Лекции по ЛП СВЧ
скачать (5799 kb.)
Доступные файлы (1):
1.doc | 5799kb. | 18.11.2011 20:51 | ![]() |
содержание
Загрузка...
- Смотрите также:
- по устройствам СВЧ [ лекция ]
- Кац Б.М., Мещанов В.П., Фельдштейн А.Л. Оптимальный синтез устройств СВЧ с Т-волнами [ документ ]
- Собенин Н.П., Лалаян М.В., Гусарова М.А. Практикум по курсу Техника СВЧ [ документ ]
- по Техника и приборы СВЧ [ лекция ]
- Ильченко М.Е., Кудинов Е.В. Феритовые и диэлектрические резонаторы СВЧ [ документ ]
- Агапов М.В., Аникин В.М. и др. Генераторы и усилители СВЧ [ документ ]
- Алексеев Л.В. Фильтры и цепи СВЧ [ документ ]
- Силаев М.А., Брянцев С.Ф. Приложение матриц и графов к анализу СВЧ устройств [ документ ]
- Алексеев А.В., Знаменский А.В., Поляков В.С. Фильтры и цепи СВЧ [ документ ]
- Задачи и их решение по электронным приборам и цепям СВЧ [ лабораторная работа ]
- №2 - Исследование управляемых устройств на полупроводниковых диодах [ лабораторная работа ]
- Елизаров А.А. и др. Сборник описаний лабораторных работ по курсу Приборы СВЧ и оптического диапазона [ документ ]
1.doc
Реклама MarketGid:
Загрузка...
Рис. 2.18. ^ а — симметричная и несимметричная емкостные диафрагмы; б -— симметричная и несимметричная индуктивные диафрагмы; в — резонансная диафрагма

L = -(в/a) ctg2(d/2a)(l + sec(d/2a)ctg2(x0/a)).
Резонансная диафрагма образуется наложением емкостной и индуктивной диафрагм. Резонансная частота диафрагмы определяется приближенным соотношением

где с = 3 108 м/с – скорость света в вакууме.
Н

едостаток емкостной и резонансной диафрагм состоит в том, что они значительно снижают электрическую прочность тракта.

^ представляет собой металлический цилиндр небольшого диаметра, размещаемый в поперечном сечении волновода параллельно или перпендикулярно силовым линиям электрического поля. В зависимости от расположения штыря в поперечном сечении волновода и его размеров на эквивалентной схеме он может быть представлен индуктивностью пли емкостью. На рис. 2.20 представлены реактивные штыри в волноводе и их эквивалентные схемы. Значения номиналов элементов эквивалентных схем штырей определяются по формулам, имеющимся в справочной литературе. При неглубоком погружении штыря в волновод параллельно силовым линиям электрического поля он эквивалентен емкости (рис. 2.20, б). Такие штыри используются в перестраиваемом согласующем устройстве, эквивалентном трехшлейфовому согласователю (рис. 2.21). Недостаток емкостных штырей состоит в том, что они снижают электрическую прочность тракта.
^
3.1. Соединения линий передачи СВЧ
Для сборки и разборки элементов тракта СВЧ они оснащаются специальными разъемами или соединительными устройствами. Такие разъемы должны обеспечивать надежный электрический контакт между соединяемыми устройствами. Они не должны снижать электрическую прочность тракта и вносить значительные отражения в тракт. Кроме того, разъемы должны обеспечивать необходимый уровень электрогерметичности тракта, т.е. минимальный уровень излучения электромагнитных волн из места соединения линий передачи.
В волноводных трактах применяют два типа соединений: контактное и дроссельно-фланцевое.
^ может быть неразборным и разборным. Неразборное соединение волноводов осуществляется с помощью внешних муфт, надеваемых на место соединения с последующей сваркой или пропайкой (рис. 3.1, а). Разборное соединение выполняется в виде гладких фланцев, припаиваемых к концам волновода (рис. 3.1, б). Направляющие штифты обеспечивают необходимую точность установки волноводов. Фланцы имеют отверстия, через которые с помощью болтов осуществляется стягивание соединения. Для улучшения контакта и обеспечения электрогерметичности между соединяемыми волноводами помещают тонкую контактную прокладку, выполняемую из бериллиевой бронзы. Края этой прокладки, примыкающие к стенкам волновода, рассечены и отогнуты в разные стороны. При необходимости герметизации тракта используют т

