рассматривая системный подход как основу для построения больших систем и как базу создания методики их анализа и синтеза, прежде всего необходимо определить само понятие системного подхода.

Системный подход-это элемент учения об общих законах развития природы и одно из выражений диалектического учения. Можно привести разные определения системного подхода, но наиболее правильно то, которое позволяет оценить познавательную сущность этого подхода при таком методе исследования систем, как моделирование. Поэтому весьма важны выделение самой системы S и внешней среды E из объективно существующей реальности и описание системы исходя из общесистемных позиций.

При системном подходе к моделированию систем необходимо прежде всего четко определить цель моделирования. Поскольку невозможно полностью смоделировать реально функционирующую систему (систему-оригинал, или первую систему), создается модель (система-модель, или вторая система) под поставленную проблему. Таким образом, применительно к вопросам моделирования цель возникает из требуемых задач моделирования, что позволяет подойти к выбору критерия и оценить, какие элементы войдут в создаваемую модель M. Поэтому необходимо иметь критерий отбора отдельных элементов в создаваемую модель.

^ Подходы к исследованию систем

Важным для системного подхода является определение структуры системы-совокупности связей между элементами системы, отражающих их взаимодействие. Структура системы может изучаться извне с точки зрения состава отдельных подсистем и отношений между ними, а также изнутри, когда анализируются отдельные свойства, позволяющие системе достигать заданной цели, т.е. когда изучаются функции системы. В соответствии с этим наметился ряд подходов к исследованию структуры системы с ее свойствами, к которым следует прежде всего отнести структурный и функциональный.

При структурном подходе выявляются состав выделенных элементов системы S и связи между ними. Совокупность элементов и связей между ними позволяет судить о структуре системы. Последняя в зависимости от цели исследования может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры - это топологическое описание, позволяющее определить в самых общих понятиях составные части системы и хорошо формализуемое на базе теории графов.

Менее общим является функциональное описание, когда рассматриваются отдельные функции, т.е. алгоритмы поведения системы, и реализуется функциональный подход, оценивающий функции, которые выполняет система, причем под функцией понимается свойство, приводящее к достижению цели. Поскольку функция отображает свойство, а свойство отображает взаимодействие S системы с внешней средой E, то свойства могут быть выражены в виде либо некоторых характеристик элементов Si(j) и подсистем Si системы, либо системы S в целом.

При наличии некоторого эталона сравнения можно ввести количественные и качественные характеристики систем. Для количественной характеристики вводятся числа, выражающие отношения между данной характеристикой и эталоном. Качественные характеристики системы находятся, например, с помощью метода экспертных оценок.

Проявление функций системы во времени S (t), т.е. функционирование системы, означает переход системы из одного состояния в другое, т.е. движение в пространстве состояний Z. При эксплуатации системы S весьма важно качество ее функционирования, определяемое показателем эффективности и являющееся значением критерия оценки эффективности. Существуют различные подходы к выбору критериев оценки эффективности. Система S может оцениваться либо совокупностью частных критериев, либо некоторым общим интегральным критерием.

Следует отметить, что создаваемая модель M с точки зрения системного подхода также является системой, т.е. S΄= S΄ (M), и может рассматриваться по отношению к внешней среде E. Наиболее просты по представлению модели, в которых сохраняется прямая аналогия явления. Применяют также модели, в которых нет прямой аналогии, а сохраняются лишь законы и общие закономерности поведения элементов системы S. Правильное понимание взаимосвязей как внутри самой модели M, так и взаимодействия ее с внешней средой E в значительной степени определяется тем, на каком уровне находится наблюдатель.

Простой подход к изучению взаимосвязей между отдельными частями модели предусматривает рассмотрение их как отражение связей между отдельными подсистемами объекта. Такой классический подход может быть использован при создании достаточно простых моделей. Реальный объект, подлежащий моделированию, разбивается на отдельные подсистемы, т.е. выбираются исходные данные Д для моделирования и ставятся цели Ц, отображающие отдельные стороны процесса моделирования. По отдельной совокупности исходных данных Д ставится цель моделирования отдельной стороны функционирования системы, на базе этой цели формируется некоторая компонента К будущей модели. Совокупность компонент объединяется в модель M.

