Лекции по Информационно-измерительным системам
скачать (2945.5 kb.)
Доступные файлы (1):
1.doc | 2946kb. | 18.11.2011 02:02 | ![]() |
содержание
Загрузка...
- Смотрите также:
- Шпоры по автоматизированным информационно-управляющим системам (АИУС) [ документ ]
- по Вычислительным сетям, системам и телекоммуникациям [ документ ]
- Автоматизированные информационно-управляющие системы [ документ ]
- Расчетно-графическая работа [ документ ]
- Шпаргалки по информационным системам [ документ ]
- Ответы по автоматизированным информационно-управляющим системам [ документ ]
- Гражданское и торговое право зарубежных стран. Способы защиты владения по разным системам права [ документ ]
- Шпоры по Вычислительным сетям, системам и телекоммуникациям [ документ ]
- по радиорелейным системам передачи [ лекция ]
- Информационно-техническое обеспечение системы управления персоналом [ документ ]
- Информационно-коммуникационные технологии во внешнеполитической деятельности [ документ ]
- Сигналы и системы их обработки [ лекция ]
1.doc
Реклама MarketGid:
Загрузка...
Современная информационная техника - крупнейший раздел технической кибернетики — дисциплины, изучающей общие закономерности процессов целесообразного управления, получения и преобразования информации в технических устройствах.
Информационная техника имеет колоссальное и непрерывно возрастающее значение в жизни человечества. Она решает огромный круг задач, связанных главным образом со сбором, переработкой, передачей, хранением, поиском и выдачей разнообразной информации человеку или машине.
В соответствии с основными функциями информационной техники выделяются следующие ее ветви: информационно-измерительная техника, вычислительная техника, техника передачи информации (связи), техника хранения и поиска информации. Каждая из этих основных ветвей информационной техники имеет свои особенности, принципы построения технических устройств. В то же время они объединяются общими теоретическими основами.
Остановимся несколько подробнее на информационно-измерительной технике (ИИТ). Она предназначена для получения опытным путем количественно определенной информации о разнообразных объектах материального мира. Основными процессами, позволяющими получить такую информацию, являются обнаружение событий, процессы счета, измерения, контроля, распознавания образов, диагностики.
Согласно ГОСТ 16263-70 измерение это нахождение значения физической величины опытным путем с помощью специальных технических средств. В процессе измерения получается численное отношение между измеряемой величиной и некоторым ее значением, принятым за единицу сравнения.
Под контролем понимается установление соответствия между состоянием (свойством) объекта контроля и заданной нормой, определяющей качественно различные области его состояния. В результате контроля выдается суждение о состоянии объекта контроля.
Распознавание образов связано с установлением соответствия между объектом и заданным образом. Так же как и норма при контроле, при опознании образ может быть задан в виде образцового изделия или в виде перечня определенных свойств и значений параметров (признаков) с указанием полей допуска. Нужно заметить, что в целом ряде практических приложений понятия контроля и распознавания образов совпадают.
Во многих случаях для восстановления нормальной работы объекта необходимо выявить элементы, послужившие причиной его неправильного функционирования. Такое направление развития методов и средств контроля работы технических устройств называется технической диагностикой.
Счет, т. е. определение количества каких-либо событий или предметов, в ИИТ относительно редко имеет самостоятельное значение и чаще входит составляющей операцией в процессы измерения, контроля и т. д.
Во всех перечисленных процессах, используемых в ИИТ, имеются общие черты. Все эти процессы обязательно включают восприятие техническими средствами исследуемых (измеряемых, контролируемых) величин, весьма часто с преобразованием в некоторые промежуточные величины, сравнение их опытным путем с известными величинами, с описаниями состояний или свойств объектов, формирование и выдачу результатов в виде именованных чисел, их отношений, суждений, основанных на количественных соотношениях.
В ИИТ наиболее важную роль играет процесс измерения, являющийся основным путем получения количественной информации. Средства измерений известны со времен глубокой древности (Китай, Индия, Египет, Греция, Рим).
Человечество пришло к необходимости выработать особые приемы количественного выражения существенных для него свойств объектов с помощью именованных чисел, соответствующих определенным долям выбранных мер.
По существу ни одно экспериментальное научное исследование, ни один процесс производства не может обойтись без измерений в той или иной форме, без получения того, что мы называем измерительной информацией. В настоящее время ни у кого не вызывает сомнения, что без должного развития методов и средств измерения невозможен прогресс науки и техники. Развитие современного научного эксперимента, включающего исследование космического пространства и элементарных частиц материи, глубин океанов и поверхности Земли, совершенствование промышленного производства и средств комплексного управления производством, развитие практически всех отраслей народного хозяйства и оборонной техники в значительной степени зависят от своевременного и качественного сбора измерительной информации, от должного уровня и опережающего развития средств измерения.
До недавнего прошлого арсенал средств измерительной техники ограничивался неавтоматическими и автоматическими измерительными приборами, предназначенными для измерения одной величины или небольшой группы однородных величин, обычно не изменяющихся за цикл измерения. Нужно отметить, что и в настоящее время производство таких измерительных приборов составляет заметную долю продукции приборостроительной промышленности.