акже резиновые прокладки. Контактное разъемное фланцевое соединение – |Г| < 0.1 в полосе работы волновода.
Рис 3.1. Соединение волноводов: а – неразъемное контактное; б – разъемное контактное; в – контактное с пружинящей прокладкой; 1 – припой; 2 – гладкий фланец; 3 – направляющий штифт; 4 – болт, 5 – контактная прокладка; б – резиновая прокладка
^ обеспечивает надежный контакт между соединяемыми волноводами электрическим путем. Такое соединение показано на рис. 3.2, а и отличается от контактного наличием кольцевой канавки во фланце глубиной d и шириной у и радиальной проточки с размером l и шириной z. Канавка представляет собой короткозамкнутый коаксиал, в котором возбуждается волна Н11, а радиальная проточка – участок так называемого радиального волновода. Структура силовых линий электрического поля в волноводе и канавке с волной Н11 показана на рис. 3.2, б. На рис. 3.2, в представлена эквивалентная схема дроссельно-фланцевого соединения. Место механического контакта на этой схеме отмечено стрелкой. Дроссельная канавка вместе с радиальной проточкой представлены на эквивалентной схеме как два последовательно включенных короткозамкнутых шлейфа. Для того чтобы входное сопротивление этих шлейфов на рабочей частоте равнялось бы нулю, необходимо взять их общую длину л/2, а механический контакт расположить в нуле тока, т.е. на расстоянии л/4 от ко-роткозамыкаюшей перемычки. Таким образом, глубину канавки d следует взять равной H11/4, а размер проточки l = /4. Диапазонность дроссельного соединения увеличивается, если у > z. Обычно у = (2...5)z. Дроссельно-фланцевые соединения обеспечивают ||<0.01 в полосе частот 20 %.

Рис. 3.2. Дроссельно-фланцевое соединение волноводов: а – конструкция соединения; б – структура электрическою поля в соединении; в – эквивалентная схема соединения
В коаксиальных трактах в качестве соединений используют высокочастотные разъемы штепсельного типа. При этом с одной стороны соединяемых коаксиалов размещается штыревой контакт, а с другой стороны – гнездовой. На практике находят применение различные типы коаксиальных высокочастотных разъемов. Пример конструкции одного из них приведен на рис. 3.3.

^
При компоновке тракта СВЧ любой радиотехнической системы возникает необходимость применения изгибов и скруток. Эти элементы нарушают регулярность тракта и могут быть источником недопустимых отражений. В волноводных трактах используют изгибы (рис. 3.4). Размеры отражателей ХЕ и ХH в изгибах, показанных на рис. 3.4, a, б, выбираются из условия обеспечения минимального значения коэффициента отражения ХH = (0,6...0,7)a, ХЕ = 0,4b. В изгибе с двойным изломом (рис. 3.4, в) улучшение согласования достигается за счет уменьшения отражений от каждого из изломов и взаимной компенсации отраженных волн от каждого из них. Для этого расстояние между изломами l выбирается примерно равным в/4. Плавный изгиб (рис. 3.4, г) характеризуется своим радиусом r и углом поворота . Чем больше радиус изгиба и меньше угол поворота, тем меньше отражения от изгиба. Для улучшения согласования длину изгиба следует выбирать кратной в/2.
В волноводных трактах используют также скрутки. Возможный вариант выполнения скрутки показан на рис. 3.5. Скрутка предназначена для изменения плоскости поляризации, распространяющейся по волноводу волны на требуемый угол. Для улучшения согласования скрутки ее длину выбирают кратной в/2.