Таким образом, разработка модели M на базе классического подхода означает суммирование отдельных компонент в единую модель, причем каждая из компонент решает свой собственные задачи и изолирована от других частей модели. Поэтому классический подход может быть использован для реализации сравнительно простых моделей, в которых возможно разделение и взаимно независимое рассмотрение отдельных сторон функционирования реального объекта. Для модели сложного объекта такая разобщенность решаемых задач недопустима, так как приводит к значительным затратам ресурсов при реализации модели на базе конкретных программно-технических средств. Можно отметить две отличительные стороны классического подхода: наблюдается движение от частного к общему, создаваемая модель (система) требует образуется путем суммирования отдельных ее компонент и не учитывается возникновение системного эффекта.

С усложнением объектов моделирования возникла необходимость наблюдения их с более высокого уровня. В этом случае наблюдатель (разработчик) рассматривает данную систему S как некоторую подсистему какой-то метасистемы, т.е. системы более высокого ранга, и вынужден перейти на позиции нового системного подхода, который позволит ему построить не только исследуемую систему, решающую совокупность задач. но и создавать систему, являющуюся составной частью метасистемы. Например, если ставится задача проектирования АСУ предприятием, то с позиции системного подхода нельзя забывать о том, что эта система является составной частью АСУ объединением.

Системный подход получил применение в системотехнике в ссвязи с необходимостью исследования реальных систем, когда оказалась недостаточность, а иногда ошибочность принятия каких-либо частных решений. На возникновение системного подхода повлияли увеличивающееся количество исходных данных при разработке, необходимость учета сложных стохастических связей в системе и воздействий внешней среды E. Все это заставило исследователей изучать сложный объект не изолированно, а во взаимодействии с внешней средой, а также в совокупности с другими системами некоторой метасистемы.

Системный подход позволяет решить проблему построения сложной системы с учетом всех факторов и возможностей, пропорциональных их значимости, на всех этапах исследования системы S и построения модели M. Системный подход означает, что каждая система S является интегрированным целым даже тогда, когда она состоит из отдельных разобщенных подсистем. Таким образом, в основе системного подхода лежит рассмотрение системы как интегрированного целого, причем это рассмотрение при разработке начинается с главного-формулировки цели функционирования. На основе исходных данных Д, которые известны из анализа внешней системы, тех ограничений, которые накладываются на систему сверху, либо исходя из возможностей ее реализации, и на основе цели функционирования формулируются исходные требования к модели Т системы S. На базе этих требований формируются ориентировочно некоторые подсистемы П, элементы Э и осуществляется наиболее сложный этап синтеза - выбор В составляющих системы, для чего используются специальные критерии выбора КВ.

При моделировании необходимо обеспечить максимальную эффективность модели системы. Эффективность обычно определяется как некоторая разность между какими-то показателями ценности результатов, полученных в итоге эксплуатации модели, и теми затратами, которые были вложены в ее разработку и создание.


^ Стадии разработки моделей

На базе системного подхода может быть предложена и некоторая последовательность разработки моделей, когда выделяют две основные стадии проектирования: макропроектирование и микропроектирование.

На стадии м а к р о п р о е к т и р о в а н и я на основе данных о реальной системе S и внешней среде E строится модель внешней среды, выявляются ресурсы и ограничения для построения модели системы, выбирается модель системы и критерии, позволяющие оценить адекватность модели М реальной системы S. Построив модель системы и модель внешней среды, на основе критерия эффективности функционирования системы в процессе моделирования выбирают оптимальную стратегию управления, что позволяет реализовать возможности модели по воспроизведению отдельных сторон функционирования реальной системы S.

Стадия м и к р о п р о е к т и р о в а н и я в значительной степени зависит от конкретного тира выбранной модели. В случае имитационной модели необходимо обеспечить создание информационного, технического и программного обеспечений системы моделирования. На этой стадии можно установить основные характеристики созданной модели, оценить время работы с ней и затраты ресурсов для получения заданного качества соответствия модели процессу функционирования системы S.

Независимо от типа используемой модели М при ее построении необходимо руководствоваться рядом принципов системного подхода:1) пропорционально-последовательное продвижение по этапам и направлениям модели; 2) согласование информационных, ресурсных, надежностных и других характеристик; 3)правильное соотношение отдельных уровней иерархии в системе моделирования; 4) целостность отдельных обособленных стадий построения модели.