В настоящее время, в первую очередь в связи с резкой интенсификацией и автоматизацией процессов производства, усложнением и расширением фронта научных экспериментов, существенно изменились требования к средствам измерения. Новые требования связаны главным образом с переходом к получению и использованию результатов не отдельных измерений, а потоков измерительной информации. Зачастую необходимо получать информацию о сотнях и тысячах однородных или разнородных измеряемых величин, часть из которых может быть недоступной для прямых измерений. Как правило, получение всего объема измерительной информации должно выполняться за ограниченное время. Если эти функции возложить на человека, вооруженного лишь простейшими измерительными и вычислительными устройствами, то в силу физиологических ограничений он, даже при весьма значительной тренировке, не сможет их выполнять. Решение этой проблемы путем увеличения обслуживающего персонала не всегда возможно, а там, где это возможно, в большинстве случаев экономически невыгодно. Уместно заметить, что из-за опасных условий эксперимента или вредности технологического процесса участие человека-оператора может быть вообще недопустимым.
^ на проблема создания новых средств, способных разгрузить человека от необходимости сбора и обработки интенсивных потоков измерительной информации. Решение этой проблемы привело к появлению нового класса средств измерения — измерительных систем (ИС), предназначенных для автоматического сбора и обработки информации.
Аналогично можно проследить развитие других средств ИИТ, приведшие к необходимости создания кроме ИС также систем автоматического контроля (САК), технической диагностики (СТД), распознавания (РС).
Совокупность перечисленных выше систем получила название информационно - измерительных информационных систем – ИИС. Под ИИС понимаются системы, предназначенные для автома-тического количественной информации непосредственно от изучаемого объекта путем процедур измерения и контроля, обработки этой информации и выдачи ее в виде совокупности именован-ных чисел, высказываний, графиков и т. Д., отражающих состояние данного объекта.
Измерительные информационные системы должны воспринимать изучаемые величины непосредственно от объекта, а на их выходе должна получатся количественная информация (и только информация) об исследуемом объекте;
ИИС существенно отличается от других информа-ционных систем (в частности от ИИС). Разумеется, информация, получаемая на выходе ИИС, используется для принятия каких – либо решений, однако использование информации обычно не входит в функции ИИС.
Итак ИИС – обобщающее понятие. Под ним подразумевается класс средств ИИТ, объединяющий системы измерения, контроля, технической диагностики и распознавания.
В области экспериментальной аэродинамики с помощью ИИС производится измерение аэродинамических ил, распределение давления, температур, расходов газов и других величин.
Экспериментальная прочность нуждается в измерении внешних сил, воздействующих на исследуемые объекты, и реакции на их действие (напряжение в материале, смещения и т. д.), характеристики самих объектов и т. п. в качестве основных экспериментальных средств применяются ИИС.
Географические экспериментальные исследования оснащены многочисленными ИИС, в которых реализуются эффективные методы исследования строения земной коры.
В океанографических исследования с помощью ИИС происходит измерение температур, химического состава, скоростей движения, давления в водной среде и т. п.
Химические, физические, биологические экспериментальные исследования основаны на огромном количестве разнообразных методов и их реализация с помощью ИИС. Это определение состава и характеристик объекта исследования и внешних воздействий, условий эксперимента и т. п.
Для применения метеорологии, для охраны окружающей среды созданы многочисленные ИИС, позволяющие получать и обрабатывать измерительную информацию о состоянии воздушной и водной сред, о солнечной радиации и т. п.
Особо, пожалуй, следует отметить ИИС, построенных для нужд метрологических исследований и метрологического обеспечения единства измерения в стране, так как такие ИИС должны обладать высокими метрологическими характеристиками.
Огромное поле при приложении ИИС представляют комплексные испытание машин, конструкций, приборов, оборудования. Испытание таких конструкций, как суда, летательные аппараты, двигатели, требуют создания сложных технических средств в целях получения необходимой, главным образом измерительной, информации.
Медицина оснащается современными ИИС, позволяющими получать и оценивать ряд физиологических и психофизических параметров человека. Можно предполагать, что количество ИИС, применяемых в медицине, будет резко возрастать.
(Для примера, в папке АЦП-центр устанавливаем Klingon.exe. Затем в папке /Klingon/ запускаем для просмотра файлы: prices_all.htm, products.htm, plats.htm, programs.htm, systems.htm, virtual_devices.htm)
^ [Л.1, глава 1, с.14].
Обобщённая структурная схема ИИС.
Устройство управления может формировать командную информацию {Фо*}, принимать информацию {/*} от функциональных блоков и подавать команды на исполнительные устройства 9 для формирования воздействия на объект исследования. Воздействия могут быть, например, в виде электрических U, механических Р, тепловых Т°, оптических О, гидравлических G и акустических А величин. Воздействия могут организовываться, во-первых, в целях создания соответствующих условий для проведения эксперимента и, во-вторых, для уравновешивания
величин, действующих на входы датчиков. В последнем случае система называется замкнутой с компенсационной обратной связью, а формируемые воздействия — компенсирующими величинами.
Множество аналоговых преобразователей 2 содержит преобразователи 2.1 и нормирующие преобразователи 2.2 аналоговых сигналов (например, масштабные преобразователи, преобразователи вида модуляции), коммутаторы аналоговых сигналов 2.3, аналоговые вычислительные устройства (с обозначением F) 2.4, аналоговые устройства памяти 2.5, устройства сравнения аналоговых сигналов 2.6, аналоговые каналы связи (с обозначением КС) 2.7, аналоговые показывающие и регистрирующие измерительные приборы 2.8.