Рис. 3.4. Волноводные изгибы: a – в плоскости Е; б – в плоскости H; в – в плоскости Е с двойным изломом; г – плавный


Рис. 3.6. Коаксиальные изгибы: а – простой с согласующей протечкой; б – с согласующим срезом; в – плавный

Рис. 3.7. Полосковые изгибы: а, б – простой уголковый, в – скругленный, г – с согласующим срезом, д – плавный
На рис. 3.7 показаны варианты выполнения изгибов полосковых линий. Простой уголковый изгиб (рис. 3.7, а) не обеспечивает хорошего согласования. Изгиб полосковой линии на небольшой угол (30°) не вызывает заметных отражений (рис. 3.7, б). На практике чаще всего используют скругленный (рис. 3.7, в) или подрезанный (рис. 3.7, г) изгибы; для них Kсв = 1,08 и Kсв = 1,04 соответственно. Лучшие результаты по согласованию дает плавный изгиб (рис. 3.7, д); для него Kсв = 1,02 . Однако он имеет большие размеры по сравнению с подрезанным уголковым изгибом.
^
В трактах СВЧ часто возникает необходимость перехода от одного типа линии передачи к другому, например от коаксиала к прямоугольному или круглому волноводу, от коаксиала к полосковой линии, от прямоугольного волновода к круглому и т.п. Для этих целей предназначены специальные устройства, называемые переходами. Переходы нарушают регулярность тракта и поэтому должны быть хорошо согласованы по каждому из входов и не снижать электрическую прочность тракта. Наиболее важным в переходе является элемент связи, предназначенный для извлечения энергии из одной линии передачи и возбуждения электромагнитных колебаний в другой. В зависимости от типа соединяемых линий элемент связи может иметь различные конструкторские реализации. В электродинамическом смысле он представляет собой систему электрических и магнитных сторонних токов, определенным образом размещенных в линии передачи. Эти токи стремятся расположить так, чтобы с максимальной интенсивностью в линии передачи возбуждался требуемый тип волны и не возбуждались волны нежелательных типов. Амплитуда возбуждаемого типа волны будет максимальна, если при расположении элемента связи в линии передачи выполняются следующие условия:
сторонний электрический ток на элементе связи протекает параллельно электрическому полю возбуждаемой волны;
сторонний магнитный ток на элементе связи протекает параллельно силовым линиям магнитного поля;
элемент связи располагается в максимуме соответствующей компоненты поля.
Различают элементы связи электрического и магнитного типов. Например, штырь является электрическим элементом связи, а петля – магнитным. Для возбуждения линий передачи СВЧ могут быть использованы элементы связи в виде отверстий определенной формы или узких щелей.
На рис. 3.8. представлен коаксиально-волноводный переход. Он предназначен для перехода от коаксиала с волной типа Т к прямоугольному волноводу с волной H10. Обычно штырь, являющийся продолжением внутреннего провода коаксиала, располагают посредине широкой стенки волновода, а расстояние до короткозамыкающей стенки z1, берут равным четверти длины волны в волноводе. Для обеспечения хорошего согласования необходимо также правильно выбрать высоту штыря l и его диаметр. Обычно берут l = /4. Форма штыря и его диаметр существенно сказываются на полосовых свойствах перехода: чем толще штырь, тем шире полоса. При работе перехода вблизи штыря образуются все типы волн в прямоугольном волноводе. Кроме основной волны Н10, они находятся в закритическом режиме, и их амплитуды экспоненциально убывают при удалении от штыря. Скорость убывания определяется индексами т и п, характеризующими каждый тип волны в волноводе. Расстояние z2, от штыря до контактного фланца выбирается из условия уменьшения амплитуды высшей волны, ближайшей к основной волне Н10, до требуемой величины. Ближайшей к основной высшей волной в таком переходе является волна H30. Для уменьшения ее амплитуды в N раз величину z2 следует выбрать из соотношения