Модель М должна отвечать заданной цели ее создания, поэтому отдельные части должны компоноваться взаимно, исходя из единой системной задачи. Цель может быть сформулирована качественно, тогда она будет обладать большей содержательностью и длительное время может отображать объективные возможности данной системы моделирования. При количественной формулировке цели возникает целевая функция, которая точно отображает наиболее существенные факторы, влияющие на достижение цели.

Построение модели относится к числу системных задач, при решении которых синтезируют решения на базе огромного числа исходных данных, на основе предложений больших коллективов специалистов. Использование системного подхода в этих условиях позволяет не только построить модель реального объекта, но и на базе этой модели выбрать необходимое количество управляющей информации в реальной системе, оценить показатели ее функционирования и тем самым на базе моделирования найти наиболее эффективный вариант построения и выгодный режим функционирования реальной системы S.


Контрольные вопросы:

  1. Каковы принципы системного подхода в моделировании систем?

  2. Понятие объекта моделирования;

  3. Какие еще существуют подходы к исследованию систем ?

  4. Перечислите стадии разработки моделей.



ЛЕКЦИЯ 2. Физические и математические модели


  1. Общие принципы построения математических моделей.

  2. Аналитические исследования и идентификация. Имитационные модели.




  1. Общие принципы построения математических моделей


Под математическим моделированием понимают изучение свойств объекта на математической модели. Его целью является определение оптимальных условий протекания процесса, управление им на основе математической модели и перенос результатов на объект.

Основным понятием метода математического моделирования является понятие математической модели. Математической моделью называется приближенное описание какого-либо явления или процесса внешнего мира, выраженное с помощью математической символики.

Математическое моделирование включает три взаимосвязанных этапа: 1) составление математического описания изучаемого объекта; 2) выбор метода решения системы уравнений математического описания и реализация его в форме моделирующей программы; 3) установление соответствия ( адекватности) модели объекту.

На этапе составления математического описания предварительно выделяют основные явления и элементы в объекте и затем устанавливают связи между ними. Далее, для каждого выделенного элемента и явления записывают уравнение, отражающее его функционирование. Кроме того, в математическое описание включают уравнения связи между различными выделенными явлениями. В зависимости от процесса математическое описание может быть представлено в виде системы алгебраических, дифференциальных, интегральных и интегро-дифференциальных уравнений.

Этап выбора метода решения и разработки моделирующей программы подразумевает выбор наиболее эффективного метода решения из имеющихся ( под эффективностью имеются в виду быстрота получения и точность решения) и реализацию его сначала в форме алгоритма решения, а затем – в форме программы, пригодной для расчета на ЭВМ.

Построенная на основе физических представлений модель должна верно качественно и количественно описывать свойства моделируемого процесса, т.е. она должна быть адекватна моделируемому процессу. Для проверки адекватности математической модели реальному процессу нужно сравнить результаты измерений на объекте в ходе процесса с результатами предсказания модели в идентичных условиях.

Этап установления адекватности модели является заключительным в последовательности этапов, выполняемых при ее разработке.

  1. Исторически первым сложился аналитический подход к исследованию систем, когда ЭВМ использовалась в качестве вычислителя по аналитическим зависимостям. Анализ характеристик процессов функционирования больших систем с помощью только аналитических методов исследования наталкивается обычно на значительные трудности, приводящие к необходимости существенного упрощения моделей либо на этапе их построения, либо в процессе работы с моделью, что может привести к получению недостоверных результатов.

Поэтому в настоящее время наряду с построением аналитических моделей большое внимание уделяется задачам оценки характеристик больших систем на основе имитационных моделей, реализованных на современных ЭВМ с высоким быстродействием и большим объемом оперативной памяти. Причем перспективность имитационного моделирования как метода исследования характеристик процесса функционирования больших систем возрастает с повышением быстродействия и оперативной памяти ЭВМ, с развитием математического обеспечения, совершенствованием банков данных и периферийных устройств для организации диалоговых систем моделирования. Это в свою очередь, способствует появлению новых «чисто машинных» методов решения задач исследования больших систем на основе организации имитационных экспериментов с их моделями. Причем ориентация на автоматизированные рабочие места на базе персональных ЭВМ для реализации экспериментов с имитационными моделями больших систем позволяет проводить не только анализ их характеристик, но и решать задачи структурного, алгоритмического и параметрического синтеза таких систем при заданных критериях оценки эффективности и ограничениях.