Интерфейсные устройства ИФУ аналоговых блоков главным образом служат для приема командных сигналов и передачи информации о состоянии блоков (см. гл. 5). Например, через ИФУ могут передаваться команды на изменение режима работы, на подключение заданной цепи с помощью коммутатора. Между аналоговыми и цифровыми устройствами включено множество аналого-цифровых преобразователей 3.1 и аналоговых устройств допускового контроля 3.2.
К цифровым устройствам1 4 относятся формирователи импульсов 4.1, преобразователи кодов 4.2, коммутаторы 4.3, специализированные цифровые вычислительные устройства 4.4 (с обозначением CPU), устройства памяти 4.5, устройства сравнения кодов 4.6, каналы цифровой связи 4.7 (с обозначением КС), универсальные программируемые вычислительные устройства — микропроцессоры, микро-ЭВМ и т. п. — 4.8.
Группа цифровых устройств вывода, отображения и регистрации 5 содержит формирователи кодоимпульсных сигналов 5.1, печатающие устройства 5.2, устройства записи на перфоленту 5.3 (ПЛ) и считывания с перфоленты 5.4 (также с обозначением ЯЛ), накопители информации на магнитной ленте 5,5 (МЛ) и магнитных дисках 5.6 (МД), дисплеи 5.7 (Д), сигнализаторы 5.8, цифровые индикаторы 5.9.
В структурных схемах далее используются также обозначения элементов цифровой вычислительной техники, установленные ГОСТ 2.743-82. В частности, применяются следующие обозначения: регистр — RG, счетчик—СТ, устройства задержки во времени — DL, генератор — G (серии импульсов — Gn, непрерывной последовательности импульсов — GN, линейно изменяющегося сигнала—G/, синусоидального сигнала — GSJN, одиночного импульса — G1), дешифратор—DС, триггер—Т, память—М( ОЗУ—RAM, SAM, ПЗУ—^ , ППЗУ—PROM), мультиплексор (цифровой коммутатор)—MUX, демультиплексор—DMX и др.
Кроме указанных на рис. 1.1 условных графических обозначений в структурных схемах используются обозначения, приведенные в приложении 1.
Уместно отметить, что ЭВМ 4.8 могут взять на себя ряд преобразований, выполняемых, например, в блоках 2.4, 2.5, 2.6, 4.2, 4.4, 4.6, 5.1, а также функции управления (блок 8). Эти преобразования, естественно, будут выполняться программным путем.
Конечно, не во всякой ИИС требуется присутствие всех приведенных на рис. 1.1 блоков. Для каждой конкретной системы количество блоков, состав функций и связи между блоками должны устанавливаться особо.
Нужно отметить, что в технической литературе можно встретить название компонентов ИИС, являющихся объединением нескольких функциональных блоков. Так, например, объединение коммутаторов аналоговых сигналов и аналого-цифровых преобразователей иногда называют многоканальными АЦП.
Структурные схемы содержат важную информацию о системе, но эта информация не позволяет судить о последовательности, режимах, об алгоритмах работы данной системы. Это особенно относится к системам, основанным на использовании вычислительных комплексов, цифровых интерфейсов, содержащих микропроцессоры, ЭВМ и другие многофункциональные устройства.
Ниже предлагаются и рассматриваются содержательные логические схемы алгоритмов (СЛСА), предназначенные для формального описания работы ИИС, в том числе включающих малые ЭВМ. В СЛСА развиваются и конкретизируются идеи ЛСА применительно к специфике таких систем.
При разработке СЛСА предполагалось, что они должны: описывать функционирование как аппаратной, так и программно-управляемой частей ИИС;
Обозначения информационных преобразований в СЛСА в основном выполняются буквами латинского алфавита, а служебной информации — греческого. Аналоговая величина в общем виде обозначается буквой x, множество таких величин — X, цифровая — z, а множество цифровых величин — Z. Цифровое выражение конкретной аналоговой величины представляется в виде Dx.
Функциональные операторы получения, преобразования, передачи, выдачи измерительной информации обозначаются І(/*). В скобках дается конкретное содержание таких операторов. Наиболее распространенное содержание операторов связано с оперативным хранением информации S(storage), выдачей, чтением информации R (read), записью, регистрацией информации W (write), обработкой информации F (function) и СР (compute), операциями сравнения CR (comparison) и контроля СН (checking).
Обозначения операторов с перечисленными преобразованиями над X и Z имеют вид: I(S : X), I(S:Z); I(R:X), I(R:Z); І(W:X), I(W:Z); І(F:X), I(CP:Z); І(CR:xi,xj), I(CR:zi,Zj); I(CH:x), I(CH:z).
Преобразование сигналов записывается с указанием входных и выходных величин, разделенных наклонной трямой, причем указывается вид преобразования информации. Передача аналоговых и цифровых величин обозначается как I(x), I(X), I(z), I(Z).
Структурная схема ИИС на примере контроллера SSJKS4.