Рис. 3.8. Коаксиально-волноводный переход

Для возбуждения основной волны в прямоугольном волноводе с помощью полосковой линии используется волноводно-полосковый переход. Широкополосный переход между полосковой линией и прямоугольным волноводом может быть реализован применением П-образного волновода. При этом П-образный волновод получается из обычного прямоугольного волновода путем установки продольного металлического клина длиной (2..3)в (рис. 3.9). Варианты коаксиально-полосковых переходов показаны на рис. 3.10.
На практике часто возникает задача передачи мощности СВЧ от неподвижного генератора к вращающейся антенне. Эта техническая задача решается с помощью перехода, называемого вращающимся сочленением. Для вращающихся сочленений используют линии передачи, имеющие осевую симметрию поперечного сечения, и выбирают тип волны, у которой силовые линии поля обладают азимутальной симметрией. Перечисленным условиям удовлетворяют коаксиальный волновод с волной типа Т и круглый волновод с волной Е01
Р

ис. 3.9. Волноводно-полосковые переходы: а – зондовый на симметричную полосковую линию; б – П-образный на несимметричную полосковую линию; 1 – центральный проводник; 2 – металлическая пластина; 3 – диэлектрическая подложка; 4 – прямоугольный волновод; 5 – поршень; 6 – металлический клин; 7 – гребень П-образного волновода
Основным элементом вращающегося сочленения коаксиального типа являются дроссельные канавки, обеспечивающие надежный электрический контакт между вращающимися коаксиалами (рис. 3.11). Назначение и принцип работы дроссельных канавок во вращающемся сочленении такие же, как и в дроссельно-фланцевом соединении. Трущиеся контакты располагаются в нулях продольных токов, что достигается выбором глубины дроссельных канавок порядка четверти длины волны. При этом дроссельные канавки располагаются как во внешнем, так и во внутреннем проводниках коаксиала.

Рис 3.10. Коаксиально-полосковые переходы: а – непосредственный на симметричную полосковую линию; б – перпендикулярный на симметричную полосковую линию; в – перпендикулярный на несимметричную полосковую линию; 1 – центральный проводник; 2 – металлическая пластина; 3 – коаксиальная линия; 4 – разомкнутый шлейф; 5 – отверстие для согласования перехода
Н


олны H11 предназначены гасящие объемы или резонансные кольца.
Рис. 3.12. Вращающееся сочленение на круглом волноводе
Эквивалентная схема вращающегося сочленения с гасящими объемами показана на рис. 3.13. Длина шлейфов l выбирается таким образом, чтобы для волны E01 линия от клемм 1 к клеммам 2 была бы прозрачной, для волны H11 имела бы разрыв в месте подключения шлейфов. Это обеспечивается выполнением равенств l = E01/2, l = 3H11/4. Первое из этих равенств обеспечивает нулевое входное сопротивление шлейфов для волны E01 а второе – бесконечное входное сопротивление для волны H

11. Одновременное выполнение этих равенств достигается выбором радиуса a2 круглого волновода гасящего объема.
Рис. 3.13. Эквивалентные схемы волноводного вращающегося сочленения с гасящими объемами
Р

Литература
1. Сазонов Д. М., Гридин А.Н., Мишустин Б. А. Устройства СВЧ: Учеб. пособие / Под ред. Д. М. Сазонова. - М.: Высшая школа, 1981.
2. Григорьев Л Д. Электродинамика и техника СВЧ: Учебник для вузов но специальности "Электронные приборы и устройства". - М.: Высшая школа, 1990.
3. Кац Б. М. и др. Оптимальный синтез устройств СВЧ с эм-волнами / Под ред. В.П. Мещанова. - М.: Радио и связь, 1984.
Микроэлектронные устройства СВЧ: Учеб. пособие для радиотехнических специальностей вузов / Г. И. Веселое, Е. Н. Егоров, Ю. Н. Алехин и др.; Под ред. Г. И. Веселова. - М.\ Высшая школа, 1988.
5. Справочник по расчету и конструированию СВЧ полосковых устройств / С.И. Бахарев, В. И. Вольман, Ю. Н. Либ и др. I Под ред. В. И. Вольмана. — М.: Радио и связь, 1982.
6. Линии передачи СВЧ-диапазона; Максимов В.М.; Сайнс-Пресс; 2002 г.; 80 стр
Скачать файл (5799 kb.)