Достигнутые успехи в использовании средств вычислительной техники для целей моделирования часто создаются иллюзию, что применение современной ЭВМ гарантирует возможность исследования системы любой сложности. При этом игнорируется тот факт, что в основу любой модели положено трудоемкое по затратам времени и материальных ресурсов предварительное изучение явлений, имеющих место в объекте-оригинале. И от того, насколько детально изучены реальные явления, насколько правильно проведена их формализация и алгоритмизация, зависит в конечном итоге успех моделирования конкретного объекта.

^ Математическое моделирование. Для исследования характеристик процесса функционирования любой системы S математическими методами, включая и машинные, должна быть проведена формализация этого процесса, т.е. построена математическая модель.

При имитационном моделировании реализующий модель алгоритм воспроизводит процесс функционирования системы S во времени, причем имитируются элементарные явления, составляющие процесс, с сохранением их логической структуры и последовательности протекания во времени, что позволяет по исходным данным получить сведения о состояниях процесса в определенные моменты времени, дающие возможность оценить характеристики системы S.

Основным преимуществом имитационного моделирования по сравнению с аналитическим является возможность решения более сложных задач. Имитационные модели позволяют достаточно просто учитывать такие факторы, как наличие дискретных и непрерывных элементов, нелинейные характеристики элементов системы, многочисленные случайные воздействия и др., которые часто создают трудности при аналитических исследованиях. В настоящее время имитационное моделирование - наиболее эффективный метод исследования больших систем, а часто и единственный практически доступный метод получения информации о поведении системы, особенно на этапе ее проектирования.

Когда результаты, полученные при воспроизведении на имитационной модели процесса функционирования системы S являются реализациями случайных величин и функций, тогда для нахождения характеристик процесса требуется его многократное воспроизведение с последующей статистической обработкой информации и целесообразно в качестве метода машинной реализации имитационной модели использовать метод статистического моделирования. Первоначально был разработан метод статистических испытаний, представляющий собой численный метод, который применялся для моделирования случайных величин и функций, вероятностные характеристики которых совпадали с решениями аналитических задач (такая процедура получила название метода Монте-Карло). Затем этот прием стали применять и для машинной имитации с целью исследования характеристик процессов функционирования систем, подверженных случайным воздействиям, т.е. появился метод статистического моделирования. Таким образом, методом статистического моделирования будем в дальнейшем называть метод машинной реализации имитационной модели, а методом статистических испытаний (М о н т е- Ка р л о)-численный метод решения аналитической задачи.

Метод имитационного моделирования позволяет решать задачи анализа больших систем S, включая задачи оценки: вариантов структуры системы, эффективности различных алгоритмов управления системой, влияния изменения различных параметров системы. Имитационное моделирование может быть положено также в основу структурного, алгоритмического и параметрического синтеза больших систем, когда требуется создать систему, с заданными характеристиками при определенных ограничениях, которая является оптимальной по некоторым критериям оценки эффективности.

При решении задач машинного синтеза систем на основе их имитационных моделей помимо разработки моделирующих алгоритмов для анализа фиксированной системы необходимо также разработать алгоритмы поиска оптимального варианта системы. Далее в методологии машинного моделирования будем различать два основных раздела: статику и динамику, -основным содержанием которых являются соответственно вопросы анализа и синтеза систем, заданных моделирующими алгоритмами.

Комбинированное (аналитико-имитационное) моделирование при анализе и синтезе систем позволяет объединить достоинства аналитического и имитационного моделирования. При построении комбинированных моделей проводится предварительная декомпозиция процесса функционирования объекта на составляющие подпроцессы и для тех из них, где это возможно, используются аналитические модели, а для остальных подпроцессов строятся имитационные модели. Такой комбинированный подход позволяет охватить качественно новые классы систем, которые не могут быть исследованы с использованием только аналитического и имитационного моделирования в отдельности.


/1/ гл.1.1-1.4. /2/ гл. 1.1-1.3.

Контрольные вопросы:

  1. Что представляет собой математическое моделирование?

  2. Виды математического моделирования.

  3. Особенности различных видов математического моделирования.


  1   2   3   4



Скачать файл (945 kb.)

Поиск по сайту:  

© gendocs.ru
При копировании укажите ссылку.
обратиться к администрации