РАЗНОВИДНОСТИ ВХОДНЫХ ВЕЛИЧИН в ИИС, [Л.1, глава 2, с.25].
На входы ИИС может поступать большое количество однородных или разнородных по физической природе величин (механических, электрических, тепловых и др.) и сопутствующих им влияющих величин (помех). Естественно, учет физических свойств входных величин и их количественных характеристик имеет большое значение при создании и использовании ИИС. Однако в общей классификации ИИС, как уже говорилось, целесообразно сосредоточить внимание на особенностях исследуемых величин, определяющих принцип действия ИИС с точки зрения системотехники.
Классификация входных величин по таким признакам приведена в табл. 2.1. Входные величины характеризуют исходный «материал», поступающий в ИИС, и, следовательно, в определенной мере позволяют определить, какие оценки могут быть получены при наличии этого «материала».
Таблица 2.1. Классификация входных величин (сигналов)
^ | Классы | |
Количество величин | i = 1 | i => 2 |
Поведение во времени | Неизменное | Изменяющееся |
Расположение в пространстве | Сосредоточенное в точке | Распределенное по пространству |
Характер величин | Непрерывный | Дискретный |
Энергетический признак | Активные | Пассивные |
Взаимосвязь помех с входными величинами | Независимые помехи | Помехи, связанные с входными величинами |
Необходимо дать некоторые пояснения к классификационным признакам входных величин.
Количество величин i определяется суммой всех (в том числе однородных) величин. При i>2 входные величины могут быть как независимыми, так и взаимосвязанными. Заметим, что взаимная связь между исследуемыми величинами может быть весьма разнообразной.
Входные величины могут изменяться во времени и быть распределенными в пространстве. В этих случаях следует говорить об исследуемых процессах, временных или пространственных функциях.
Под активными подразумеваются величины, способные оказывать энергетические воздействия на входные устройства системы. К ним, например, относятся электрический ток и напряжение, ионизирующие, световые, тепловые излучения, механические силы, давления и т. д.
Пассивны такие величины, как сопротивления электрических цепей, механические сопротивления, твердость, жесткость и т. п.
В табл. 2.1 речь идет о внешних по отношению к ИИС помехах. Часто они неотделимы от входных величин, так как физически вызываются теми же явлениями. Разграничение их с изучаемыми величинами во многих случаях связано со значительными трудностями. Помехи могут характеризоваться теми же признаками, что и измеряемые величины; здесь же они лишь разделяются на независимые от входных величин и с ними связанные.
^
[Л.1, глава 2, с.29] .
В обобщенной структурно-функциональной схеме ИИС (см. рис. 1.1) показаны основные блоки ИИС и их взаимосвязь. Далеко не всегда необходимо использовать весь приведенный на рис. 1.1 состав блоков в конкретных системах. Нужно также иметь в виду, что для выполнения одних и тех же функций могут быть созданы системы, существенно различающиеся по структуре и алгоритму работы.
Число возможных структурных вариантов систем при указанном на рис. 1.1 количестве функциональных устройств будет очень большим. Классифицировать это многообразие возможных структур для ИИС в целом весьма затруднительно. Видимо, рационально рассмотреть структуры измерительных, контрольных и других систем отдельно, в соответствующих частях книги, выделив основные функциональные элементы этих систем. В общей же классификации ИИС целесообразно остановиться на наиболее общих принципах их построения (табл. 2.3).
Сделаем краткие пояснения к классификационным признакам этой таблицы.
Наличие специального канала связи, обеспечивающего передачу качественной информации от объекта, находящегося на большом расстоянии, приводит к необходимости решения ряда специфических вопросов. В соответствии с этим нужно выделить специальный класс телеинформационно-измерительных систем (ТИИС)—ИИС дальнего действия.
^
Классификационный признак | Классы | |
^ | Отсутствует | Имеется |
Порядок выполнения операций получения информации | Последовательный | Параллельный |
Агрегатирование состава системы | Агрегатированный | Неагрегатированный |
^ | Неиспользуется | Используется |
Наличие микропроцессорных устройств | Отсутствуют | Имеются |
Наличие контура информационной обратной связи | Разомкнутые системы | ^ |
Изменение скоростей получения и выдачи информации | Без изменения | С изменением скоростей |
^ | Аналоговые | Кодоимпульсные |
Адаптация к исследуемым объектам | ^ | Адаптивные системы |
Выполнение последовательно или параллельно операций получения информации во многом определяет количество элементов системы, быстродействие, надежность и т. п. Измерительная информационная система может состоять из частей, в которых последовательность операций получения или преобразования информации может быть различной. Естественно, в системе для перехода от параллельного к последовательному выполнению преобразований информации и наоборот должны использоваться соответствующие согласующие устройства.
Использование пригодных для совместной работы функциональных блоков агрегатных комплексов ГСП и стандартных цифровых интерфейсов существенно определяет многие характеристики ИИС. Более подробно это рассматривается в гл. 3 и 5.
Наличие в составе программно-управляемых цифровых вычислительных средств (микропроцессоров, малых ЭВМ и т. п.) является очень важным классификационным признаком. Система, содержащая такие средства, обладает определенной универсальностью, так как при соответствующем программном обеспечении может (при ограниченном быстродействии) выполнять функции систем различного назначения. Измерительные информационные системы, содержащие такие вычислительные средства, называют измерительно-вычислительными системами (ИВС), а ИВС, создаваемые потребителями из стандартных устройств для решения локальных экспериментальных задач — локальными; ИВС (ЛИВС).
В ИВС можно выделить универсальное ядро, в которое входят часть аналоговых преобразователей (например, коммутаторы), аналого-цифровые преобразователи, часть цифровых преобразователей (цифровые коммутаторы и устройства памяти), ЭВМ, набор устройств отображения и регистрации информации, средства интерфейса и устройства, формирующие воздействия на исследуемый объект. Это ядро цифровых ИИС получило название измерительно-вычислительных комплексов (ИВК). Измерительно-вычислительные системы при известных условиях могут создаваться на базе управляющих вычислительных машин (УВМ) и комплексов (УВК), имеющих в своем составе ЭВМ.
В некоторых частных случаях (например, при измерении электрических величин) технические средства ИВС и ИВК могут совпадать, а отличие между ними будет заключаться лишь в программном обеспечении.
Наличие контура обратной информационной связи позволяет организовать компенсационные методы измерения, позволяющие получить более высокие точностные характеристики.
Изменение скоростей получения и выдачи информации в ИИС возможно главным образом при использовании запоминающих устройств (ЗУ). Оно может быть, например, применено для быстрого запоминания значений исследуемых величин и медленной выдачи информации и наоборот.
Введение адаптации ИИС к исследуемым величинам, структурной и информационной избыточности в целях повышения надежности, помехоустойчивости, точности, гибкости работы и т. п. типично для системотехники. Можно предполагать, что дальнейшее развитие ИИС во многом будет зависеть от решения этих вопросов.
^
Виды модуляции сигналов в ИИС, [Л.8, с.213-216].
Многоканальные системы, мультиплексирование,[Л.2, с.217-220].
Существуют два основных подхода к обработке более чем одного аналогового сигнала. Долгое время наиболее популярным был способ аналогового мультиплексирования всех входных каналов с использованием одного АЦП для выполнения преобразований. Одной из причин популярности этого способа являлась высокая стоимость АЦП. В альтернативном подходе используются отдельные АЦП для каждого канала. Этот способ имеет некоторые преимущества, и он становится все более привлекательным для практической реализации в связи с уменьшением стоимости АЦП.
^ . На рис. 5.13 показана наиболее часто используемая конфигурация системы сбора данных с аналоговым мультиплексированием каналов. По команде мультиплексор соединяет выбранный канал в УВХ, которое делает выборку и затем хранит ее для преобразования в АЦП. Заметим, что УВХ позволяет мультиплексору при необходимости переключиться на другой канал, в то время как АЦП еще выполняет преобразование. Это означает, что время переключения мультиплексора и его время установления не влияют на производительность системы. Одной из модификаций этой конфигурации является система одновременной выборки. УВХ устанавливаются на входах мультиплексора и запускаются по одной и той же команде SAMPLE. Это позволяет получить отсчеты значений двух или большего числа сигналов точно в один и тот же момент времени, что иногда требуется для некоторых систем управления и обработки сигналов.

В аналоговых мультиплексорах чаще всего используются полу проводниковые ключи (на полевых транзисторах с управляемым pn-переходом и КМОП-транзисторах). Матрица управляемых ключей изготавливается в виде монолитной ИС, которая, как правило, содержит и дешифратор, позволяющий использовать лишь несколько управляющих линий для выбора любого сигнального канала. Широкое распространение получили мультиплексоры на 4, 8 и 16 каналов, допускающие работу с заземленными или дифференциальными входными сигналами. Мультиплексор должен сначала отключать текущий коммутируемый вход и только затем подключать следующий, чтобы гарантировать отсутствие короткого замыкания двух входных линий. Другими важными рабочими характеристиками аналогового мультиплексора являются сопротивление его ключей в открытом состоянии, токи утечки ключей в закрытом состоянии, точность коэффициента передачи, перекрестные помехи и время установления. На сопротивлении открытого ключа входной сигнал создает некоторое падение напряжения, приводящее к погрешности коэффициента передачи. Эту погрешность можно минимизировать, нагружая мультиплексор схемой с большим входным сопротивлением. В частности, уменьшению погрешности коэффициента передачи способствует высокое входное сопротивление подключаемого к выходу мультиплексора УВХ. Точность коэффициента передачи — это выраженная в процентах погрешность передачи входного сигнала на выход мультиплексора. Перекрестные помехи возникают в результате паразитной связи между выходом мультиплексора и входом закрытого ключа. Время установления — это время, необходимое для того, чтобы значение выходного сигнала мультиплексора оказалось и в дальнейшем оставалось внутри некоторого установленного диапазона значений вблизи уровня подключаемого входного сигнала. Разработчик должен знать величину этого параметра, чтобы запускать УВХ только после указанной стабилизации уровня выходного сигнала мультиплексора.
Параллельное преобразование. При параллельном способе сбора данных для каждого канала используется отдельный АЦП (рис. 5.14). Преимущества такого подхода проявляются в промышленных системах сбора данных, когда измерительные преобразователи распределены по большой площади и, как правило, работают в условиях сильных внешних помех. Установка АЦП вблизи измерительных преобразователей и передача преобразованных данных в цифровой форме предотвращают прохождение аналоговых сигналов через области действия помех. При таком подходе обеспечивается также гальваническая развязка и исключается появление земляных контуров (принципы реализации интерфейса для таких систем обсуждались в разд. 5.3).

Рис. 5.14. Многоканальная система сбора данных с использованием отдельных АЦП для каждого канала и цифрового мультиплексора.
Наличие отдельного АЦП для каждого канала позволяет реализовать намного большую частоту дискретизации в расчете на канал. И наоборот — для реализации заданной производительности можно использовать менее быстродействующие АЦП.
(дополнительный материал: ЛР №5 ”ИИС на примере контроллера SSJKS4. Исследование работы аналогового мультиплексора”.)
^ [Л.2, глава 5, с.189]
Преимущества обработки информации и осуществления функций управления с использованием цифровых методов становятся все более очевидными. Однако данные, которые мы получаем из реального мира, обычно представлены в аналоговой форме. Необходимый аналого-цифровой интерфейс обеспечивает система сбора данных. Она преобразует исходные данные от одного или нескольких измерительных преобразователей в выходной сигнал, пригодный для цифровой обработки; преобразование осуществляется с помощью таких компонентов, как усилители, фильтры, схемы выборки — хранения, мультиплексоры и аналого-цифровые преобразователи (АЦП).
В этой главе в фокусе нашего обсуждения будет аналого-цифровой преобразователь — наиболее важная часть любой системы сбора данных. Сначала подробно обсуждаются принципы аналого-цифрового преобразования, конкретные функциональные схемы преобразователей, а также принципы выбора АЦП и их сопряжения с другими устройствами. Затем описываются системы сбора данных и их компоненты. В конце главы рассматривается конструкция 16-канальной недорогой системы сбора данных для IВМ РС.
^
В этом разделе вводятся основные понятия и определяются некоторые широко используемые термины, относящиеся к АЦП, а также описываются характеристики входных и выходных сигналов типичного АЦП [З].
^
Аналого-цифровое преобразование по существу является операцией, устанавливающей отношение двух величин. Входной аналоговый сигнал vi преобразуется в дробь x путем сопоставления его значения с уровнем опорного сигнала Vr. Цифровой сигнал преобразователя есть кодовое представление этой дроби. Это фундаментальное соотношение иллюстрируется на рис. 5.1 (а). Если выходной код преобразователя является n-разрядным, то число дискретных выходных уровней равно 2

Q = МЗР ПД/2

Где Q — квант, МЗР — аналоговый эквивалент МЗР и ПД — полный диапазон изменения входного аналогового сигнала.

Все аналоговые величины внутри заданного интервала разбиения представляются одним и тем же цифровым кодом, которому обычно ставят в соответствие значение аналоговой переменной в средней точке интервала, называемое пороговым уровнем [5]. Тот факт, что входной сигнал может отличаться от порогового уровня на величину, достигающую ±





^
Характеристики реальных преобразователей по ряду параметров могут отличаться от идеальных характеристик (аналогичных идеальной характеристике на рис. 5.1(6). Передаточная характеристика преобразователя может быть сдвинута относительно идеальной характеристики (рис. 5.2(а)). Эта погрешность «смещения» или «установки нуля» определяется как значение аналоговой величины, при которой характеристика пересекает ось входных напряжений [4]. Наклон передаточной характеристики может отличаться от своего идеального значения, что приводит к погрешности «наклона» или «усиления» (рис. 5.2(6)). Для большинства имеющихся в продаже АЦП погрешности смещения и усиления или очень малы, или могут быть практически полностью устранены с помощью предварительных регулировок. Труднее устранить погрешности, связанные с нелинейностью передаточной характеристики, которые невозможно уменьшить с помощью регулировки. В АЦП проявляются два типа нелинейности – интегральная и дифференциальная. Интегральная нелинейность определяется максимальным отклонением передаточной характеристики от идеальной прямолинейной характеристики при нулевых значениях погрешностей смещения и усиления (рис. 5.2(в)). Дифференциальная нелинейность — это отклонение величины одного из квантов от его идеального аналогового значения. Заметим, что если дифференциальная нелинейность превышает 1 МЗР, то в выходном сигнале может отсутствовать одна из кодовых комбинаций (выпадающий код), как показано на рис. 5.2(г).

^
Этот наиболее важный параметр преобразователя определяется как минимальная величина изменения аналогового напряжения на входе АЦП, вызывающая изменение выходного кода на один МЗР. Значение этого параметра обычно указывается в расчете на идеальный преобразователь и поэтому скорее отражает возможности преобразователя, чем его реальные рабочие характеристики. Разрешение может задаваться в процентах от полного диапазона, в милливольтах для заданного диапазона изменения входного сигнала или просто, как это чаще всего делается, числом разрядов преобразователя.
^
Точность преобразователя определяется как максимальная разность между фактическим входным напряжением и аналоговым эквивалентом двоичного выходного кода при заданном полном диапазоне. Этот параметр называют абсолютной точностью, когда его значение указывается в реальных вольтах. Однако гораздо чаще при определении точности на единицу измерения аналогового сигнала принимается величина МЗР; тогда речь идет об относительной точности. В любом случае, точность преобразователя есть максимальное значение суммы всех его погрешностей, включая погрешность квантования. В спецификации погрешностей преобразователя обычно указываются отдельные погрешности в единицах МЗР. Для преобразователей, которые не требуют коррекции смещения или усиления (к ним относится, например, АЦП ADC0816 фирмы National Semiconductor), может быть указана полная некорректируемая погрешность (±

^
После того как на АЦП поступает команда запуска, требуется некоторое конечное время, называемое временем преобразования






Рассмотрим, например, синусоидальный входной сигнал с амплитудой А и частотой f:
Vi = A sin (2


преобразование которого осуществляется с помощью 8-разрядного преобразователя, и пусть время преобразования tc = 100 мкс. Скорость изменения входного сигнала



а максимальное значение этой величины составляет
(



Полагая ПД = 2А (полный размах синусоидального сигнала), получаем
2



f


f


Таким образом, даже в случае относительно гладкого синусоидального сигнала мы ограничены низкой частотой 12,4 Гц. При столь жестком ограничении диапазон применений АЦП был бы исключительно узок. Эта трудность обходится путем использования на входе АЦП схемы или устройства выборки — хранения (УВХ). УВХ — простая аналоговая схема, которая по команде осуществляет отсчет значения входного сигнала и затем сохраняет это значение на приблизительно постоянном уровне,пока АЦП выполняет преобразование. Временным интервалом, определяющим по приведенной выше формуле допустимую скорость изменения входного напряжения, является теперь время задержки, называемое также апертурным временем ta. Здесь имеется в виду характерная для УВХ задержка между моментом получения команды и моментом фактического перехода схемы в режим хранения (схемы выборки — хранения очень подробно обсуждаются в разд. 5.4). Типичное значение апертурного времени — несколько десятков наносекунд. Если мы используем УВХ с апертурным временем, скажем 20 нc, то максимальная допустимая частота входного сигнала составит
f


Это вполне приемлемое значение для преобразователя с tс = 100 мкс. Значение f


Производительность преобразователя — еще один важный параметр. Это — число отсчетов входного сигнала, выполняемых преобразователем в единицу времени при сохранении полной точности. Производительность преобразователя рассчитывается как обратная величина полного времени, необходимого для выполнения одного завершенного преобразования. Она является обратной величиной времени преобразования только в том случае, когда не используется УВХ. Пример расчета производительности с учетом влияния УВХ приведен в разд. 5.6.
Входные и выходные сигналы преобразователя
Аналоговый входной сигнал. Большинство монолитных преобразователей сконструированы в расчете на работу с дифференциальным или отсчитываемым от потенциала земли однополярным входным сигналом. Уровень этого сигнала должен быть согласован с установленным входным диапазоном преобразователя. Чаще всего используются входные диапазоны 0...10В и 0...5В. Если фактический диапазон изменения входного сигнала составляет только часть полного входного диапазона преобразователя, то некоторые выходные кодовые комбинации преобразователя никогда не будут реализованы. При этом неоправданно сужается динамический диапазон преобразователя, что приводит к более сильному влиянию погрешностей преобразователя на выходной сигнал. Наилучшее решение этой проблемы — выбор преобразователя с наиболее подходящим входным диапазоном и предварительное масштабирование входного сигнала с помощью операционного усилителя. В большинстве систем входной сигнал обычно требует некоторой предварительной обработки, и согласование может быть выполнено в конечном каскаде соответствующей обрабатывающей схемы. В некоторых случаях недостаточный размах входного сигнала можно скомпенсировать путем пропорционального уменьшения масштаба опорного сигнала при условии, что в конструкции преобразователя предусмотрена возможность регулировки уровня опорного сигнала.
Для биполярного входного сигнала тоже можно использовать однополярный преобразователь, сначала масштабируя этот сигнал, а затем добавляя к нему напряжение смещения, как показано на рис. 5.3. Если же на выходе необходимо иметь информацию о полярности сигнала, приходится использовать биполярный преобразователь. Биполярные преобразователи работают с биполярными входными диапазонами, чаще всего от -5 до +5 В, и вырабатывают выходные сигналы в виде биполярных цифровых кодов (дополнительном, смещенном, прямом или обратном), которые обсуждались в разд. 4.1.
Аналоговый опорный сигнал. На рис. 5.4(а) показаны входы и выходы типичного АЦП. Для работы каждого АЦП нужен аналоговый опорный сигнал, с которым сравнивается входной сигнал.


Рис. 5.4 Аналого-цифровой преобразователь (АЦП). (а) Типичные входы и выходы. (б) Типичные временные диаграммы управляющих сигналов.
Любая погрешность опорного сигнала, связанная с неточностью его первоначальной установки или температурным и временным дрейфом, проявляется как погрешность усиления в передаточной характеристике АЦП. Поэтому точность и стабильность опорного сигнала являются важнейшими факторами в реализации полной точности АЦП. Дешевые интегральные стабилизаторы представляют собой подходящие источники опорного сигнала при условии, что окружающая температура изменяется в небольших пределах. Однако для большинства применений требуется лучшая температурная стабильность, которая может быть обеспечена прецизионными интегральными источниками опорного напряжения.
Существующие источники опорного напряжения на ИС можно разделить на два типа. В источниках первого типа используется обратный пробой компенсированного зенеровского диода (стабилитрона). Типичное напряжение таких источников равно примерно 6,9В, а температурный коэффициент напряжения изменяется в диапазоне (5...100)∙10

Источники опорного напряжения обоих типов следует использовать с буферными схемами (иногда располагаемыми на самом кристалле) для масштабирования напряжения к требуемому уровню и улучшения стабильности рабочей точки. Такие буферизованные источники опорного напряжения на ИС — наиболее подходящие источники опорного сигнала для большинства АЦП.
^ Выходной цифровой сигнал АЦП характеризуется числом разрядов (разрешением) и типом используемого кода. Наибольшее распространение получили преобразователи с 8- и 12-разрядным разрешением. Однако имеется также достаточно широкий выбор преобразователей с разрешением 10 разрядов. 3

^ Для функционирования любого АЦП требуются синхронизирующий и некоторые управляющие сигналы. Представление об управляющих сигналах лучше всего получить, рассматривая один цикл преобразования типичного АЦП (рис. 5.4(6)). Внешнее устройство, с которым связан АЦП (например, микропроцессор), инициирует процесс преобразования путем переключения на мгновение входа START АЦП в состояние высокого уровня. В момент начала процесса преобразования АЦП переводит в состояние низкого уровня свою линию BUSY/EOC (АЦП занят/ Преобразование завершено). Таким образом, внешним устройствам сообщается, что идет процесс преобразования и что пока еще не следует вести поиск выходных данных и не следует инициировать новый цикл преобразования. По завершении текущего преобразования АЦП возвращает эту линию в исходное состояние высокого уровня. Этот переход, как правило, используется для генерации сигнала прерывания микропроцессора или какого-либо другого сигнала, сообщающего внешнему устройству о завершении преобразования. Внешнее устройство посылает в АЦП сигнал разрешения вывода (ОЕ), разрешающего АЦП выдачу выходного слова на шину данных. В преобразователях с более чем 8-разрядным разрешением сигнал ОЕ может разбиваться на два сигнала — разрешения вывода старшего байта (НВЕ) и разрешения вывода младшего байта (LBE), в результате чего выходное слово преобразователя может передаваться по 8-разрядной шине данных в виде двух последовательных посылок.